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TEMA and Dot Enumeration Profiles
Predict Mental Addition Problem
Solving Speed Longitudinally
Clare S. Major, Jacob M. Paul and Robert A. Reeve*

Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, VIC, Australia

Different math indices can be used to assess math potential at school entry.
We evaluated whether standardized math achievement (TEMA-2 performance), core
number abilities (dot enumeration, symbolic magnitude comparison), non-verbal
intelligence (NVIQ) and visuo-spatial working memory (VSWM), in combination or
separately, predicted mental addition problem solving speed over time. We assessed
267 children’s TEMA-2, magnitude comparison, dot enumeration, and VSWM abilities
at school entry (5 years) and NVIQ at 8 years. Mental addition problem solving
speed was assessed at 6, 8, and 10 years. Longitudinal path analysis supported
a model in which dot enumeration performance ability profiles and previous mental
addition speed predicted future mental addition speed on all occasions, supporting
a componential account of math ability. Standardized math achievement and NVIQ
predicted mental addition speed at specific time points, while VSWM and symbolic
magnitude comparison did not contribute unique variance to the model. The implications
of using standardized math achievement and dot enumeration ability to index math
learning potential at school entry are discussed.

Keywords: dot enumeration profiles, longitudinal data analysis, school entry math ability, assessment and
diagnosis, implications for intervention

INTRODUCTION

The question of which factors, or set of factors, best assess children’s math learning potential has
long been of interests to educators. Standardized math tests (e.g., the Test of Early Math Ability –
Ginsburg and Baroody, 1990, 2003) are commonly used for this purpose (Ginsburg and Baroody,
1990; Mazzocco and Myers, 2003; Mazzocco and Thompson, 2005; Halberda et al., 2008; Mazzocco
et al., 2013; Ryoo et al., 2015). These tests provide a composite measure of different math abilities.
Recent research also shows core number abilities, often indexed by the abilities to rapidly compare
two Arabic numbers or non-symbolic quantities, or to name small sets of items, predict math
abilities longitudinally (Reeve et al., 2012; Hornung et al., 2014). Core number abilities are thought
to be a basis of children’s numerical competence. Furthermore, children’s math abilities have also
been attributed to general cognitive factors (e.g., IQ, working memory) (Gray and Reeve, 2014,
2016). These sets of findings raise two questions: (1) do standardized math and core number
abilities assess similar math abilities longitudinally; and (2) is the answer to the first question
constrained by IQ or working memory? Answers to these questions may provide a framework
for how best to assess math potential and design appropriate math interventions.
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While standardized age-normed math tests may be helpful
identifying children with math- learning disabilities, they have
limitations (Mazzocco and Thompson, 2005; Mazzocco et al.,
2013). Meaningful differences in performance among different
math skills may be ignored and the contributions of core number
skills underestimated (Geary et al., 2013). These limitations, in
turn, may hinder the identification of math skills required for
instruction and intervention (Geary et al., 2013). A composite
math measure may show a child is falling behind age-related
expectations, but not be the reason for the delay (Mazzocco
et al., 2013). Understanding the factors that affect math delay is
important since older children’s math abilities are dependent on
earlier math abilities (Rittle-Johnson et al., 2001; Sarnecka and
Carey, 2008).

Core number abilities are hypothesized to support early math
development (Butterworth, 2010). A distinction is usually made
between small precise number and approximate number abilities
(Feigenson et al., 2004), both of which can be assessed in the
young and are associated with numerical abilities. The ability to
rapidly and precisely enumerate small sets, for example, predicts
concurrent and future math achievement (Reeve et al., 2012;
Sasanguie et al., 2013; Bartelet et al., 2014; Gray and Reeve, 2014).
Dot enumerations tasks assess at least two distinct processes: a
subitizing and a counting system, where small sets (n ≤ 4) are
enumerated accurately and rapidly and larger sets (n ≥ 4) are
enumerated more slowly and are more prone to counting errors
(Schleifer and Landerl, 2011). Subitizing abilities are identifiable
in infancy: Hyde and Spelke (2011), for example, identified
brain signatures (event-related potentials) in pre-verbal infants,
showing they respond to the precise cardinal value of small but
not large sets.

In a 6-year longitudinal study, Reeve et al. (2012) identified
distinct dot enumeration profiles in 5-year-olds and showed
these signatures remained stable over the pre-high school years.
Three signatures were identified that differed in subitizing range,
subitizing slope and counting slope. Moreover, the profiles were
associated with different math problems solving abilities over
6 years. A similar pattern of findings has been observed in
preschoolers (Gray and Reeve, 2014, 2016).

Non-symbolic and symbolic magnitude comparison abilities
are also claimed to reflect core number competence, and is
typically assessed by judging which of two non-symbolic arrays
(two sets of dots) or Arabic digits, is the larger. Some have
found MC ability predicts future math achievement (De Smedt
et al., 2009; Sasanguie et al., 2012). Desoete et al. (2012),
for example, found preschoolers’ accuracy on a non- symbolic
MC task predicted their arithmetic ability in first and second
grade, independent of intellectual ability. However, Bartelet et al.
(2014) found performance on a symbolic, but not on a non-
symbolic, MC task predicted first grade arithmetic, controlling
for intelligence and processing speed. Moreover, Vanbinst et al.
(2014) showed performance on a symbolic MC task at the
start of schooling predicted math ability, independent of general
cognitive functioning and school-entry mathematical ability.

