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ABSTRACT

Our knowledge of aquatic fungal communities, their assembly, distributions and ecological roles in marine ecosystems is scarce.
Hence, we aimed to investigate fungal metacommunities of coastal habitats in a subarctic zone (northern Baltic Sea, Sweden). Using
a novel joint species distribution model and network approach, we quantified the importance of biotic associations contributing
to the assembly of mycoplankton, further, detected potential biotic interactions between fungi–algae pairs, respectively. Our long-
read metabarcoding approach identified 493 fungal taxa, of which a dominant fraction (44.4%) was assigned as early-diverging fungi
(i.e. Cryptomycota and Chytridiomycota). Alpha diversity of mycoplankton declined and community compositions changed along
inlet–bay–offshore transects. The distributions of most fungi were rather influenced by environmental factors than by spatial drivers,
and the influence of biotic associations was pronounced when environmental filtering was weak. We found great number of co-
occurrences (120) among the dominant fungal groups, and the 25 associations between fungal and algal OTUs suggested potential
host–parasite and/or saprotroph links, supporting a Cryptomycota-based mycoloop pathway. We emphasize that the contribution of
biotic associations to mycoplankton assembly are important to consider in future studies as it helps to improve predictions of species
distributions in aquatic ecosystems.
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Introduction
Aquatic fungi comprise a diverse group of heterotrophic microor-
ganisms, spanning a wide range of life strategies from saprotro-
phy through mutualism to parasitism (Nilsson et al. 2019). Their
contribution and impact on the biogeochemical processes of the
biosphere is crucial (Grossart and Rojas-Jimenez 2016, Gladfelter
et al. 2019, Grossart et al. 2019). Molecular analysis of environ-
mental samples using next-generation sequencing have unrav-
elled an extremely high diversity of undescribed fungi (see e.g.
Richards et al. 2015) that is often referred as the ‘dark matter
fungi’, or DMF (Grossart et al. 2015). DMF are commonly found
within the early-diverging lineages of the fungal tree of life, in-
cluding members of the basal phyla of Cryptomycota and Chytrid-
iomycota. These fungi have shown to be saprotrophs and obli-
gate or facultative parasites, however, very limited knowledge is
available about their actual ecological roles (Grossart et al. 2019).
Saprotrophs participate in decomposition processes of dead or-
ganic matters, while parasitic fungi colonize living hosts to obtain
nutrients for their life cycle (Donk and Bruning 1992). Parasitic
fungi have a special significance because they can infect inedi-
ble phytoplankton species and facilitate energy transfer (Gleason
et al. 2015) to zooplankton via their zoospores (Kagami et al. 2007,
Agha et al. 2016, Garvetto et al. 2019), a mechanism known as my-
coloop (Kagami et al. 2014). In turn, parasitic chytrid outbreaks
can be mitigated and suppressed by grazers who feed on their

zoospores, channelling nutrients across trophic levels (Kagami et
al. 2011, Frenken et al. 2020). However, the field of aquatic chytrid
biology is highly skewed toward culture-based studies, especially
ignoring DMF, which prevents the achievement of a more com-
plete, detailed understanding of this fungal group (Laundon and
Cunliffe 2021). In marine ecosystems, our understanding of fun-
gal host–parasite systems is even more limited, potentially due to
the challenges in isolating and culturing the fungal partner (Glad-
felter et al. 2019), and in determining their ecological roles which
can vary under different circumstances (Grossart et al. 2015).

Aquatic fungi, and marine fungi in particular, have received
much less attention in planktonic research compared to other
planktonic microbes such as bacteria or protozoa (Amend et al.
2019). Despite that our knowledge on their diversity in marine
ecosystems is greatly limited (Richards et al. 2015), a few stud-
ies have shown that distinct marine habitats harbour diverse and
discrete fungal (mycoplankton) communities (Jeffries et al. 2016).
Specifically, coastal habitats constitute a transitional zone be-
tween riverine and open ocean (offshore) sites. These coastal habi-
tats function as sinks for terrestrial-sourced fungi (Hassett et al.
2019), and host higher proportions of the early-diverging fungal
groups such as chytrids or Cryptomycota compared to oceans that
are dominated by fungi belonging to Dikarya (Picard 2017, Has-
sett et al. 2019). Thus, coastal areas with high terrestrial influence
should be hotspots for aquatic fungi. The high fungal diversity
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and the elevated proportion of chytrids in the Baltic Sea may sup-
port this hypothesis (Hassett et al. 2019, Rojas-Jimenez et al. 2019).
Nevertheless, we have limited knowledge on how compositional
shifts from freshwater inlets towards offshore sites differentiate
mycoplankton communities, and what processes (e.g. community
assembly mechanisms) affect their distributions.

