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Interaction-induced topological phase transition
and Majorana edge states in low-dimensional
orbital-selective Mott insulators
J. Herbrych 1✉, M. Środa 1, G. Alvarez2, M. Mierzejewski1 & E. Dagotto 3,4

Topological phases of matter are among the most intriguing research directions in Con-

densed Matter Physics. It is known that superconductivity induced on a topological insulator’s

surface can lead to exotic Majorana modes, the main ingredient of many proposed quantum

computation schemes. In this context, the iron-based high critical temperature super-

conductors are a promising platform to host such an exotic phenomenon in real condensed-

matter compounds. The Coulomb interaction is commonly believed to be vital for the

magnetic and superconducting properties of these systems. This work bridges these two

perspectives and shows that the Coulomb interaction can also drive a canonical super-

conductor with orbital degrees of freedom into the topological state. Namely, we show that

above a critical value of the Hubbard interaction the system simultaneously develops spiral

spin order, a highly unusual triplet amplitude in superconductivity, and, remarkably, Majorana

fermions at the edges of the system.
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Topologically protected Majorana fermions—the elusive
particles which are their own antiparticles—are exciting
because of their potential importance in fault-resistant

quantum computation. From the experimental perspective,
heterostructure-based setups were proposed as the main candi-
dates to host the Majorana zero-energy modes (MZM). For
example, the topologically protected gapless surface states of
topological insulators can be promoted to MZM by the
proximity-induced pairing caused by an underlying super-
conducting (SC) substrate1. However, the large spin–orbit cou-
pling required to split the doubly degenerated bands due to the
electronic spins, renders such a setup hard to engineer. Another
group of proposals utilizes magnetic atoms (e.g., Gd, Cr, or Fe)
arranged in a chain structure on a BCS superconductor2–12.
These important efforts have shown that creating MZM in real
condensed-matter compounds is challenging and only rare
examples are currently available.

Interestingly, a series of recent works have shown that doped
high critical temperature iron-based superconductor Fe(Se,Te)
can host MZM13–17. Although the electron–electron interaction is
believed to be relevant for the pairing, its role in the stabilization
of MZM is unknown. In fact, in most theoretical proposals to
realize MZM, these zero-energy modes are a consequence of
specific features in the non-interacting band structure, with the
electron–electron interaction playing only a secondary role (and
often even destabilizing the MZM)18,19. By contrast, here we will
show that a SC system with orbital degrees of freedom can be
driven into a topologically nontrivial phase hosting MZM via
increasing Hubbard interactions; see illustrative sketch in Fig. 1a.
We will focus on a generic model with coexisting wide and
narrow energy bands, relevant to low-dimensional iron-based
materials20. It was previously shown21–23 that the multi-orbital
Hubbard model can accurately capture static and dynamical
properties of iron selenides, especially the block-magnetic order24

of the 123 family AFe2X3 of iron-based ladders (with A alkali
metals and X chalcogenides). For example, the three- and two-

orbital Hubbard model on a one-dimensional (1D) lattice23,25

successfully reproduces the inelastic neutron scattering spin
spectrum, with nontrivial optical and acoustic modes. The
aforementioned models exhibit21,26 the orbital-selective Mott
phase (OSMP), with coexistent Mott-localized electrons in one
orbital and itinerant electrons in the remaining orbitals. The
system is then in an exotic state with simultaneously metallic and
insulating properties. Furthermore, the localized orbitals have
vanishing charge fluctuations, simplifying the description26 into
an OSMP effective model, i.e. the generalized Kondo–Heisenberg
model (gKH)

HgKH ¼ ti ∑
‘;σ

cy‘;σc‘þ1;σ þH:c:
� �

þ U ∑
‘
n‘;"n‘;#

þ μ∑
‘;σ

n‘;σ � 2JH ∑
‘
S‘ � s‘ þ K∑

‘
S‘ � S‘þ1:

ð1Þ

The first three terms in the above Hamiltonian describe the
itinerant electrons: cy‘;σ (c‘;σ) creates (destroys) an electron with
spin projection σ= {↑, ↓} at site ℓ= {1,…, L}, ti is their hopping
amplitude, U is the repulsive Hubbard interaction, and μ= ϵF is
the Fermi energy set by the density of itinerant electrons
n ¼ ∑‘ðn‘;" þ n‘;#Þ=L.