Working memory is associated with young children’s math
ability (Bull et al., 2008; Holmes et al., 2008; Gray and Reeve,
2014; Scüzs et al., 2014). Visuo-spatial working memory (VSWM)

appears important in the early stages of arithmetic learning
(Barrouillet and Lépine, 2005; Imbo and Vandierendonck,
2007; De Smedt et al., 2009; Friso-van den Bos et al., 2013).
A relationship between working memory and math is not always
found, however (Passolunghi and Siegel, 2004; Meyer et al., 2010;
Peng et al., 2016). In a recent meta-analysis Peng et al. (2016) note
the relationship between WM and math performance appears
dependent, in part, on the nature of the WM and math tasks used
in research (see also Lan et al., 2011; Purpura and Ganley, 2014;
Purpura et al., 2017; Schmitt et al., 2017).

Non-verbal intelligence (NVIQ) also appears to be related
to math abilities and is a commonly used measure of math
achievement (Scüzs et al., 2014). In a longitudinal study Geary
et al. (2017) found NVIQ was a stable predictor of children’s
math achievement over time (Van de Weijer-Bergsma et al.,
2015; Lee and Bull, 2016; Tolar et al., 2016). One explanation
for this association is NVIQ, in part, requires visuo-spatial
organization abilities necessary for early math problem-solving
ability (Rourke, 1988; Scüzs et al., 2014).

In the present study we investigated children’s mental addition
problem solving speed longitudinally. The rationale for focusing
on mental addition problem solving speed is it has been found
to be closely associated with the strategy employed to solve
problems. The problem solving strategies children employ to
solve single addition problems skills, on average, change in
their conceptual sophistication over time and are claimed to
represent changes in math reasoning abilities (Butterworth,
2005; Reeve et al., 2012; Paul and Reeve, 2016). With age
and/or experience, children change from using less sophisticated
strategies (e.g., guess→ Count All →Count On →Min Count)
to more sophisticated strategies (Decomposition→ Retrieval)
(Donlan et al., 2003; Geary et al., 2004, 2007). The speed and
accuracy with which children solve single digit addition problems
is highly correlated with their strategy sophistication (Canobi
et al., 1998, 2002; Paul and Reeve, 2016). For example, a Count
All strategy, where each addend is individually enumerated, takes
more time to execute and is more error prone than a Retrieval
strategy where answers are retrieved from memory (i.e., the
answer is known). Moreover, links have been found between
single digit addition abilities and other math-related factors,
working memory and core number abilities (Reeve et al., 2012;
Paul and Reeve, 2016).

The Current Study
In the present study we investigated whether the TEMA-2,
magnitude comparison, dot enumeration, VSWM, assessed at
school entry, and NVIQ abilities, assessed at 8-years, similarly
or differently predict addition problem-solving RTs across time.
We selected the TEMA because it assesses a range of math
skills, has been used to identify math learning trajectories (Kable
et al., 2015; Chu et al., 2016), and has been normed for use
with young children, which is regarded as particularly useful
(Feigenson et al., 2013). Given that the TEMA is frequently
use as a standardized measure for determining children’s
math trajectories (Purpura et al., 2015), an examination of its
performance in predicting math outcomes longitudinally seems
sensible. Moreover, comparing TEMA’s performance with other

Frontiers in Psychology | www.frontiersin.org 2 December 2017 | Volume 8 | Article 2263

https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-08-02263 December 22, 2017 Time: 12:29 # 3

Major et al. Predicting Children’s Math Speed Longitudinally

core math measures would be advantageous in supporting the
development of math assessment schedules in which assessment
tools are used in a ‘best-fit-for-purpose’ manner.

To address this issue, 267 5 to 6-year-olds’ abilities were
assessed on four occasions over a 5-year period. The dot
enumeration and magnitude comparison measures were selected
because individuals’ performance is relative stable over time
(Reeve et al., 2012). The addition measures were selected
because of their importance in children’s school curriculum
(Paul and Reeve, 2016; Australian Curriculum Assessment and
Reporting Authority, 2017). Addition measures were tailored
to reflect children’s expected age-related math competence, as
articulated in the national curriculum guidelines. Single-digit
mental addition problem solving was assessed in 6 to 7-year-
olds, single and double-digit mental addition was assessed in 8 to
9-year-olds, and double-digit addition requiring decomposition
was assessed in 10 to 11-year olds.

We used longitudinal path analysis to identify the factor, or
combination of factors, that best predicted addition RTs across
time. Of interest was the degree to which dot enumeration,
magnitude comparison abilities and/or TEMA test scores,
assessed at school entry, moderated by VSWM and NVIQ,
independently or in association, predicted mental addition
problem solving RTs 2, 4, and 6 years later. On the basis
of previous research findings we expected TEMA scores, dot
enumeration profile membership and magnitude comparison
RTs to predict mental addition RTs across time. We also expected
that NVIQ and VSWM would moderate the impact of the TEMA
and two core number measures. Of particular interest was the
degree to which the TEMA, dot enumeration profile membership
and magnitude comparison RTs (1) contributed unique variance
in predicting mental addition RTs, and (2) predicted mental
addition RTs in the short and long term.