Metacommunity concept provides a framework to reveal im-
portant mechanisms that simultaneously shape (and maintain)
biodiversity variation at regional scale (Leibold et al. 2004). These
mechanisms include, for instance, selection by the environment
(environmental filtering), dispersal-related processes (e.g. disper-
sal limitation, habitat connectivity) and stochasticity (ecological
drift). To our knowledge, only a single study (Yang et al. 2021)
aimed to estimate these processes in mycoplankton communities
and found that their influences significantly differ along a river-
sea transect, having more stochasticity in the coastal and offshore
sites, while environmental selection dominates in upstream sec-
tions. These community assembly processes can have distinct in-
fluences on each species and in each habitat (Leibold et al. 2022).
Furthermore, the influence of biotic interactions on metacommu-
nity structure, which was lacking in previous concepts, can be im-
portant and, thus, should be acknowledged (Leibold et al. 2022).
Joint species distribution models (JSDMs) have the advantage to
provide such important insights into the drivers of variation in
species distributions, and with this, estimate how the contribu-
tions of space, environment, and biotic interactions, driving meta-
community assembly, differ among sites and species (Ovaskainen
et al. 2019, Poggiato et al. 2021, Leibold et al. 2022). In addition to
distribution models, network approaches have been applied suc-
cessfully to reveal detailed biotic associations. Such methods were
proven to predict host–parasite interactions in virus- and chytrid-
focused studies (Rojas-Jimenez et al. 2017, Kilias et al. 2020, Meng
et al. 2021, Ilicic et al. 2022) as well, even if network inference
needs to be taken cautiously. Nevertheless, application of network
approaches can help us to extend current knowledge on the rela-
tionships of fungi with other microorganisms (Rojas-Jimenez et al.
2017).

In this present study, we aimed to investigate fungal (my-
coplankton) metacommunities of coastal habitats in a subarc-
tic zone (Gulf of Bothnia, northern Baltic Sea, Sweden). We ap-
plied long-read metabarcoding approach using a Nanopore Min-
ION sequencing platform which has been shown to provide ac-
curate and efficient data in the characterization of aquatic en-
vironmental DNA (Davidov et al. 2020). Using recently developed
novel joint species distribution model and network approach, we
aimed to quantify the importance of biotic associations contribut-
ing to fungal metacommunity assembly, further, detect potential
biotic (i.e. parasitic) interactions between fungi–algae pairs, re-
spectively. We hypothesized compositional shifts of fungal meta-
communities along the freshwater inlet–bay–offshore transects,
with high fraction of early-diverging fungi, especially chytrids, in
the bays. Since the results of the joint species distribution model
would allow us to infer community assembly processes (Leibold
et al. 2022), we assumed that mycoplankton communities of bays
should be influenced by a high degree of ecological drift rather
than environmental selection. Furthermore, we expected that co-
occurrence network reveal putative chytrid–algal interactions, as
well as new links with Cryptomycota fungi.

Materials and methods
Sample collection
Samplings were conducted by following the course of four fresh-
water inlets towards the brackish water of the Gulf of Bothnia,
northern Baltic Sea. Four surface water samples were collected
(0.5 m depth) once in a month in these four bays during the sum-
mer period (June to September) in 2018 (Eriksson et al. 2022). In
addition, samples from two offshore sites were also collected in
each month (Fig. 1). All water samples were collected in sterile
sampling bottles, then transported to the laboratory and stored
in the dark at 4◦C. Physicochemical properties of samples were
measured (Eriksson et al. 2022) and included in this study. Briefly,
temperature, pH, and salinity were measured in situ with a WTW
ProfiLine Cond 3110 portable device, and subsamples were used
to measure environmental variables including dissolved organic
carbon (DOC), total dissolved nutrients (TDP, TDN), dissolved in-
organic nutrients (e.g. PO4

3−, NH4
+, NO2

−, NO3
−, SiO2), and humic

substances. Environmental data for the inlet (freshwater) samples
of each bay is lacking.

For the microbial community analysis, we aimed to filter
500 ml subsamples through sterilized 0.2 μm pore size mem-
brane filters (Supor, 47 mm, Pall Corporation) the same day as
the water collection and kept the filters at –80◦C until further
processing.

DNA extraction and sequencing
The DNA was extracted from the filters using the DNeasy Pow-
erWater Kit (Qiagen) according to the kit protocol with some
modifications. Namely, the samples were treated with an addi-
tional heating step (applying horizontal water bath for 30 min at
65◦C) and with a bead-beating step in each direction of 20 Hz,
3 × 3 min with a TissueLyser II (Qiagen) in order to aid the
lysis of microorganisms including fungal cell walls. DNA ex-
tracts were quantified with a Qubit 4 fluorometer (Thermo Fisher
Scientific).

To perform metabarcoding, we used the NS1short/RCA95m
primer pair in order to amplify the majority of the ribosomal
operon of the ribosomal tandem repeat (18S-ITS1-5.8S-ITS2-28S
rDNA operon) (Wurzbacher et al. 2019). The PCR was performed,
similarly as in Wurzbacher et al. (2019), but see details in Sup-
plementary material. Amplification and its fragments length (∼4–
6 kbp) were confirmed by gel electrophoresis resulting in 61 final
samples (out of 72). The barcoded PCR products were purified with
0.8× of AMPure magnetic beads (Beckmann) following the man-
ufacturer’s protocol. Thereafter, the purified PCR products were
quantified using the Qubit 1× HS Assay Kit (ThermoFisher Scien-
tific), pooled in equimolar amounts. This final pool was concen-
trated with 2.5 × of AMPure magnetic beads in 50μL nuclease-free
water (ThermoFisher), and again quantified (Qubit 1× HS Assay
Kit).