The double occupancy of the localized orbital can be elimi-
nated by the Schrieffer–Wolff transformation and the remaining
degrees of freedom, the localized spins Sℓ in the above model,
interact with one another via a Heisenberg term with spin-
exchange K ¼ 4t2l =U [tl is the hopping amplitude within the
localized band]. Finally, JH stands for the on-site interorbital
Hund interaction, coupling the spins of the localized and itinerant
electrons, Sℓ and sℓ, respectively. Figure 1b contains a sketch of
the model. Here, we consider a 1D lattice and use ti= 0.5 [eV]
and tl= 0.15 [eV], with kinetic energy bandwidthW= 2.1 [eV] as
a unit of energy27. Furthermore, to reduce the number of para-
meters in the model, we set JH/U= 1/4, a value widely used when
modeling iron superconductors. Systems with open boundary

Fig. 1 Orbital-selective Mott phase and Majoranas. a Sketch of the chain edge density-of-states as a function of the electron–electron Hubbard interaction
strength. Magnetic orders (depicted by arrows) in the trivial and the topological superconducting (SC) phases are also presented. b Schematic
representation of the generalized Kondo–Heisenberg model studied here, with localized and itinerant electrons and simultaneously active Hubbard U and
superconducting ΔSC couplings. c and d Interaction U dependence of the static structure factor S(q) for c ΔSC= 0, d ΔSC/W≃ 0.5 (calculated for L= 36
and n ¼ 0:5).
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conditions are studied via the density-matrix renormalization
group (DMRG) method (see the “Methods” section).

The key ingredient in systems expected to host the MZM28 is
the presence of an SC gap, modeled typically by an s-wave pairing
field. Such a term represents the proximity effect29 induced on the
magnetic system by an external s-wave superconductor. However,
it should be noted that the SC proximity effect has to be con-
sidered with utmost care. For example, recent experimental
investigations30 showed that although the interface between Nb
(BCS s-wave SC) and Bi2Se3 film (topological metal) leads to
induced SC order, the same setup with (Bi1−xSbx)2Se3 (another
topological insulator) displays massive suppression of proximity
pairing. On the other hand, in the class of systems studied here
(low-dimensional OSMP iron-based materials), the pairing ten-
dencies could arise from the intrinsic superconductivity of
BaFe2S3 and BaFe2Se3 under pressure31–33 or doping22,34.

In order to keep our discussion general, we will make minimal
assumptions on the SC state, and consider only the simplest on-
site pairing. The reader should consider it either as the intrinsic
pairing tendencies of the iron-based SC material or as the pairing
field induced by the proximity to an s-wave SC substrate, e.g., Pb
or Nb. Independently of its origin, the SC in the 1D OSMP
system studied here must be investigated beyond the 1D lattice
since the quantum fluctuations would inevitably destroy any
long-range order. Therefore, let us first consider the OSMP chain
placed atop the center of a two-dimensional (2D) BCS

superconductor (see Fig. 2a for a sketch) and the total system
described by the Hamiltonian

Htot ¼ HgKH þ HBCS � V ∑
h‘;‘0i

ðcy‘;"cy‘;#a‘0;#a‘0;" þH:c:Þ: ð2Þ

Here, ‘0 represents the single site within the 2D BCS system HBCS

which is closest to the site ℓ in the OSMP chain, and ai;σ ; a
y
i;σ

stand for fermionic operators within the BCS superconductor (see
the “Methods” section). The interaction between the subsystems
[last term in Eq. (2)] is studied within the BCS-like decoupling
scheme, where we introduce the pairing amplitudes ΔBCS

‘0 ¼
ha‘0;#a‘0;"i and ΔOSMP

‘ ¼ hc‘;#c‘;"i for the BCS superconductor
and the OSMP chain, respectively. In order to fully take into
account the many-body nature of the OSMP system, we have
developed a hybrid algorithm, the details of which are given in the
“Methods” section. In summary: we iteratively solve the OSMP
chain and the BCS system by means of the DMRG and the
Bogoliubov–de Gennes (BdG) equations, respectively. This back-
and-forth computational setup is costly but important to gain
confidence in our result.

We monitor the landscapes of pairing fields in both systems
and exemplary results are presented in Fig. 2b (for more results
see Supplementary Note 1). Initially, only the BCS system has
finite, spatially uniform, pairing amplitudes ΔBCS

‘0 (left column in
Fig. 2b), which are then used in the DMRG procedure applied to

Fig. 2 BdG self-consistent solution. a Sketch of the hybrid DMRG–BdG algorithm. The OSMP chain is placed in the middle of a 2D BCS superconductor
and coupled to it via the pairing field amplitudes present in both systems. b Iteration dependence of the ΔBCS

i profiles for the case with the OSMP chain
placed in the middle. The left (right) column depicts results initialized without (with random) pairing fields in the 1D OSMP system (calculated for U/W=
2). See the “Methods” sections for details.
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the OSMP Hamiltonian

H ¼ HgKH þ∑
‘
Δ‘ cy‘;"c

y
‘;# þH:c:

� �
; ð3Þ

where Δ‘ ¼ �VΔBCS
‘0 . Next, the ΔOSMP

‘ set is calculated from
DMRG and returned to the BdG equations relevant for the BCS
system. The procedure is repeated until convergence is estab-
lished. The results presented in Fig. 2b show that already after ~4
iterations the landscape of ΔBCS

‘0 stabilizes to an interaction U-
dependent value. We found that the resulting amplitude Δ‘ ¼
�VΔBCS

‘0 is almost uniform within the OSMP chain. Furthermore,
we have also confirmed that using extended s-wave pairing
(creating pairs on nearest-neighbor sites) does not influence our
conclusions. Therefore, in the remainder of the paper, we use
spatially uniform Δℓ= ΔSC in Eq. (3). Also, in order to emphasize
the role of interaction, in the main text, we fix the pairing field to
ΔSC/W≃ 0.5. The detailed ΔSC-dependence of our findings is
discussed in Supplementary Note 1.