MATERIALS AND METHODS

Participants
Two hundred and sixty-seven children (M = 72.49 months,
SD = 4.50 months at the beginning of the study), comprising
156 boys (M = 72.98 months, SD = 4.39 months) and 111 girls
(M = 71.79 months, SD = 4.57 months), attending schools in
middle-class suburbs of a large Australian city, participated in
the study. The data were collected as part of a larger study
examining the development of math ability in preadolescent
children over time (see Reeve et al., 2012). The data described
herein were collected on four different occasions over a 5-year
period (hereafter referred to as Time 1, Time 2, Time 3, and
Time 4). Time 1 and Time 2 were separated by approximately
12 months; and Time 2 and Time 3, and Time 3 and Time
4, were separated by approximately 24 months respectively. All
children spoke English fluently, had normal or corrected to
normal vision and according to school personnel, had no known
learning disabilities. The study was conducted with the agreement
of, and in compliance with, the authors’ University’s Human
Ethics Committee. Parents gave written consent allowing their
child to participate in the project.

Materials and Procedure
Children were tested toward the beginning of their school
year. They completed the dot enumeration (DE), magnitude
comparison (MC), VSWM, and TEMA-2 at Time 1. The TEMA-2
and the VSWM task were completed on the first day, and the DE
and MC tasks, on consecutive days. Children completed a single-
digit addition test at Time 2; a mixed addition test at Time 3;
and a double-digit addition test at Time 4. They completed the
non-verbal IQ test at Time 3. Test sessions lasted between 15 and
20 min. On occasions where more than one task was completed
in a single test session, task presentation order was randomized.
The TEMA was selected because of its high test–retest reliability
(α = 0.94: Ginsburg and Baroody, 1990), as was the non-verbal
IQ and VSWM measures (VSWM: Corsi Blocks test, α = 0.75: de
Paula et al., 2016; and the Ravens Progressive Matrices non-verbal
IQ test, α = 0.82: Cotton et al., 2005).

The dot enumeration, magnitude comparison tasks and
addition tasks were presented on a 15′′ laptop computer, running
DMDX (Version 2) software that controlled stimuli presentation
and allowed RTs to be recorded. Responses were recorded by
an interviewer pressing a response key. This procedure was
preferred over a voice activated recording system to avoid the
impact of children counting aloud, which would terminate a voice
activated recording system. The interviewer was unaware of what
appeared on the screen. Test items were presented in a random
order.

Dot Enumeration
The dot enumeration task comprised dot arrays comprising
one to nine black dots (0.2 cm in diameter) presented on a
white background. Dots were randomly positioned within a
15 cm × 11 cm grid and were no less than 2 cm apart (to
reduce the appearance of clustering). Each dot numerosity was
presented eight times (n = 72 trials overall). Children completed
five practice trials in which they reported as quickly as possible
the number of dots in each array (Tell me as fast as you can –
but without making any mistakes – how many dots you see
on the screen). Instructions were repeated to ensure children
understood task requirements. Responses were scored as correct
or incorrect, and RTs recorded.

Dot enumeration abilities were determined using Reeve et al.’s
(2012) four-parameter model. The model is derived from a
latent profile analysis of children’s RTs to one to five dots
and an average of six to eight dots. We analyzed RTs (for
correct responses) for one, two, three, four, and five dots and
the average of six to eight dots to differentiate between the
subitizing range and slope, the counting slope and the point
of discontinuity between the subitizing and counting ranges.
Specifically, by analyzing the nature of the change in children’s
RT slope function in one to five dots, we were able to identify the
point of inflection in the RT slope and hence the subitizing range,
slope and intercept, as well as the counting slope. The latent
profile analysis was based on these data, which yielded three
distinct response profiles distinguishable in terms of differences
in (1) subitizing range, (2) subitizing slope, and (3) counting
slope (see Reeve et al., 2012 for details). For convenience,
here we refer to these profiles as the “slow,” “medium,” and
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“fast” profile. (It should be noted that while children in the
profile differed in overall response speed, they also differed
in subitizing range and differences in subitizing and counting
slopes RTs.) The analyses reported here are based on these
profiles.

Magnitude Comparison
The magnitude comparison task comprised single-digit pairs.
Children pressed the left shift key if the number on the
left side of the screen was large or the right shift key if
the number on the right side of the screen was larger. All
combinations of numbers 1 to 9 were presented, giving a total
of 72 trials. Children were presented with practice problems to
familiarize them with the task. Responses were scored as correct
or incorrect, and RTs recorded. However, because error rates
were low, and there were no RT differences between correct
and incorrect responses, analyses were based on overall mean
RTs.

Visuo-spatial Working Memory (VSWM)
Visuo-spatial working memory was assessed using the Corsi
Blocks task (Milner, 1971). It was administered and scored
following Kessels et al.’s (2000) procedure. VSWM span was
calculated as the average of the longest correct block tap
sequences. Spearman correlation measured across both trials
ρ = 0.48, p < 0.001, indicates high reliability.