1 μg of library was used for the ONT library preparation using
the 1D sequencing (SQK-LSK109; Oxford Nanopore Technologies).
Sequencing was done on a MinION Mk1C instrument (ONT) oper-
ated with a Spot-ON Flow Cell (R9.4.1 chemistry). Real-time base-
calling was executed using the High-accuracy basecalling (HAC)
mode using the MinKNOW software (v21.05.12). In the end, 1.42 M
reads were yielded with N50 read length of 4.4 kb and Q > 9.
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Figure 1. Four bays (KA: Kalvarsskatan East, AN: Ängerån, ST: Stadsviken, VA: Valviken) were sampled along the coastline of the Gulf of Bothnia,
Sweden. FW refers to freshwater samples collected from the inlets, while numbers increase with distances from inlets. In addition, samples from two
offshore sites (HORNE: Hörnefors, ORE: Örefjärden) were collected.

Sequence data processing
Quality reads were demultiplexed and barcoded primers were
trimmed with MiniBar (Krehenwinkel et al. 2019), and then fil-
tered by length (3–7 kb) with NanoFilt (v2.8.0) (De Coster et al.
2018). These filtered, quality reads were then processed in the
recently developed NGSpeciesID pipeline (v0.1.2.2) which wraps
a set of tools to generate clusters and form polished consen-
sus sequences for each cluster (Sahlin et al. 2021). It used the
isONclust algorithm (Sahlin and Medvedev 2020) for read clus-
tering (–mapped_threshold 0.8 –aligned_threshold 0.5) which ac-
counts for variable error rates within reads. Draft consensus
sequences were formed for each cluster containing at least
five reads with spoa (v4.0.7) using maximum 500 sequences (–
max_seqs_for_consensus 500), then reverse-complement clus-
ters were merged using Parasail (v1.2.4). Finally, polishing of
the consensus sequences (input reads are mapped back to the
consensus sequence and basepair errors are corrected) were
done with Racon (v1.4.20; Vaser et al. 2017) using two itera-
tion steps. Since polished consensus sequences are the final out-
put of the NGSpeciesID pipeline, we formatted the output files
using custom scripts in R (R Development Core Team 2016) to
have an appropriate input file for Mothur (v1.46.1; Schloss et
al. 2009) to assign the corresponding sequence count to each
OTU. Sample coverage was assessed with the ‘iNext’ R package
(Hsieh et al. 2016), and found that, with the exception of four
samples, community composition was sufficiently covered (Fig.
S1).

Taxonomic classification of the 512 final consensus sequences
was primarily done by local BLAST search against the NCBI nu-
cleotide database (nt) (downloaded on 23 October 2021) using
BLAST+ (v2.11.0+), limiting the BLASTn search for Fungi (taxids:
4751) and keeping hits with at least 80% identity. Results of the
BLASTn search was processed with phyloR (https://github.com/c
parsania/phyloR) to keep top hits (Supplementary Table S2) and to
assign taxonomy levels. To support taxonomy, rRNA genes (SSU
and LSU) and the entire internal transcribed spacer (ITS) were
extracted using ITSx (Bengtsson-Palme et al. 2013), and used in
BLASTn search to assign taxonomy against secondary reference
databases: SILVA Reference SSU and LSU databases (Quast et al.
2013) (release 138.1), and the UNITE+INSD database (Abarenkov
et al. 2021) (version 10.05.2021) in case of ITS (see, Table S3). Due
to the prevailing classification challenges and conflicts among
these secondary databases (Heeger et al. 2018), we only used this
secondary classification step to validate fungal sequences as fol-
lows. The OTUs that had not matched with any fungal sequences
in the secondary reference databases were discarded. In cases
when OTU was classified as fungi by only one of the secondary
databases, we manually choose the classification with the high-
est bit score. OTUs without matches below Kingdom level based
on the BLASTn search against NCBI nt database were classified
as ‘likely fungi’ if all secondary classifications would match fun-
gal sequences. In the end, 493 OTUs were identified as fungi (with
an average alignment length of 2130 bp and 93.2% identity), thus,
were kept for downstream analyses (Table S4). Potential chimeric

https://github.com/cparsania/phyloR
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consensus sequences identified by ITSx and their corresponding
OTUs from the OTU table were filtered out.

Raw reads were deposited to NCBI SRA database under the ac-
cession number PRJNA849821.

Data analyses
Venn diagram was used to visualize the number of shared fungal
taxa across sampling sites, furthermore, diversity analyses (alpha-
diversity and beta-diversity based on Bray–Curtis distance) were
performed using the ‘microeco’ R package (v.0.6.5) (Liu et al. 2021)
and the results (i.e. nonmetric multidimensional scaling—NMDS)
were plotted using ‘ggplot’ package (Wickham 2009). Difference
in alpha diversity across bays, their inlets and offshore sites were
tested with ANOVA followed by Duncan’s test (P < 0.05) as a post-
hoc test. To test compositional differences between samples, per-
mutational multivariate analysis of variance (PERMANOVA) with
999 permutations was performed using the function adonis2 in ‘ve-
gan’ R package (Oksanen et al. 2016). Distance-based redundancy
analysis (dbRDA) was also performed on the bay samples to as-
sess the influence of environmental variables or sampling time
(i.e. Day). To statistically test their influences, Mantel test (Spear-
man correlation with 999 permutation) were computed on com-
munity dissimilarity based on Bray-Curtis distance.