Results
Magnetism of OSMP. Previous work has shown that the OSMP
(with ΔSC= 0) has a rich magnetic phase diagram26. (i) At small
U the system is paramagnetic. (ii) At n ¼ 1 and n ¼ 0 standard
antiferromagnetic (AFM) order develops, ↑↓↑↓, with total on-site
magnetic moment 〈S2〉= S(S+ 1)= 2 and 3/4, respectively. (iii)
For 0 < n < 1 and U≫W the system is a ferromagnet (FM)
↑↑↑↑. Interestingly, in the always challenging intermediate
interaction regime U � OðWÞ the AFM- and FM-tendencies
(arising from superexchange and double-exchange, respectively)
compete and drive the system towards novel magnetic phases
unique to multi-orbital systems. (iv) For U ~W, the system
develops a so-called block-magnetic order, consisting of FM
blocks that are AFM coupled, e.g. ↑↑↓↓, as sketched in Fig. 1c.
The block size appears controlled by the Fermi vector kF, i.e., the
propagation wavevector of the block-magnetism is given by
qmax ¼ 2kF (with 2kF ¼ πn for the chain lattice geometry). In this
work, we choose n ¼ 0:5 (adjusted via the chemical potential μ),
as the relevant density for BaFe2Se3 π/2-block magnetic order24.
Then, the latter order can be identified via the peak position of
the static structure factor S(q)= 〈T−q ⋅ Tq〉 at qmax ¼ π=2 or via a
finite dimer order parameter Dπ/2=∑ℓ(−1)ℓ〈Tℓ ⋅ Tℓ+1〉/L, where
we introduced the Fourier transform Tq ¼ ∑‘ expðiq‘Þ T‘=

ffiffiffi
L

p
of

the total spin operator Tℓ= Sℓ+ sℓ. In Fig. 1c S(q) is shown at

moderate interaction: at U/W < 1.6 it displays a maximum at
qmax ¼ π=2, consistent with ↑↑↓↓ the order.

Remarkably, it has been shown recently27 that there exists an
additional unexpected phase in between the block- and FM-
ordering. Namely, upon increasing the interaction (1.6 <U/W <
2.4), the maximum of S(q) in Fig. 1c shifts towards incommen-
surate wavevectors (while for U/W > 2.4 the system is a
ferromagnet). This incommensurate region reflects a novel
magnetic spiral where the magnetic islands maintain their
ferromagnetic character (with Dπ/2 ≠ 0) but start to rigidly rotate,
forming a so-called block-spiral (see sketch Fig. 1c). The latter
can be identified by a large value27 of the long-range chirality
correlation function 〈κℓ ⋅ κm〉 where κℓ= Tℓ × Tℓ+N and N is the
block size. It is important to note that the spiral magnetic order
appears without any direct frustration in the Hamiltonian (1), but
rather is a consequence of hidden frustration caused by
competing energy scales in the OSMP regime. Finally, it should
be noted that the block-spiral OSMP state is not limited to 1D
chains. In Supplementary Note 2, we show similar investigations
for the ladder geometry and find rigidly rotating 2 × 2 FM islands.
These results are consistent with recent nuclear magnetic
resonance measurements on the CsFe2Se3 ladder compound
which reported the system’s incommensurate ordering35.

Interestingly, an interaction-induced spiral order is also present
when SC pairing is included in the model, as evident from Fig. 1d.
However, the spiral mutates from block- to canonical-type with
Dπ/2= 0 (see the sketch in Fig. 1d), indicating unusual back-and-
forth feedback between magnetism and superconductivity. As
discussed below, the pairing optimizes the spiral profile to
properly create the Majoranas. The competition between many
energy scales (Hubbard interaction, Hund exchange, and SC
pairing) leads to novel phenomena: an interaction-induced
topological phase transition into a many-body state with MZM,
unconventional SC, and canonical spiral.