Non-verbal IQ (NVIQ)
Non-verbal IQ was assessed using the Ravens Colored
Progressive Matrices test. It was administered following manual
instructions (Raven et al., 1984) and scored using standardized
norms (Raven et al., 1998). Good inter-item consistency and
split-half reliability have shown in comparable samples of
Australian school children (Cotton et al., 2005). The reliability
estimate for our sample was good (α = 0.82).

Test of Early Mathematical Abilities Version 2
(TEMA-2)
General math ability was assessed by the TEMA (Ginsburg and
Baroody, 1990). While the TEMA is normed on United States
children, it is widely used in other countries (Ginsburg and
Baroody, 1990). It has a high reported internal consistency
(coefficient reliability, α = 0.94) for the age of our sample
(Mazzocco and Thompson, 2005). The reliability for our current
sample was calculated as α = 0.91. The TEMA-2 was selected
in preference to the TEMA-3, as increases in the number of
test items in the TEMA-3 significantly increased administration
time (up to 20 min extra) and was deemed unwarranted
[The TEMA-2 assesses seven abilities: counting using one-to-
one correspondence; verbal counting—counting with number
words; numerical comparison—comparing the magnitudes
of sets (e.g., Which side has more?); set construction—
constructing different sets of items (e.g., Can you show
me six?); numeral literacy—recognizing and writing whole
numbers (e.g., What number is this?); number facts—computing
fluently with basic numbers (e.g., How many is one less
than two?); calculation—addition, subtraction and multiplication

(e.g., How many points does he have altogether?) It should
be noted that the comparing magnitudes of sets task is
somewhat similar to symbolic magnitude judgment task used
in the current study]. The TEMA is a known predictor of
children’s math ability (Halberda et al., 2008; Mazzocco et al.,
2011).

Addition Problem-Solving Tasks
The Time 2 single-digit addition (SDA) task comprised 16 single
digit addition problems (2 + 4, 2 + 5, 2 + 6, 2 + 7, 3 + 5, 3 + 6,
3 + 8, 4 + 2, 5 + 2, 5 + 3, 5 + 7, 6 + 2, 6 + 3, 7 + 2, 7 + 5, 8
+ 3); the Time 3 mixed SDA and double-digit addition problems
(SDA/DDA) task comprised 12 mental addition problems (e.g.,
8 + 13) in which the sum of the addends was less than 50;
and the Time 4 double-digit addition (DDA) task comprised 24
mental addition problems (e.g., 35 + 47) in which the sum of
the addends was less than 100. For all tasks, children received
practice trials to familiarize them with task requirement (to solve
problems as quickly and as accurately as possible). All problems
were presented in a random order, and problems appeared in the
center of the screen, in the form of a + b = [Note, no identical
single digits (e.g., 2 + 2, 4 + 34, 33 + 43) were included in
problem sets.]. Problems correctness and problem-solving RTs
were recorded.

Analytic Approach
An initial model examined whether addition RTs were predictive
of each other over time, and whether TEMA-2 measured at
Time 1 was a predictor of addition RTs assessed at Time
2, Time 3, and Time 4. A second model examined the
relationships between dot enumeration profiles, magnitude
comparison RTs and TEMA and VSWM measured at Time
1, to assess whether these measures predicted addition RTs at
Time 2, Time 3, and Time 4 respectively. Since NVIQ was
collected at Time 3, it was only included in the model to
predict Time 3 and Time 4 addition RTs. [Note, we included
gender in our analyses since it has been found to be associated
with math ability (Carr and Alexeev, 2011; Paul and Reeve,
2016); however, we do not make specific predictions about
gender.]

All model parameters were calculated using full-information
maximum likelihood estimation, which provides robust estimates
in the case of missing data (nT1 = 276; nT2 = 247; nT3 = 201;
nT4 = 176). Analyses were conducted using MPlus version
7 (Muthén et al., 1998–2013). Model fit was evaluated using
three types of indices: (1) relative chi-square (normed chi-
square), which is less sensitive to sample size (χ2/df < 2)
(Ullman, 2001); (2) relative indices [Comparative Fit Index
(CFI), Tucker-Lewis Index (TLI)] (Kline, 2005); and (3) absolute
fit indices [standardized root mean square residual (SRMR),
root mean square error of approximation (RMSEA)] (e.g., Hu
and Bentler, 1999; MacCallum and Austin, 2000). Standard
benchmark values were used to define acceptable model fit
(CFI/TLI > 0.90, SRMR/RMSEA < 0.10) and good model
fit (CFI/TLI > 0.95, SRMR/RMSEA < 0.08) (Marsh et al.,
2004).
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TABLE 1 | Bivariate correlations (bias-corrected bootstrap estimates, 95% confidence intervals) between cognitive, core number, and mental addition response times.