Inference of the internal structure of
metacommunities using joint species
distribution modelling
To predict metacommunity structure as a whole, a recently devel-
oped scalable joint species distribution model (sjSDM) approach
(Pichler and Hartig 2021) was applied which use Monte Carlo in-
tegration of the JSDM likelihood together with elastic net regu-
larization on all model components. Due to the lack of measured
environmental data for freshwater inlets and offshore sites, we
used only samples from the four bays (n = 40, no. of OTUs =
442). Spatial eigenvectors were generated from the GPS coordi-
nates to account for spatial autocorrelation (using the generateS-
patialEV function) and measured environmental variables were
z-transformed prior the analysis. The regularization for all co-
variances and coefficients (following general suggestions from
the developers) was tuned over 40 random steps with leave-one-
out cross validation (LOOCV), 150 iterations and learning rate of
0.01 using the sjSDM_cv function of the sjSDM R package (v1.0.1)
(Pichler and Hartig 2021). Thereafter, the best regularization pa-
rameters were used to fit a multivariate probit model using the
sjSDM.tune function. For this analysis, the Python library ‘PyTorch’
(Paszke et al. 2019) was run from within R thanks to the ‘reticu-
late’ R package (Allaire et al. 2018). The model is available as R
Data file in Open Science Framework (OSF) (http://osf.io/764mu).

Following the framework by Leibold et al. (2022), our model
was then used to estimate how the contributions of environment,
space and biotic associations shaping metacommunity assembly
vary among sites and taxa. This quantitative approach allowed us
to identify how different sites and taxa contribute to the overall
metacommunity structure, taking into account the fact that a set
of sites or taxa are not necessarily equally influenced by the inter-
play of environmental filtering (abiotic selection), dispersal, biotic
interactions and ecological drift (Leibold et al. 2022).

Network analysis
With the aim to further investigate biotic interactions and, in par-
ticular, potential parasitic-host associations, co-occurrence net-
work was constructed. The 18S V6-V8 rRNA gene sequences from

the study of Eriksson et al. (2022) and the subset of their dataset
(deposited in OSF; http://osf.io/764mu) were used to assess po-
tential host–parasitic and/or saprotrophic associations in our bay
samples (n = 40). Absolute read counts were used for the network
analysis because previous studies have shown that relative abun-
dance data suffer from apparent correlations which lower speci-
ficity of association networks (Berry and Widder 2014, Meng et al.
2021). Further, since low number of sites are susceptible to false
positive correlations (Berry and Widder 2014), we decided to run
one global network analysis without subsetting our dataset into
the three time periods or to individual bays. Nevertheless, in this
analysis, we used only the most dominant fungal groups (Cryp-
tomycota and chytrids) that are prone to have parasitic lifestyle,
but also included the ‘likely fungi’ group to assess their puta-
tive cross-kingdom associations. To account for variations in se-
quencing depth between the long-read fungal and 18S-based algal
datasets, we decided to use FlashWeave (v0.18.1) (Tackmann et al.
2019) which applies clr transformation to handle compositionality
with its adaptive pseudo-counts (clr-adapt) approach. Julia (v1.6.4)
was used for constructing association network with FlashWeave
package from within the ‘microeco’ R package (Liu et al. 2021).

Prediction of ecological interactions (P < 0.01) between fungi
and algae was performed using FlashWeave-S (‘sensitive’ mode)
with default settings. For enhanced reliability, associations were
computed only when an OTU was present more than 20 times (au-
tomatically determined by the software). This approach also deals
with indirect associations (as a result of shared environmental
niches) by the incorporation of environmental metadata. The inte-
gration of 15 meta-variables (MVs such as ‘Day’ as sampling time,
‘Bay’ as identities, and measured physicochemical variables) was
done in order to remove potential indirect associations (i.e. as a re-
sult of shared niche preference). The constructed cross-kingdom
network was visualized with Gephi (v0.9.2) using associations’ cor-
relation weight > |0.4| and the ForceAtlas2 layout (Jacomy et al.
2014). For clarity MV nodes were moved to the side.

All data analyses were performed in R v4.0.4 (R Development
Core Team 2016) implemented in RStudio v1.4.1106.

Results
Fungal diversity and community structure
Our long-read (18S-ITS1-5.8S-ITS2-28S rDNA) metabarcoding
pipeline revealed 493 fungal OTUs with an average 8515 reads per
sample and a mapping rate (% of high-quality reads for generation
of the consensus sequences from total reads (Q > 9)) of 36.3% (Ta-
ble S5). Freshwater inlets of Valviken (VA; n = 9), Ängerån (AN;
n = 7) and Kalvarsskatan East (KA; n = 4) harbored most of the
unique taxa (OTUs), while the inlet of Stadsviken (ST-FW) and the
offshore sites, Hörnefors (HORNE) and Örefjärden (ORE), did not
have any site-specific fungus (Fig. S2). In total, 112 fungal taxa
(22.7%) were shared between all sampled sites. Generally, the al-
pha diversity (based on Shannon and Simpson indices) declined
significantly (P < 0.05) from the inlets towards the offshore sites
(Fig. 2).

Early-diverging fungal groups such as Cryptomycota and
Chytridiomycota represented the most dominant fungal groups
in our samples (Fig. 3), with 90 and 129 OTUs, respectively. Their
relative distribution, however, varied greatly across sampling sites.
For instance, the relative abundance of Cryptomycota was high-
est (14.6%–68.7%) in freshwater inlets and lowest (3.5%–6.9%) in
offshore samples, moreover, decreased along the north-south gra-
dient (KA → AN → ST → VA). In contrast, Chytridiomycota fungi

http://osf.io/764mu
http://osf.io/764mu


Vass et al. | 5

Figure 2. Alpha-diversity measures (Shannon and Simpson) for the four bays, their respective freshwater inlets and the offshore sites. For IDs
reference, see Fig. 1. Significant post-hoc groups (P < 0.05) among the different sites are represented by lowercase letters.