Majorana fermions. Figure 3 shows the effect of ΔSC/W≃ 0.5 on
the single-particle spectral function A(q, ω) (see the “Methods”
section) for the two crucial phases in our study, the block-
collinear and block-spiral magnetic orders (U/W= 1 and U/W=
2, respectively). As expected, in both cases, a finite SC gap opens
at the Fermi level ϵF (~0.5 [eV] for U/W= 1 and ~0.1 [eV] for
U/W= 2). Remarkably, in the block-spiral phase, an additional
prominent feature appears: a sharply localized mode inside the
gap at ϵF, displayed in Fig. 3b. Such an in-gap mode is a

Fig. 3 Spectral functions. Effect of the finite pairing field ΔSC/W≃ 0.5 on the single-particle spectral function A(q,ω) for a U/W= 1 and b U/W= 2
calculated for L= 36, n ¼ 0:5, and δω= 0.02 [eV]. Majorana zero-energy modes are indicated in b. c Local density-of-states (LDOS) in the in-gap
frequency region (δω= 0.002 [eV]) vs. chain site index. The sharp LDOS peaks at the edges represent Majorana edge states, while the bulk of the system
exhibits gapped behavior.
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characteristic feature of a topological state, namely the bulk of the
system is gapped, while the edge of the system contains the in-gap
modes. To confirm this picture, in Fig. 3c, we present a high-
resolution frequency data of the real-space local density-of-states
(LDOS; see the “Methods” section) near the Fermi energy ϵF. As
expected, for the topologically nontrivial phase, the zero energy
modes are indeed confined to the system’s edges. It is important
to note that this phenomenon is absent for weaker interaction
U/W= 1. Furthermore, one cannot deduce this behavior from the
U→∞ or JH→∞ limits, where the system has predominantly
collinear AFM or FM ordering, leading again to a trivial SC
behavior. However, as shown below, at moderate U the com-
peting energy scales present in the OSMP lead to the topological
phase transition controlled by the electron–electron interaction.

Let us now identify the induced topological state. The size
dependence of the LDOS presented in Fig. 3c reveals zero-energy
edge modes, namely peaks at frequency ω≃ ϵF localized at the
edges of the chain with open ends. While such modes are a
characteristic property of the MZM, finding peaks in the LDOS
alone is insufficient information for unambiguous identification.
To demonstrate that the gKH model with superconductivity
indeed hosts Majorana modes, we have numerically checked three
distinct features of the MZM:

(i) Since the Majorana particles are their own antiparticles, the
spectral weight of the localized modes should be built on an
equal footing from the electron and hole components.
Figure 4a shows that this is indeed the case.

(ii) The total spectral weight present in the localized modes can
be rigorously derived from the assumption of the MZM’s
existence (see the “Methods” section), and it should be
equal to 0.5. Integrating our DMRG results in Fig. 3c over a
narrow energy window and adding over the first few edge
sites gives≃ 0.47, very close to the analytical prediction.
Note that the Majoranas are not strictly localized at one
edge site ℓ∈ {1, L}, as evident from Fig. 4a. Instead, the
MZM is exponentially decaying over a few sites (see

Fig. 5c), and we must add the spectral weight accordingly
(separately for the left and right edges).

(iii) The MZM located at the opposite edges of the system form
one fermionic state, namely the edge MZM is correlated
with one another over large distances. To show such
behavior, consider the hole- and electron-like centrosym-

metric spectral functions, hhc‘ cyL�‘þ1ii
h

ω
and hhcy‘ cL�‘þ1ii

e

ω,
respectively. These functions represent the probability
amplitude of creating an electron on one end and a hole
at the opposite end (or vice-versa) at a given energy ω (see
the “Methods” section for detailed definitions and Supple-
mentary Note 3 for further discussion). Figure 4b shows

hhc‘ cyL�‘þ1ii
h

ω
and hhcy‘ cL�‘þ1ii

e

ω at the Fermi level ω= ϵF,
namely in the region where the MZM should be present. As
expected, the bulk of the system behaves fundamentally
different from the edges. In the former, crudely when L/2
≲ ℓ≲ 3L/4, the aforementioned spectral functions vanish
reflecting the gapped (bulk) spectrum with lack of states at
the Fermi level. However, at the boundaries (ℓ≪ L/2 and
ℓ≫ L/2) the values of the centrosymmetric spectral
functions are large, with a maximum at the edges ℓ∈
{1, L}. The long-range (across the system) correlations of
the edge states strongly support their topological nature.

Finally, let us discuss the physical mechanism causing the onset
of MZM. In Fig. 5a we present the Hubbard U interaction
dependence of the edge-LDOS (ℓ= 1) in the vicinity of the Fermi

Fig. 4 Correlation functions of Majorana fermions. a Site ℓ dependence of
the local density-of-states (LDOS) at the Fermi level (ω= ϵF) together with
its hole hhc‘ cy‘ ii

h

ϵF
and electron hhcy‘ c‘ii

e

ϵF
contributions. b Site dependence

of the centrosymmetric spectral function hhc‘ cyL�‘þ1ii
h

ϵF
and hhcy‘ cL�‘þ1ii

e

ϵF
.

Sketches represent the calculated process: the probability of creating the
electron on one end of the system (site ℓ) and a hole at the opposite end
(site L− ℓ+ 1), or vice-versa, at given energy ω. The pairs of sites where
the spectral function is evaluated are represented by the same colors. All
results were calculated for L= 36, U/W= 2, ΔSC/W≃ 0.5, and n ¼ 0:5.