Variable 1 2 3 4 5 6 7 8 9

(1) SDA (T2) 1

–

(2) SDA/DDA (T3) 0.48∗∗∗ 1

[0.37, 0.58] –

(3) DDA (T4) 0.40∗∗∗ 0.57∗∗∗ 1

[0.27, 0.52] [0.44, 0.67] –

(4) DE-S3 (T1) −0.27∗∗∗ −0.31∗∗∗ −0.34∗∗∗ 1

[−0.36, −0.15] [−0.42, −0.18] [−0.45, −0.24] –

(5) DE-S2 (T1) 0.13∗ 0.14∗ 0.17∗ −0.74∗∗∗ 1

[0.01, 0.24] [0.00, 0.27] [0.03, 0.32] [−0.81, −0.68] –

(6) TEMA (T1) −0.51∗∗∗ −0.43∗∗∗ −0.33∗∗∗ 0.31∗∗∗ −0.15∗∗ 1

[−0.58, −0.44] [−0.53, −0.31] [−0.46, −0.18] [0.20, 0.41] [−0.28, −0.04] –

(7) VSWM (T1) −0.20∗∗ −0.21∗∗ −0.26∗∗∗ 0.21∗∗∗ −0.13∗ 0.31∗∗∗ 1

[−0.32, −0.08] [−0.34, −0.08] [−0.40, −0.11] [0.10, 0.33] [−0.25, −0.02] [0.20, 0.42] –

(8) MC (T1) 0.12 0.09 0.07 −0.05 0.05 −0.10 −0.06 1

[−0.02, 0.26] [−0.04, 0.23] [−0.07, 0.20] [−0.15, 0.06] [−0.07, 0.16] [−0.22, 0.03] [−0.17, 0.06] –

(9) NVIQ (T3) −0.25∗∗∗ −0.35∗∗∗ −0.24∗∗ 0.21∗∗ −0.11 0.37∗∗∗ 0.25∗∗∗ −0.01 1

[−0.39, −0.11] [−0.47, −0.22] [−0.36, −0.08] [0.09, 0.35] [−0.25, 0.03] [0.25, 0.50] [0.12, 0.38] [−0.14, 0.12] –

Mean 5.89 7.42 7.59 0.35 0.51 105.43 3.68 1.82 29.47

SD 2.78 3.41 3.53 0.48 0.50 13.27 0.67 0.52 4.46

SDA, single-digit addition; DDA, double-digit addition; DE-S3, Membership in Fast Dot Enumeration Profile, relative to Slow Dot Enumeration Profile membership; DE-S2,
Membership in Moderate Dot Enumeration Profile, relative to Slow Dot Enumeration Profile membership; TEMA, Test of Early Mathematics Achievement; MC, magnitude
comparison; VSWM, visuo-spatial working memory span; NVIQ, non-verbal IQ. Product-moment correlations were estimated between continuous variables, while biseral
correlations were estimated between continuous and dichotomous variables. ∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05.

RESULTS

Descriptive Statistics
The means and SDs for all measures and correlations among
them are reported in Table 1. Children had a VSWM span
of between 3 and 4 items, which is consistent with age-norms
(Farrell Pagulayan et al., 2006). NVIQ was similar to previously
Australian findings (Cotton et al., 2005). As expected, addition
problem solving RTs increased over time, as problem difficulty
increased. Significant correlations were found between dot
enumeration profile and TEMA-2, VSWM, and addition RT over
time; however, magnitude comparison RTs were not correlated
with other measures. NVIQ was significantly correlated with
VSWM, the TEMA, dot enumeration profile membership and
addition RTs at Time 3 and Time 4. The TEMA and the
three addition RTs were significantly inter-correlated over time.
Accuracy for the magnitude comparison task was quite high
(M = 0.94, SD = 0.05), and near ceiling for most children.
Accuracy for SDA (M = 0.89, SD = 0.07), SDA/DDA (M = 0.87,
SD = 0.03), and DDA (M = 0.85, SD = 0.10) tasks was also high.

Associations between TEMA-2 and
Mental Addition RTs Over Time
The significant paths and associated unstandardized path weights
(with bias-corrected bootstrap standard errors) between TEMA-
2, SDA, SDA/DDA, and DDA (Model 1) are presented in
Figure 1. For a one point increase in TEMA test scores at
Time 1, children’s addition problem-solving response times were

predicted to be 0.11 s faster at Time 2, and 0.06 s faster at Time
3. For a 1 s increase in addition problem-solving response times
at Time 2, children’s addition problem-solving response times
were predicted to be 0.42 s faster at Time 3. For a 1 s increase
in addition problem-solving response times at Time 3, children’s
addition problem-solving response times were predicted to be
0.50 s faster at Time 4. As Model 1 is fully-specified no fit statistics
are reported.

Association between Core Number, VSWM, NVIQ and
Mental Addition RTs Over Time
The model provided a good fit to the data, χ2(1) = 0.702,
p = 0.402; normed chi-square (χ2/df) = 0.70, RMSEA = 0.00
[90% CI = 0.00, 0.15], CFI/TLI = 1.00/1.00, SRMR = 0.007.