Figure 3. Relative abundance of fungal phyla across the bays, their freshwater inlets and the two offshore sites. ‘Likely fungi’ refers to fungal OTUs
without matches to any phylum (BLAST-based taxonomy against NCBI nt database).

increased their relative abundance towards bays (18.8%–52.1%)
and offshore sites (37.7%–54.9%) with the exception of ST ( =
Stadsviken; 22.5%) and its inlet (ST-FW; 31.6%). Relative abun-
dance of Ascomycota decreased from inlets (15.1%–26.6%) to-
wards offshore sites (1.0%–1.5%). Basidiomycota, on average, rep-
resented only 2.9% of the fungal communities and they were
more common in bays and their inlets (3.2% and 3.9%, resp.)
than in the offshore sites (0.3%). Unassigned fungi (‘likely fungi’)
accounted a great portion in almost all communities (27.1%
in average) and increased in the offshore sites up to 53.6%.
Other fungal groups such as Microsporidia (0.3%), Mucoromy-
cota (0.06%), Zoopagomycota (0.03%), Sanchytriomycota (< 0.01%)
and Blastocladiomycota (< 0.01%) can be considered as rare
fungi in these aquatic habitats with neglectable mean relative
abundances.

Fungal community compositions exhibited strong composi-
tional shift over time (from June to September, F = 11.36, P =
0.001), although the PERMANOVA test also confirmed spatial vari-
ability (F = 1.79, P = 0.025) which was mainly pronounced by the
separation of bay samples from their respective freshwater inlets
(Fig. 4a). The significant interaction between sampling sites and
time (F = 1.96, P = 0.005) further showed that temporal variation
differed between sites. When the fungal metacommunities of the
four bays were analysed alone (using dbRDA) to investigate the
influence of the measured environmental variables (Fig. 4b, Ta-
ble S6), temperature, pH, humic substances, salinity, DOC, NH4

+,
TDN, and, to a lesser degree, NO3

− and chlorophyll-a concentra-
tions were important (all P < 0.05) in shaping the beta diversity of
fungal metacommunities, besides sampling time (i.e. Day) (see the
results of Mantel test in Table S6). The three distinct clusters are
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Figure 4. (A) NMDS plot (based on Bray–Curtis distance) shows differences in fungal community structures across all sampling sites (four bays, their
inlets and two offshore sites), coloured by sampling time (June–September). Stress value is shown on the upper right corner. (B) Distance-base
redundancy analysis (dbRDA) plot reveals the influence of environmental conditions across bays and the distinct clustering by sampling time.

clearly apparent from the dbRDA (Fig. 4B) and accord with sam-
pling time rather than with space (i.e. bays) when environmental
parameters were considered.

These temporal dynamics in fungal metacommunities can be
attributed to several trends observed in the relative abundances
of different taxonomic groups (see Fig. S3). Specifically, Crypto-
mycota (e.g. Paramicrosporidium sp. and mainly unidentified Cryp-
tomycota (73.1%)), Ascomycota (members in the genera of Artic-
ulospora, Cladosporium, Penicillium), Basidiomycota (Vishniacozyma
sp., Rhodotorula sp.) and Microsporidia (Mitosporidium sp.) showed
elevated abundances towards late summer (August and Septem-
ber), while Chytridiomycota had its peak in July (dominated by
OTUs assigned as Betamyces spp. and Chytridium polysiphoniae) and
decreased similarly as ‘likely fungi’ by the end of the sampling
campaign (September). In the remaining fungal groups, there was
no clear, detectable trend.

Internal structure of aquatic fungal
metacommunities
We used scalable joint species distribution model to estimate the
importance of environment, space and biotic interactions in driv-
ing metacommunity assembly among sites and fungal taxa of the
bays. Our model revealed that the distribution of fungal taxa was
mainly driven by environmental factors and to a lesser extent by
spatial and biotic associations (Fig. 5, Table S7). Sites within each
bay differed greatly in how their community compositions were
attributed to the three components, and were explained by R2 val-
ues ranging from 0.4% to 1.6% (Fig. 5, left panel; Fig. S4). Impor-
tance of biotic interactions (or co-distributions) was enhanced in
several samples regardless of the sampling time or bay (Fig. S4,
Table S7).

Taxa distributions were weakly predicted by the model (e.g. low
R2 values) and were stronger influenced by biotic associations as
the effect of the environment decreased (Fig. 5, right panel). The
model, however, could predict taxa distribution to a greater ex-
tent when environment had strong influence. In contrast, lower
predictive power occurred when taxa were almost exclusively in-
fluenced by space or biotic associations. OTUs within each dom-

inant phylum were distinctly affected by the three components
(Fig. S5), hence, the distribution of each taxon was determined by
a unique combination of environment, space and biotic factors.
Phyla that are represented by a very few members (i.e. Blastocla-
diomycota, Microsporidia, Mucoromycota and Zoopagomycota),
and hence considered as rare, were mainly influenced by environ-
mental factors, while a Sanchytriomycota occurrence was mainly
affected by spatial factors. It is, however, important to mention
that temporal factor (i.e. Day), despite its strong influence as pre-
sented in the above-mentioned multivariate analyses, was not in-
cluded in the model in order to investigate the pure effects of mea-
sured environmental variables on taxa distributions.