Fig. 5 Interaction dependence of the MZM. Dependence on the Hubbard
interaction U of a the edge-LDOS at site ℓ= 1 (near the Fermi level ϵF) and
b the chirality correlation function 〈κL/2 ⋅ κℓ〉. All results calculated for ΔSC/
W≃ 0.5, n ¼ 0:5, L= 36. c Spatial decay of the local density-of-states at
the Fermi level (LDOS at ϵF) and the chirality correlation function 〈κℓ ⋅ κℓ+r〉
for U/W= 2. Red solid lines indicate exponential decay expð�r=lαÞ with
lMZM= 3 and ls= 15, for the MZM and the spiral order, respectively.
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level, ω ~ ϵF. It is evident from the presented results that the
edge-LDOS acquires a finite value quite abruptly for U >Uc≃ 1.5.
To further clarify this matter, let us return to the magnetic states in
the OSMP regime. Figure 5b shows the chirality correlation
function 〈κL/2 ⋅ κℓ〉 (with κℓ=Tℓ ×Tℓ+1) for increasing value of the
Hubbard U strength. We observe a sudden appearance of the
chirality correlation exactly at Uc, a behavior similar to that of the
edge LDOS. Interestingly, in the system without the pairing field,
ΔSC= 0, at a similar value of U≃ 1.6 the system enters the block-
spiral phase with rigidly rotating FM islands. However, in our setup,
the tendencies of OSMP to create magnetic blocks26 are highly
suppressed by empty and doubly occupied sites favored by the finite
pairing field ΔSC. As a consequence, the block-spiral order is
reshaped to a canonical type of spiral without dimers Dπ/2= 0. This
behavior is similar to the MZM observed when combining s-wave
SC with a classical magnetic moment heterostructure2,4–6. In the
latter, the Ruderman–Kittel–Kasuya–Yosida (RKKY) mechanism
stabilizes a classical long-range spiral with 2kF pitch (where kF / n
is the Fermi wavevector). Within the OSMP, however, the pitch is,
on the other hand, controlled by the interaction U (at fixed n), as
evident from the results presented in Fig. 1b, c.

Furthermore, analysis of the chirality correlation function 〈κℓ ⋅
κℓ+r〉 indicates that the spiral order decays with the distance r (see
Fig. 5c), as expected in a 1D quantum system. Note, however, that
the MZM decay length scale, lMZM, and that of the spiral, ls, differ
substantially. The Majoranas are predominantly localized at the
system edges, thus yielding a short localization length lMZM≃ 3.
The spiral, although still decaying exponentially, has a robust
correlation length ls≃ 13, of the same magnitude as the ΔSC= 0
result27. Then, for large but finite chains the overlap between the
edge modes is negligible while the magnetic correlations on
the distance L are still large enough to promote triplet pairing and
the Majorana modes. In addition, we have observed that smaller
values of ΔSC than considered here also produce the MZM.
However, since the Majoranas have an edge localization length
inversely proportional to ΔSC, reducing the latter leads to overlaps
between the left and right Majorana states in our finite
systems28,36, thus distorting the physics we study. After
exploration, ΔSC/W≃ 0.5 was considered an appropriate com-
promise to address qualitatively the effects of our focus given our
practical technical constraints within DMRG (see Supplementary
Note 4 for details).

Conceptually, it is important to note that the interaction-
induced spiral at U/W= 2 is not merely frozen when ΔSC

increases. Specifically, the characteristics27 of the chirality
correlation function 〈κi ⋅ κj〉 qualitatively differ between the trivial
(ΔSC= 0) and topological phases (ΔSC ≠ 0): increasing ΔSC

suppresses the dimer order and leads to a transformation from
block spiral to a standard canonical spiral with Dπ/2= 0 in the
topologically nontrivial phase. As a consequence, the proximity to
a superconductor influences on the magnetic order to optimize the
spin pattern needed for MZM. Surprisingly, ΔSC influences on the
collinear spin order as well. In fact, at U/W= 1, before spirals are
induced, the proximity to superconductivity changes the block
spin order into a more canonical staggered spin order to optimize
the energy (see Fig. 3b). This is a remarkable, and unexpected,
back-and-forth positive feedback between degrees of freedom that
eventually causes the stabilization of the MZM.