FIGURE 1 | Path diagram for model showing the relationship between
single-digit addition (SDA-T2), single-digit/double digit addition task
(SDA/DDA-T3) and double-digit addition (DDA-T4), predicted by TEMA-2
scores measured at Time 1 (T1). Unstandardized path weights are shown
(with bias-corrected bootstrap standard errors) for significant paths. SDA,
single-digit addition; DDA, double-digit addition; TEMA, Test of Early
Mathematics Achievement. ∗∗∗p < 0.001.
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Correlations between Time 1 covariates are presented in Table 2.
All significant paths and associated unstandardized path weights
(and bias-corrected bootstrap standard errors), are shown in
Figure 2.

Higher TEMA-2 scores were associated with membership
in the fast dot enumeration profiles, higher VSWM and
NVIQ. Lower TEMA-2 scores were associated with medium
dot enumeration profile membership, and for girls relative to
boys. Higher NVIQ was associated with higher VSWM and
membership of the fast dot enumeration profile, while lower
NVIQ was associated with girls relative to boys. Girls were less
likely to be in the fast dot enumeration profile, relative to boys,
but more likely to be in the medium dot enumeration profile.
Higher VSWM was associated with membership in the fast dot
enumeration profile.

Similar to the first model, a one point increase in TEMA scores
predicted 0.09 s faster single-digit addition problem-solving
RTs (Time 2). A 1 s increase in single-digit addition problem-
solving RTs at Time 2 predicted 0.37 s slower single-digit/double-
digit addition problem-solving RTs at Time 3, while a 1 s
increase single-digit/double-digit addition problem-solving RTs
at Time 3 predicted 0.40 s slower double-digit addition problem-
solving RTs at Time 4. These findings suggest the inclusion of
covariates in the model did not alter the relationship between
addition problem-solving RTs over time. Dot enumeration profile
membership predicted addition problem-solving RTs at Time 2,
Time 3, and Time 4. Membership in the fast dot enumeration
profile, compared to the slow dot enumeration profile, at Time
1 predicted a 0.99 s faster single-digit addition problem-solving
RTs at Time 2, 1.39 s faster single-digit/double-digit addition
RTs at Time 3, and 1.39 s faster double-digit addition RTs at
Time 4, respectively. For one point increase in NVIQ at Time
3, single-digit/double-digit addition problem-solving RTs were
0.12 s faster at Time 3. Girls were 1.28 and 1.47 s slower,
than boys, at solving addition problems at Time 3 and Time

4, respectively. Performance on the magnitude comparison task
and VSWM did not predict unique variance to the path model:
neither measure predicted addition problem-solving RTs at any
time point.

DISCUSSION

The study investigated the degree to which the TEMA,
dot enumeration, magnitude comparison abilities, taking into
account by VSWM assessed at school entry, and NVIQ assessed
3 years later, predicted different mental addition problem solving
test RTs 2, 4, and 6 years after initial testing. Four findings are
of note. First, the TEMA, assessed at 5-years (Time 1), predicted
addition RTs at 6–7 years (Time 2), but not 8–9 (Time 3) or
10–11 years (Time 4). Second, addition RTs at one time point
predicted addition RTs at the subsequent point, even though
the addition tasks were different, with the size of the effect
increasing over time. This finding highlights the componential
nature of math ability development. Third, dot enumeration
profile membership, but not magnitude comparison RT, was a
reliable predictor of addition RTs over time. More specifically, dot
enumeration profile membership at Time 1 predicted addition
RTs at Time 2, Time 3, and Time 4. Fourth, while NVIQ predicted
addition RTs at Time 3, it was unrelated to addition RTs at
Time 4. Girls had relatively slower addition problem-solving RTs,
than boys, at Time 3 and Time 5, but not at Time 2. Neither
magnitude comparison RTs nor VSWM predicted addition RTs
at any time point. In sum, the pattern of findings show the
TEMA predicted mental addition abilities in the short term, and
dot enumeration profile membership predicted mental addition
problem solving RTs in both the short and long term. Moreover,
dot enumeration profile membership and TEMA scores were
partially independent of each other and appear to reflect different
math competencies.

TABLE 2 | Path model correlations (bias-corrected bootstrap estimates, 95% confidence intervals) between Time 1 covariates.

Variable 1 2 3 4 5 6 7

(1) DE-S3 (T1) 1

–

(2) DE-S2 (T1) −0.74∗∗∗ 1

[−0.81, −0.68] –

(3) TEMA (T1) 0.31∗∗∗ −0.15∗ 1

[0.20, 0.41] [−0.27, −0.04] –

(4) MC (T1) −0.05 0.05 −0.10 1

[−0.16, 0.07] [−0.07, 0.16] [−0.22, 0.02] –

(5) VSWM (T1) 0.21∗∗∗ −0.13∗ 0.31∗∗∗ −0.06 1

[0.09, 0.33] [−0.24, −0.01] [0.19, 0.42] [−0.17, 0.06] –

(6) Gender −0.16∗∗ 0.12∗ −0.12∗ 0.02 0.01 1

[−0.28, −0.04] [0.00, 0.24] [−0.25, 0.02] [−0.09, 0.15] [−0.11, 0.13] –

(7) NVIQ (T3) 0.21∗∗ −0.12 0.37∗∗∗ 0.00 0.24∗∗∗ −0.20∗∗ 1

[0.08, 0.33] [−0.25, 0.02] [0.25, 0.49] [−0.13, 0.13] [0.11, 0.37] [−0.32, −0.05] –