Co-occurrence network
We generated one cross-kingdom co-occurrence network on all
bay samples to predict ecological interactions between specific
fungal groups (Cryptomycota, chytrids and ‘likely fungi’) and al-
gae (Fig. 6, S6). In total, this final network was composed of 288
nodes (276 OTUs) and 364 associations (edges). Detailed list of
all interactions can be found in Table S8. Among the three fun-
gal groups (Cryptomycota, Chytridiomycota and ‘likely fungi’) 120
interactions were detected, of which 92.5% were positive. The
strongest associations (e.g. corr. weight > +0.9) occurred between
OTUs within the same taxonomic group. Between Cryptomycota
and Chytridiomycota six associations (one negative and five pos-
itive) were found, and these chytrid OTUs had no positive link to
any algal OTUs. To reveal potential parasitism (corr. weight > +0.4)
between kingdoms, we found 25 interactions. Most (13) were iden-
tified between chytrids and algae (five Ochrophyta, four Chloro-
phyta, three Dinoflagellata, and only one Cryptophyta). The three
strongest interactions showed links to: Chlorella sp. (Chlorophyta)
(0.76), Dino-Group-I-Clade-4 (Dinoflagellata) (corr. weight = 0.71),
Uroglena sp. (Ochrophyta) (0.66). Cryptomycota had seven positive
edges with algal OTUs and those algae with the three strongest
interactions belonged to Falcomonas daucoides (Cryptophyta) (0.86),
Cryptomonas obovata (Cryptophyta) (0.57) and to an unassigned
Peridiniales (0.47). The group of ‘likely fungi’ had five positive as-
sociations with algae. Within this group, the strongest interactions
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Figure 5. Site-specific (left panel) and taxa-specific (right panel) internal structure of fungal metacommunities of the bays assessed by a scalable joint
species distribution model (sjSDM). The relative influence of environment (e.g. through environmental filtering), space (e.g. dispersal limitation) and
biotic associations was estimated on the distribution of mycoplankton metacommunities. The size of the symbols indicates the amount of variation
explained (R2) by the model for each site (n = 40) or OTU (n = 442).

Figure 6. Frequencies of associations (P < 0.01, corr. weight > |0.4|) among the three dominant fungal groups (Cryptomycota, Chytridiomycota, and
‘likely fungi’), and between fungi and algae.
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occurred with Koliella spiculiformis (Chlorophyta) (0.55), Chaetoceros
sp. (Ochrophyta) (0.52) and Mantoniella beaufortii (Chlorophyta)
(0.47).

Measured environmental parameters and/or sampling time
can lead to spurious correlations between OTUs that share simi-
lar niche optima and thus associated with the same meta-variable
(MV). The inclusion of MVs in our network analyses showed that
several fungal (8) and algal (18) OTUs were mostly associated with
water temperature and chemical properties (e.g. nitrite and hu-
mic substances), respectively. Sampling time (Day), interestingly,
only associated with three algal taxa: Nannochloris sp. (Chloro-
phyta) showed positive association (e.g. positive trend in their
abundances over the sampling course), while Diatoma tenuis and
Uroglena americana had both negative associations. There was a
Cryptomycota OTU showing positive association with sampling
sites (Bay) and this OTU was also highly influenced (40.1%) by spa-
tial effects as revealed by sjSDM.

Discussion
Composition and diversity of coastal
mycoplankton
Our long-read metabarcoding study identified 493 fungal taxa
along four transects, encompassing freshwater inlets up to their
corresponding bays and beyond to offshore habitats in the Gulf
of Bothnia, Sweden. Generally, alpha diversity of mycoplankton
declined and community compositions changed along these four
transects (from freshwater to offshore sites). This resonates with
a declining trend found by Yang et al. (2021) in a much greater
spatial scale along the Elbe River down to its estuary (North Sea).
The general compositional shift over sampling sites, however, dif-
fered from the one found in the study of Yang et al. (2021). Namely,
the authors found greater dominance of chytrids in samples with
greater freshwater influence and the dominance of Ascomycota
and Basidiomycota in open sea (offshore) environments, while
our results suggest the opposite. This disparity may arise due to
a greater salinity range their study covered, increased anthro-
pogenic activities around that study area (i.e. influence of the city
of Hamburg), or due to the lack of the inclusion of temporal aspect
in their study. All these might affect mycoplankton communities
in space, creating distinct community structures and disparities
among studies.