Discussion
Our main findings are summarized in Fig. 6: upon increasing the
strength of the Hubbard interaction U within the OSMP with
added SC pairing field, the system undergoes a topological phase
transition. The latter can be detected as the appearance of edge
modes which are mutually correlated in a finite system. This in

turn leads to, e.g., the sudden increase of the entanglement, as
measured by the von Neumann entanglement entropy SvN (see
the “Methods” section). The transition is driven by the change in
the magnetic properties of the system, namely by inducing a finite
chirality visible in the correlation function 〈κℓ ⋅ κm〉. The above
results are consistent with the appearance of the MZM at the
topological transition. It should be noted that the presence of
those MZM implies unconventional p-wave superconductivity8.
As a consequence, for our description to be consistent, the
topological phase transition ought to be accompanied by
the onset of triplet SC amplitudes ΔT. To test this nontrivial
effect, we monitored the latter, together with the singlet SC
amplitude ΔS (related to a nonlocal s-wave SC; see the “Methods”
section for detailed definitions). As is evident from the results in
Fig. 6, for U <Uc we observe only the singlet component ΔS

canonical for an s-wave SC, while for U ≥Uc the triplet amplitude
ΔT develops a robust finite value. It is important to stress that
ΔT ≠ 0 is an emergent phenomenon, induced by the correlations
present within the OSMP, and is not assumed at the level of the
model (we use a trivial on-site s-wave pairing field as input).

In summary, we have shown that the many competing energy
scales induced by the correlation effects present in SC multi-
orbital systems within OSMP lead to a topological phase transi-
tion. Differently from the other proposed MZM candidate setups,
our scheme does not require frozen classical magnetic moments
or, equivalently, FM ordering in the presence of the Rashba
spin–orbit coupling3. All ingredients necessary to host Majorana
fermions appear as a consequence of the quantum effects induced
by the electron–electron interaction. The pairing filed can be
induced by the proximity effect with a BCS superconductor, or it
could be an intrinsic property of some iron superconductors
under pressure or doping. It is important to note that the

Fig. 6 Phase diagram. a Hubbard interaction U dependence of the (i) von
Neumann entanglement entropy SvN, (ii) edge local density-of-states at the
Fermi level (eLDOSϵF ), (iii) the value of chirality correlation function at
distance L/2 (i.e. 〈κL/4 ⋅ κ3L/4〉), as well as (iv) nonlocal singlet ΔS and
triplet ΔT pairing amplitudes. See text for details. All results were calculated
for L= 36, ΔSC/W≃ 0.5, and n ¼ 0:5. b, c Spatial dependence of the singlet
and triplet SC amplitudes, ΔS,ℓ and ΔT0,ℓ, respectively (see the “Methods”
section for details), with b the trivial phase (U/W= 1,ΔSC/W≃ 0.5) and
c the topological phase (U/W= 2,ΔSC/W≃ 0.5). In the latter, the
oscillations of the triplet component are related to the pitch of the
underlying spiral magnetic order.
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coexistence of SC and nontrivial magnetic properties is mostly
impossible in single-orbital systems. Here, the OSMP provides a
unique platform in which this constraint is lifted by, on the one
hand, spatially separating such phenomena, and, on the other
hand, strongly correlating them with each other. Furthermore,
our proposal allows to study the effect of quantum fluctuations on
the MZM modes. There are only a few candidate materials that
may exhibit the behavior found here. The block-magnetism (a
precursor of the block-spiral phase) was recently argued to be
relevant for the chain compound Na2FeSe237, and was already
experimentally found in the BaFe2Se3 ladder24. Incommensurate
order was reported in CsFe2Se335. Also, the OSMP38–40 and
superconductivity31–33 proved to be important for other com-
pounds from the 123 family of iron-based ladders.

Our findings provide also a new perspective to the recent
reports of topological superconductivity and Majorana fermions
found in two-dimensional compounds Fe(Se,Te)13–17. Since
orbital-selective features were observed in clean FeSe41,42, it is
reasonable to assume that OSMP is also relevant for doped Fe(Se,
Te)43. Regarding magnetism, the ordering of FeSe was mainly
studied within the classical long-range Heisenberg model44,
where block-like structures (e.g., double stripe or staggered
dimers) dominate the phase diagram for realistic values of the
system parameters. Note that the effective spin model of the
block-spiral phase studied here was also argued to be long-
ranged27. The aforementioned phases of FeSe are typically
neighboring (or are even degenerate with) the frustrated spiral-
like magnetic orders44, also consistent with the OSMP magnetic
phase diagram26. In view of our results, the following rationale
could be used to explain the behavior of the above materials: the
competing energy scales present in multi-orbital iron-based
compounds, induced by changes in the Hubbard interaction due
to chemical substitution or pressure, lead to exotic magnetic spin
textures. The latter, together with the SC tendencies, lead to
topologically nontrivial phases exhibiting the MZM45,46. Also,
similar reasoning can be applied to the heavy-fermion metal
UTe2. It was recently shown that this material displays spin-
triplet superconductivity47 together with incommensurate
magnetism48.

Methods
DMRG method. The Hamiltonians and observables discussed here were studied
using the density matrix renormalization group (DMRG) method49,50 within the
single-center site approach51, where the dynamical correlation functions are
evaluated via the dynamical-DMRG52,53, i.e., calculating spectral functions directly
in frequency space with the correction-vector method using Krylov
decomposition53. We have kept up to M= 1200 states during the DMRG proce-
dures, allowing us to accurately simulate system sizes up to L= 48 and L= 60 with
truncation errors ~10−8 and ~10−6, respectively.