DE-S3, Membership in Fast Dot Enumeration Profile, relative to Slow Dot Enumeration Profile membership; DE-S2, Membership in Moderate Dot Enumeration Profile,
relative to Slow Dot Enumeration Profile membership; TEMA, Test of Early Mathematics Achievement; MC, magnitude comparison; VSWM, visuo -spatial working memory
span; NVIQ, non-verbal IQ. Biseral correlations were estimated between continuous and dichotomous variables, while tetrachoric correlations were estimated between
dichotomous and dichotomous variables. ∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05.
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FIGURE 2 | Path diagram for Model 2 showing the relationship between SDA tasks at T2, SDA/DDA at T3 and DDA at T4, predicted by TEMA, DE profile
membership measured at T1, gender and NVIQ scores at T3. Correlations between measures are reported in text. Unstandardized path weights are shown (with
bias-correct bootstrap standard errors) for significant paths. SDA, single-digit addition; DDA, double-digit addition; DE-S3, Membership in Fast Dot Enumeration
Profile, relative to Slow Dot Enumeration Profile membership; DE-S2, Membership in Moderate Dot Enumeration Profile, relative to Slow Dot Enumeration Profile
membership; TEMA, Test of Early Mathematics Achievement; MC, magnitude comparison; VSWM, visuo-spatial working memory span; NVIQ, non-verbal IQ.
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05.

The findings suggest the TEMA, assessed at school entry, is
a useful predictor of mental addition RTs, and ipso facto math
problem solving ability, in the relatively short term; however,
its value lessens over time in predicting more complex mental
addition problem solving RTs. While the predictive value of
the TEMA decreased over time, the predictive value of dot
enumeration increased over time. The dot enumeration profiles,
assessed at school entry, not only predicted addition problem
solving RTs in the short and long term, it made an independent
contribution to the prediction model to the TEMA. Some
measures did not contribute to the model predicting mental
addition RTs over time. Magnitude comparison RT, a well-
established core number index, was not correlated with other
measures. This was surprising since magnitude comparison and
the mental addition were based on RT measures. It is possible the
number comparison task measure may be insensitive in 5-year-
olds (see Reeve et al., 2012). And while VSWM was correlated
with other measures, it did not contribute to the prediction
model. As noted below, it is possible dot enumeration profile
membership is a proxy measure of VSWM. NVIQ was related
to the Time 3 SDA/DDA RT, but not the Time 4 DDA RT. It is
possible the demands of the DDA task required other cognitive
resources. Gray and Reeve (2016), for example, argue complex

math problems likely require cognitive switching and inhibition
strategies, which tend to be only moderately correlated with
general intelligence measures.

Although performances on the three mental addition tasks
were correlated, highlighting the componential nature of math
development, the finding that the TEMA was unrelated to double
digit addition requires comment. One possibility is the TEMA
is more related to emerging math abilities, compared to more
complex or cognitively demanding math abilities (see Chu et al.,
2016 for a similar argument). This suggestion is consistent with
those who have argued that magnitude representation abilities are
more important for emerging math abilities (e.g., number fact
knowledge) but not more complex abilities (Geary et al., 2012).
However, these suggestions do not account for the independent
predictive significance of dot enumeration abilities.

The pattern of findings suggest the TEMA and dot
enumerations measures together are useful measures of young
children’s math learning potential and, ipso facto, could serve
as a basis for designing a math intervention for children at risk.
However, caution should be exercised in accepting this possibility
uncritically. While the math components of the TEMA are well-
known and could provide a partial basis of an intervention model
(Mazzocco and Thompson, 2005; Mazzocco et al., 2013), the
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conceptual basis of dot enumeration abilities is less clear and
needs to be better articulated.

The dot enumeration task was designed to assess claims
about the importance of individual differences in precise
number abilities for the development of numerical cognition.
Research has confirmed that individual differences in this core
number ability are not only relatively stable over time, they
are consistently associated with children’s math problem solving
abilities (Reeve et al., 2012; Gray and Reeve, 2014). In the
Reeve et al. research, dot enumeration abilities were examined
as a function of four parameters, described earlier, and analyzed
using latent class modeling. This approach yielded three distinct
dot enumeration profiles each of which differed from each
other in subitizing range, subitizing and count RT slopes, and
subitizing intercept. Of particular interest are the children who
were assigned to the “slow” profile – they were not only slower
than children assigned to the “medium” and “fast” profiles, their
subitizing range was more limited. More specifically, children in
the “slow” profile appeared to count individual dots in answer
to question of the “how many dots,” rather than subitizing
n ≤ 4 dots in a relatively automatic manner. In sum, the
“slow” dot enumeration profile is distinguishable from the other
profiles in terms of response speed and subitizing range, both
of which could have implications for math assessment and
intervention.