A great fraction of the mycoplankton (44.8%) was assigned
as early diverging fungi (i.e. Cryptomycota and Chytridiomycota)
which aligns with previous studies that reported the dominance
of these fungal phyla in both freshwater and marine environ-
ments (Comeau et al. 2016, Hassett and Gradinger 2016). This in-
dicates that early-diverging fungal phyla dominate not only shel-
tered aquatic ecosystems, as previously suggested (see e.g. Rojas-
Jimenez et al. 2017), but also in habitats which are greatly af-
fected by terrestrial input and continuous mixing events. As we
hypothesized, chytrids showed elevated richness in bays and off-
shore sites, and dominated in mid-summer (i.e. July). Dominance
of chytrid-like sequences was also found in a field survey, cov-
ering a great selection of marine (Arctic) and freshwater (tem-
perate biomes) environments (Comeau et al. 2016). Their results,
however, showed much less frequency and relative abundance of
Cryptomycota, in contrast to our findings. Picard (2017) has found
greater dominance of Ascomycota in mycoplankton communi-
ties in coastal North Carolina, and chytrids were more dominant
fraction of the fungal communities in sediments, suggesting the
importance of dormancy (Velasco-González et al. 2020). Previous

studies targeting aquatic microfungi are scarce, but the findings
so far indicate that the proportion of different fungal groups can
be greatly dependent on the spatial scale and the environment of
interest.

In spite of the high diversity of ‘dark matter fungi’ in aquatic
environments (Grossart et al. 2015), we clearly lack detailed tax-
onomic information for most Cryptomycota OTUs (88.2%), even
when single marker genes are targeted. Although, their ecolog-
ical importance is most likely relevant. This may not be sur-
prising, giving the fact that newer clades and taxa are continu-
ously discovered and described, thus, the taxonomy of such early-
diverging fungal lineage is not completely resolved. Among Cryp-
tomycota, an intranuclear parasite of amoebae (Paramicrosporid-
ium saccamoebae) occurred in most freshwater inlets, further, with
an elevated abundance during August and September in the bays.
Even though freshwater inlets could nearly continuously sup-
port dispersal of parasitic Cryptomycota into coastal and offshore
habitats, its establishment is most likely determined by other fac-
tors (e.g. environmental conditions and/or hosts presences). Inter-
estingly, two occurring Rozella spp. (commonly described as hyper-
parasites) did not end up in the co-occurrence network, suggesting
the lack of hyper-parasitism and/or algae parasitism of these taxa
in the observed bays.

Betamyces spp. and Chytridium polysiphoniae were dominant
members of chytrids in July and in the bays, particularly, and
have been reported as parasites on several phytoplankton species
(Christaki et al. 2017) and seaweed in estuarine and marine habi-
tats (Gleason et al. 2011). This, in line with our hypothesis, fur-
ther supports that coastal habitats provide an optimal environ-
ment for chytrids (Hassett et al. 2019) whereas the mixing of river-
ine and saline waters promotes the growth of phytoplankton and
source aquatic fungi with parasitic lifestyle. The peak relative
abundances of chytrids in July may indicate the presence of para-
sitic taxa which usually emerge at elevated algae biomass, chan-
nelling nutrients to higher trophic levels via the mycoloop (Grami
et al. 2011, Gerphagnon et al. 2015, Frenken et al. 2017).

Numerous members of Ascomycota and Basidiomycota (e.g.
Cladosporium and Blumeria) found in this study are known as fungi
with terrestrial origin. These taxa potentially represent nutrient
sources for saprotrophic aquatic fungi (Magyar et al. 2016). How-
ever, more and more evidences suggest that a fraction of these
fungi display a truly amphibious ability, hence, their presence as
mere metabolically inactive spores or relictual DNA is questioned
(Amend et al. 2019, Koivusaari et al. 2019). Phylum Ascomycota
was dominated by Articulospora atra, which is a commonly known
aquatic hyphomycetes, identified in numerous freshwater ecosys-
tems, previously. To our knowledge, this is the first record showing
that it can establish populations in brackish ecosystem, likely dis-
persed from the freshwater inlets into the bays.

Metacommunity dynamics
Besides the major impact of salinity in shaping fungal communi-
ties (Rojas-Jimenez et al. 2019, Ilicic et al. 2022), our results high-
light the relevance of other abiotic factors (i.e. temperature, pH,
humic substances, etc.) as well as the influence of time in affect-
ing community dynamic of mycoplankton. This emphasizes that
snapshot studies easily can miss important aspects of commu-
nity dynamics, which are clearly influenced by the simultaneous
influence of space and time. In general, the importance of assem-
bly processes shaping aquatic fungal communities is largely un-
known. To our knowledge, only Yang et al. (2021) aimed to esti-
mate community assembly processes and found that selection
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was more important in less saline environments (freshwater in-
lets) together with dispersal limitation, while communities of the
coastal and offshore sites were mainly assembled by mass (dis-
persal) effect and ecological drift. By inferring the internal struc-
ture of metacommunity using modelling approach, our results
suggest that environmental filtering had strong influence on the
observed bay-inhabiting microfungi, and dispersal was not lim-
ited as evidenced by much lower importance of spatial effects
than environment. In extreme cases when taxa were highly in-
fluenced by space and/or biotic associations, their distributions
were predicted very weakly by the model, as the low R2 values
suggest. This supports Leibold et al.’s (2022) simulation results
that suggested greater predictive power for species with narrower
(more specialized) environmental niche than those that are dis-
persal limited. The generally low predictive power indicates that
taxa-level distribution of mycoplankton is greatly influenced by
ecological drift (stochasticity), hence, more challenging to predict
compared to community-level distributions. Although, the low
predictive power may also be the result of several other factors
(i.e. trophic interactions, unmeasured environmental parameters)
that were not included in our model.