We have used the DMRG++ computer program developed at Oak Ridge
National Laboratory (https://g1257.github.io/dmrgPlusPlus/). The input scripts for
the DMRG++ package to reproduce our results can be found at https://bitbucket.
org/herbrychjacek/corrwro/ and also on the DMRG++ package webpage.

Hybrid DMRG–BdG algorithm. We consider a 2D, s-wave, BCS superconductor at
half-filling,

HBCS ¼ �tBCS ∑
hi;ji;σ

ayi;σaj;σ � VBCS ∑
i

ΔBCS
i ayi;"a

y
i;# þ H:c:

� �
: ð4Þ

Here 〈i, j〉 denotes summation over nearest-neighbor sites of a square lattice and
ayi;σ (ai;σ ) creates (destroys) an electron with spin projection σ= {↑, ↓} at site i. The
BCS system is coupled to the OSMP chain, as described by the last term of
Hamiltonian (2) in the main text. At the BCS level, the latter term emerges as an
additional (external) pairing field to the OSMP region

HV ¼ �V ∑
‘0

ΔOSMP
‘ ay

‘0 ;"a
y
‘0 ;# þ H:c:

� �
: ð5Þ

Here, the summation is restricted to the sites of the BCS system which are coupled
to the OSMP chain. In numerical calculations, we set the hopping integral tBCS= 2
[eV], fix the system size to Lx= 54 and Ly= 27 (with 1D OSMP system coupled to
the ‘0 ¼ 14 row of sites), use the BCS attractive potential VBCS/tBCS= 2 and the

coupling strength V/tBCS= 2. Although we assume periodic boundary conditions
for the BCS system, the translational invariance is broken by the coupling to the
OSMP chain.

Our procedure consists of two alternating steps:

1. BdG calculations: In the first step, we assume an initial set ΔOSMP
‘ and

diagonalize the Hamiltonian HBCS+HV, as defined in Eqs. (4) and
(5). To this end, we use the standard BdG equations at zero
temperature. They yield self-consistent results for the pairing
amplitude, ΔBCS

i ¼ hai;#ai;"i, for all sites i within the BCS system.
From among the latter results, we single out the amplitudes ΔBCS

‘0 on
the sites i ¼ ‘0 which are coupled to the OSMP chain.

2. DMRG calculations: The OSMP system within Eq. (3) is evaluated using the
DMRG approach. The spatially dependent amplitudes ΔOSMP

‘ are
calculated providing a new set of external fields for the subsequent
BdG calculations.

The above procedure is repeated iteratively until we obtain converged results. In
the main text (see Fig. 2) we presented results of the above algorithm starting from
ΔOSMP
‘ ¼ 0. However, the procedure can also start from arbitrary pairing fields

ΔOSMP
‘ in the first step. The right column of Fig. 2b depicts results obtained using a

random initial profile ΔOSMP
‘ 2 ½0; 1�. It is evident from the presented results that

the converged result is independent of the initial configuration (at least for the
couplings studied here). See Supplementary Note 1 for further discussion and
additional results.

Spectral functions. Let us define the site-resolved frequency (ω)-dependent
electron (e) and hole (h) correlation functions

hhA‘ Bmiie;hω ¼ � 1
π
Im gs

� ��A‘

1
ωþ � ðH � ϵ0Þ

Bm gs
�� �

; ð6Þ

where the signs + and − should be taken for hh:::iieω and hh¼iihω, respectively.
Here, gs

�� �
is the ground-state, ϵ0 the ground-state energy, and ω+= ω+ iη with η

a Lorentzian-like broadening. For all results presented here, we choose η= 2δω,
with δω/W= 0.001 (unless stated otherwise).

The single-particle spectral functions A(q, ω)= Ae(q, ω)+ Ah(q, ω), where Ae

(Ah) represent the electron (hole) part of the spectrum, have a standard definition,

Ahðq;ωÞ ¼ ∑
‘
e�iqð‘�L=2Þ hhc‘ cyL=2ii

h

ω
;

Aeðq;ωÞ ¼ ∑
‘
eþiqð‘�L=2Þ hhcy‘ cL=2ii

e

ω
;

ð7Þ

with c‘ ¼ ∑σc‘;σ . Finally, the LDOS is defined as

LDOSð‘;ωÞ ¼ hhc‘ cy‘ ii
h

ω þ hhcy‘ c‘ii
e

ω:
ð8Þ

Spectral functions of Majorana edge-states. For simplicity, in this section, we
suppress the spin index σ and assume that the lattice index j contains all local
quantum numbers. The many-body Hamiltonian is originally expressed in terms of
fermionic operators c yð Þ

j , but it may be equivalently rewritten using the Majorana
fermions (not to be confused with the MZM):

γ2j�1 ¼ cj þ cyj ; γ2j ¼ �iðcj � cyj Þ; ð9Þ

where γyl ¼ γl and {γi, γj}= 2δij. The latter anticommutation relation is invariant
under orthogonal transformations, thus we can rotate the Majorana fermions
arbitrarily with