It is possible dot enumeration response speed reflects general
processing speed and, by extension, a general cognitive factor.
This possibility reflects the view that processing speed is a
proxy measure of intelligence (Coyle et al., 2011; however,
see Cepeda et al., 2013). Findings in support of a general
processing speed argument from the present study are mixed.
On the one hand, a moderate negative association was
found between dot enumeration profile and mental addition
RTs, and on the other, no association was found between
magnitude comparison RTs and addition RTs. It is evident
the general responses speed argument is complex and may
involve different cognitive functions and affect cognitive domains
differently (see Cepeda et al., 2013). Nevertheless, insofar as a
general processing speed limitation argument is plausible, it is
unlikely response speed training would affect dot enumeration
efficiency.

The three dot enumeration profiles also differed in their
subitizing ranges. Some children in the “slow” profile had very
small subitizing ranges, while some children in the “fast” profile
had adult-like ranges (n≥ 4). It could be argued subitizing ranges
reflects a working memory capacity. We suggest, however, this
explanation needs to be treated with caution for at least two
reasons. First, the correlation between VSWM and subitizing
range is relatively small (0.21 in the current data). Second,
some individuals with dyscalculia are unable to subitize and
count items one-by-one instead, but nevertheless possess a good
working memory (Butterworth, 1999).

We suggest that children with a limited subitizing range, as
is evident in the slow profile, may lack the ability to readily
extract pattern or grouping information from small sets of dots
(Butterworth, 2003; Ashkenazi et al., 2013). Why might this
be important for numerical cognition? The ability to “know”

the number “2” or “3” can be represented by a collection
of two or three dots respectively, without counting individual
dots, is an index of set knowledge (Butterworth, 2010); and set
manipulation represents an important aspect of the development
of numerical cognition (Gallistel and Gelman, 1992). The degree
to which set knowledge changes in childhood is yet to be specified
precisely; however, in the absence of set knowledge, numerical
reasoning is likely to be difficult, as is evident in individuals
with developmental dyscalculia, who appear to lack the ability
to extract information from small sets of dots at a glance
(Butterworth, 2010). Indeed, Laurillard (2016) has developed
“Numberbeads” math software designed to facilitate children’s
set knowledge and overcome difficulties indicated by poor dot
enumeration abilities. Along with Laurillard, we suggest a math
intervention based on improving set knowledge would be a
fruitful avenue to investigate for educators (see also Butterworth
et al., 2011).

Limitations and Future Research
There are at least two broad potential limitations of the current
study could to be addressed in future research, and which may
have implications for a math interventions. First, the data for the
present study were collected at school entry. It is possible that
this is not the optimal time to collect reliable data. A number
of factors affect measurement reliability (e.g., familiarity with
assessment, task difficulty), and assessing math learning potential
later in the school year or at the beginning of the next school year
might yield more reliable data (Schmitt et al., 2017). Although the
TEMA was associated with mental addition RTs when assessed
concurrently at school entry, its predictive value diminished
over time. Later or repeat testing of the TEMA might yield
more reliable math ability information. In the present study
we used the standardized TEMA test score. Some have found
an analysis of the subscale measures of the TEMA provide
information about older children’s conceptual and procedural
math understanding (Ryoo et al., 2015). It is an open question
whether a subscale analysis of younger children performance
would similarly be useful. Finally, we acknowledge we used
the earlier TEMA-2, rather than the current TEMA-3, in our
research. We do not consider this decision materially affected our
findings.

A second potential limitation is we focused on mental
addition RT as the to-be-predicted measure. We are confident
RT is a proxy measure for single digit addition strategic ability
since there is a close relationship between the conceptual
sophistication of SDA strategy-use and the speed taken to
execute different strategies (see Canobi et al., 1998, 2002; Paul
and Reeve, 2016). However, we are less confident the RT
measures of the SDA/DDA and DDA tasks similarly reflected
strategic reasoning activity, simply because, as far as we can
ascertain, no one has conducted the appropriate problem-
solving strategy analysis for these tasks. Although we focused
on mental addition in the pre-adolescent years because of
its importance in the math curriculum, we recognize the
pattern of findings may differ for other math measures (e.g.,
subtraction, multiplication, division) that might depend on
different competencies.
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Although gender differences were not the focus of our study,
we, like others (Paul and Reeve, 2016), found differences in
a performance measure (see Carr and Alexeev, 2011). In the
present study boys solved problems slightly faster than girls;
however, no gender differences were observed in problem solving
accuracy. We suggest future research investigate the reasons for
these speed differences.

CONCLUSION

The results of the present study showed a standardized measure
of mathematics achievement (TEMA) predicted mental addition
RTs in the short term, but not the long term, while dot
enumeration profile membership predicted mental addition RTs
in the short and long term. Moreover, dot enumeration profile
membership and TEMA measures were partially independent
of each other in predicting mental addition RTs over time. We
suggest that these two measures together could be used as a
screening device to assess at risk children of math delay. While
dot enumeration profile membership was the more powerful
predictor of the two measures, it is evident research is required
to unpack the conceptual basis of the dot enumeration measure.
More specifically, it was suggested the subitizing component of
dot enumeration reflect set based reasoning abilities, regarded as
critically important for the development of numerical abilities.
On the basis of this suggestion, we contend intervention

strategies should focus on facilitating set based reasoning via dot
enumeration tasks.
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