Our overall findings suggest that both environmental and bi-
otic factors can easily enhance processes (i.e. selection driven
by abiotic environmental factors and/or competition) that con-
tribute to the internal structure of metacommunities, determin-
ing the distribution of microfungi. The inclusion of biotic asso-
ciations highlighted that their influence can strengthen when
the abiotic and spatial drivers are not dominating. It is impor-
tant to note that the biotic component of the model (i.e. bi-
otic associations) might mask processes resulting from ecological
drift (stochasticity), while spatial patterning might include un-
measured but spatially autocorrelated environmental variables
(Blanchet et al. 2020, Wilkinson et al. 2021). In field studies, there-
fore, the presence of complex trophic interactions (i.e. viruses,
grazers), unmeasured environmental variables may all represent
additional challenges in teasing apart processes that structure
microbial communities, and thus, cause biased detection of the
effect of environment–space–biotic components in this particu-
lar joint species distribution model applied here. Still, by taking
into account interactions (or more precisely covariances) between
species, joint species distribution models can represent a useful
tool for researchers who aim to investigate distributional patterns.

Putative biotic interactions
Our network analysis revealed a diverse picture, with a high num-
ber of co-occurrences among three fungal groups (Cryptomycota,
Chytridiomycota, and ‘likely fungi’) which supports our sjSDM re-
sult that estimated in average 18% contribution of biotic associa-
tions among these groups. This highlights that the co-occurrences
identified by network approaches can indicate direct pairwise in-
teractions, although it might also suggest co-distributions via a
complex interplay between true biotic associations, unmeasured
environmental factors and, naturally, ecological drift (stochastic-
ity) (see e.g. Wilkinson et al. 2021).

Twenty-five positive associations were found between fungi
and algae. Interestingly, one of the most abundant chytrids (Be-
tamyces spp.), which are recognized as parasites on numerous phy-
toplankton species (Christaki et al. 2017), showed strong associ-
ations with only an unassigned Dinophyceae taxon. Most inter-
actions between chytrids and algae involved multiple partners
which suggests that these potential parasitic interactions work
in multifaceted ways to impact host distribution and abundance.

However, it is important to note that these potential pathogens
might turn into saprotrophs upon host decay. In that scenario, our
prediction of the ecological role of the associated partners can be
greatly challenged (Egan and Gardiner 2016).

Previous studies suggested the importance of Cryptomycota
(e.g. Rozella) species in the regulation of population size of par-
asitic zoosporic fungi in lakes (Gleason et al. 2012). We found,
in contrast to our initial assumption, no sign of Cryptomycota
OTU which may have been acted as hyper-parasites of para-
sitic chytrids (i.e. chytrid showing strong associations with algal
OTUs). Although some strong links were found between Cryp-
tomycota OTUs and Chytridiomycota OTUs, these chytrids were
hypothetically saprotrophs as they lacked clear positive relation-
ship with any algae. Hence, we cannot rule out the possibility
that these Cryptomycota–Chytridiomycota links might indicate
mere co-distributions or other biotic interactions. Nevertheless,
detected associations between members of Cryptomycota (unas-
signed) and several algal phyla (i.e. Cryptophyta, Dinoflagellata)
suggest that this fungal group might have a relevant role in the
regulation of algal populations which are common in coastal
habitats and in the Baltic Sea (Bazin et al. 2014, Enberg et al.
2018), without being targets for chytrids (Gleason et al. 2015).
This, in turn, emphasizes that Cryptomycota may have as impor-
tant role as chytrids in aquatic food webs, and reinforce the ex-
istence of other than chytrid-based mycoloops in aquatic ecosys-
tems (Kagami et al. 2014, Priest et al. 2021).

Conclusions and future perspectives
This study enhances our knowledge of fungal diversity in coastal
marine habitats, elucidate their spatiotemporal variation, and
presents biotic (i.e. parasitic) interactions with planktonic algae.
We believe that the joint application of distribution models and
network approaches represents the advantage to infer a more
detailed picture of metacommunity assembly with the inclu-
sion of species covariation (attributed to biotic interactions), and
can be used to support conclusions drawn from network results
(e.g. presence of biotic interactions between Cryptomycota and
chytrids).

Previous studies investigating fungal interactions have mainly
been restricted to studies in laboratory settings. Whilst those
studies deepen our knowledge in biotic interactions and their
mechanisms, they barely provide information about how these in-
teractions actually impact the distribution of mycoplankton com-
munities in nature. Our findings emphasize that the contribution
of biotic associations to fungal metacommunity assembly are im-
portant to consider in future studies as it helps us to improve pre-
dictions of species distributions in aquatic ecosystems. Identify-
ing biotic relationships that affect the distributions of members of
mycoplankton could be useful for plankton ecology, through habi-
tat management to promote species which control algal blooms
and facilitate nutrient transfer to upper trophic levels.

Studies targeting aquatic fungi, with a special focus on ‘dark
matter fungi’, have a great potential. Therefore, future works
should extend chytrid-centered studies on other fungal groups
(e.g. Cryptomycota) and consider studying their ecological roles
and community assembly in a wider selection of aquatic ecosys-
tems. We also imagine future field studies as being the basis of lab-
oratory experiments wherein putative biotic interactions, more-
over, the ecological roles of mycoplankton members could be fur-
ther assessed using more directed (e.g. single-cell genomics and
meta-omics) approaches (Laundon and Cunliffe 2021). Taken to-
gether, we emphasize the need to go a step beyond culture-based
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studies and approach aquatic fungi from a (meta)community
level perspective, too, in future studies.
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