Γa ¼ ∑
j
V̂ajγj; ð10Þ

where V̂ are real, orthogonal matrices V̂
>
V̂ ¼ V̂V̂

> ¼ 1. If the system hosts a pair
of Majorana edge modes, ΓL and ΓR, then we can find a transformation V̂ such that
the following Hamiltonian captures the low-energy physics

H ’ i
ε

2
ΓL ΓR þH0: ð11Þ

It is important to note that H0 does not contribute to the in-gap states. It contains
all Majorana operators, Γa, other than the MZM (ΓL and ΓR). The first term in Eq.
(11) arises from the overlap of the MZM in a finite system, while in the thermo-
dynamic limit ε→ 0 both ΓL and ΓR become strictly the zero modes. While the
ground state properties obtained from the zero temperature DMRG do not allow us
to formally construct the transformation V̂ , we demonstrate below that the com-
puted local and non-local spectral functions are fully consistent with the MZM. In
fact, we are not aware of any other scenario that could explain the spectral func-
tions reported in this work.
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Let us investigate the retarded Green’s functions

Gh cj; c
y
l

� �
¼ �i

R1
0
dt eiωt gs

� ��cjðtÞcyl gs
�� �

;

Ge cj; c
y
l

� �
¼ �i

R1
0
dt eiωt gs

� ��cyl cjðtÞ gs
�� �

;

ð12Þ

which are related to the already introduced spectral functions

hhcjcyl ii
h

ω
¼ � 1

π Im Gh cj; c
y
l

� �
;

hhcyl cjii
e

ω
¼ � 1

π Im Ge cj; c
y
l

� �
:

ð13Þ

Using the transformations (9) and (10) one may express Ge;h cj; c
y
l

� �
as a linear

combination of the Green’s functions defined in terms of the Majorana fermions
Ge;h Γa; Γb

� 	
. However, the only contributions to the in-gap spectral functions come

from the zero-modes, i.e., from a, b∈ {L, R}, and the corresponding functions can
be obtained directly from the effective Hamiltonian (11),

Gh ΓL; ΓL
� 	 ¼ Gh ΓR; ΓR

� 	 ¼ 1
ω�jεjþiη ;

Ge ΓL; ΓL
� 	 ¼ Ge ΓR; ΓR

� 	 ¼ 1
ωþjεjþiη :

ð14Þ

The Green’s functions determine the in-gap peak in the left part of the system

Gα cj; c
y
j

� �
¼

V2
L;2j þ V2

L;2j�1

4
Gα ΓL; ΓL

� 	
; ð15Þ

with α ∈ {e, h}, and a similar expression holds for the peak on its right side.
Utilizing the orthogonality of V̂ , one may explicitly sum up the Green’s functions
over the lattice sites

∑
j
Gα cj; c

y
j

� �
¼ 1

4
Gα ΓL; ΓL

� 	
; ð16Þ

where the sum over j contains few sites at the edge of the system due to the
exponential decay of the V̂ elements. The result Eq. (16) explains why the total spectral
weights originating from ∑jGα equal 1/4, while the total spectral weights of the peaks
in LDOS equal 1/2. A similar discussion of the nonlocal centrosymmetric spectral

functions hhc‘ cyL�‘þ1ii
h

ϵF
and hhcy‘ cL�‘þ1ii

e

ϵF
can be found in Supplementary Note 3.

Von Neumann entanglement entropy. SvN(ℓ) measures entanglement between
two subsystems containing, respectively, ℓ and L−ℓ sites, and can be easily cal-
culated within DMRG via the reduced density matrix ρℓ, i.e., SvNð‘Þ ¼ �Trρ‘ln ρ‘ .
The results presented in Fig. 6 depict the system divided into two equal halves, ℓ=
L/2. The full spatial dependence of SvN(ℓ) is presented in Supplementary Note 5.

SC amplitudes. The s-wave and p-wave SC can be detected with singlet ΔS and
triplet ΔT amplitudes, respectively, defined as

ΔS ¼ ∑
3L=4

‘¼L=4
ΔS;‘

�� ��;

ΔT ¼ ∑
3L=4

‘¼L=4
ΔT0;‘

�� ��þ ΔT#;‘
�� ��þ ΔT#;‘

�� ��� �
;

ð17Þ

with

ΔS;‘ ¼ cy‘;"c
y
‘þ1;# � cy‘;#c

y
‘þ1;"

D E
;

ΔT0;‘ ¼ cy‘;"c
y
‘þ1;# þ cy‘;#c

y
‘þ1;"

D E
;

ΔT";‘ ¼ cy‘;"c
y
‘þ1;"

D E
; ΔT#;‘ ¼ cy‘;#c

y
‘þ1;#

D E
:

ð18Þ

Data availability
The data that support the findings of this study are available from the corresponding
author upon request.
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