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Identification of consensus 
biomarkers for predicting non-
genotoxic hepatocarcinogens
Shan-Han Huang1 & Chun-Wei Tung1,2,3,4

The assessment of non-genotoxic hepatocarcinogens (NGHCs) is currently relying on two-year rodent 
bioassays. Toxicogenomics biomarkers provide a potential alternative method for the prioritization 
of NGHCs that could be useful for risk assessment. However, previous studies using inconsistently 
classified chemicals as the training set and a single microarray dataset concluded no consensus 
biomarkers. In this study, 4 consensus biomarkers of A2m, Ca3, Cxcl1, and Cyp8b1 were identified from 
four large-scale microarray datasets of the one-day single maximum tolerated dose and a large set of 
chemicals without inconsistent classifications. Machine learning techniques were subsequently applied 
to develop prediction models for NGHCs. The final bagging decision tree models were constructed with 
an average AUC performance of 0.803 for an independent test. A set of 16 chemicals with controversial 
classifications were reclassified according to the consensus biomarkers. The developed prediction 
models and identified consensus biomarkers are expected to be potential alternative methods for 
prioritization of NGHCs for further experimental validation.

Carcinogenicity is one of the most unwanted side effects during drug development1. Carcinogenic agents can be 
classified as genotoxic or nongenotoxic carcinogens according to their mechanism of action. While genotoxic car-
cinogens directly interact with DNA, nongenotoxic carcinogens induce tumors in indirect manners2. As liver is 
the major target organ of drug-induced tumor formation, hepatocarcinogenicity has been extensively studied for 
decades. In contrast to genotoxic agents that can be easily identified using well-established bioassays3, the identi-
fication of nongenotoxic hepatocarcinogens (NGHCs) still relies on 2-year rodent bioassays1,4. The development 
of efficient methods is desirable for identifying NGHCs.

Toxicogenomics (TGx) as a promising tool in risk assessment5 has been applied to decipher the mechanism of 
hepatocarcinogenicity through the identification of gene biomarkers from short-term microarray experiments. 
To achieve reproducibility and comparability using similar study designs and standardized experimental proto-
cols6, several large-scale microarray experiments were conducted to support TGx studies that are publicly availa-
ble as DrugMatrix7, GSE88588, and TG-GATEs1. The three datasets were comprised of time-series measurements 
of gene expressions at single or multiple dose levels, which were profiled using Affymetrix (DrugMatrix and 
TG-GATEs) and Codelink (DrugMatrix and GSE8858) platforms. Prediction models were subsequently devel-
oped based on the biomarkers for detecting NGHCs1,4,7–12. The superior performance of TGx over quantitative 
structure-activity relationship models for hepatocarcinogenicity has been reported8. However, the lack of consen-
sus biomarkers identified from different studies could limit the usefulness for predicting NGHCs.

The utilization of different NGHCs as training sets, algorithms for biomarker identification and experimental 
parameters such as the duration of treatment and microarray platforms could result in the identification of dif-
ferent biomarkers. For example, Fielden et al. applied statistical methods to identify 23 biomarkers for predicting 
NGHCs based on a training set of 23 NGHCs and 49 NHCs and 5-day gene expression data from DrugMatrix7. 
Uehara et al. utilized support vector machine algorithms to conclude 9 biomarkers based on a training set of 6 
NGHCs and 54 NHCs and 28-day gene expression data from TG-GATEs1. They further reported an improved 
model based on 42 biomarkers and a larger dataset of 41 NGHCs and 52 NHCs and 28-day gene expression 
data13. Masayuki et al. identified 106 biomarkers from six NGHC compounds based on 28-day gene expression 
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data from TG-GATEs14. Eichner et al. present two novel approaches employed to capture 5 specific biomarkers 
both statistical and machine learning-based methods based on a training set of 2 Genotoxic hepatocarcinogens, 
9 NGHCs and 11 NHCs and 14-day gene expression data from TG-GATEs15. The utilization of microarray data 
from different laboratories or platforms would result in a natural question whether the biomarkers are compara-
ble and reliable16. The identification of consensus biomarkers could largely help the characterization and predic-
tion of hepatocarcinogens.

This study proposed to identify and analyze consensus biomarkers based on a largest set of 50 NGHCs and 
224 non-hepatocarcinogens (NHCs) without controversial classification of NGHC or NHC collected from 
literatures1,4,7–10,12,17–19, and corresponding 1-day gene expression data from 4 publicly available microarray 
experiments. Four differentially expressed genes of A2m, Ca3, Cxcl1 and Cyp8b1 were identified as consen-
sus biomarkers. Machine learning models were subsequently developed based on the consensus biomarkers to 
evaluate the prediction performance for NGHCs and reanalyze 16 inconsistently classified chemicals. The four 
biomarkers achieve good performance based on a bagging algorithm with area under the receiver operating char-
acteristic curve (AUC) values of 0.775, 0.793, 0.717 and 0.740 for four microarray datasets. The prediction model 
provides a potentially useful method for identifying NGHCs.

Materials and Methods
Chemical list. To collect a largest set of NGHCs and NHCs for the identification of consensus biomarkers 
for identifying NGHCs, chemicals with classification information were collected from several studies associated 
with nongenotoxic hepatocarcinogenicity1,4,7–10,12,17–19. Hepatocarcinogens with both genotoxic and non-geno-
toxic mechanisms were classified as NGHCs, while hepatocarcinogens with only genotoxic mechanisms were 
excluded. A total of 274 chemicals (50 NGHCs and 224 NHCs) without inconsistent classifications were utilized 
as the final chemical list for biomarker identification. There are 16 inconsistently classified chemicals with both 
NGHC and NHC classifications in different studies. The final chemical list is available in Supplementary Table S1.

Microarray datasets. Four large-scale gene expression profiles and metadata named DMA, DMC, GSE8858, 
and TG-GATEs were downloaded from websites of DrugMatrix (ftp://anonftp.niehs.nih.gov/drugmatrix/), 
GSE8858 (ftp://ftp.ncbi.nlm.nih.gov/geo/series/GSE8nnn/GSE8858/) and TG-GATEs (ftp://ftp.dbcls.jp/archive/
open-tggates/) as shown in Table 1. All of the four datasets contain gene expression profiles from liver samples of 
Sprague-Dawley rats treated with various chemicals. All the gene expression values were log2-transformed for 
subsequent analysis.

Identification of consensus biomarkers. To identify consensus biomarkers from multiple microarray 
datasets, differentially expressed genes (DEGs) were firstly analyzed for each of the four microarray datasets. The 
t-test (p <  0.05) and 1.5-fold change were applied to identify DEGs based on original expression values. The 1-day 
gene expression profiles from the treatment of chemicals using the single maximum tolerated dose or high dose 
were utilized for analysis due to their availability on all four datasets. Subsequently, the overlapped DEGs from 
four datasets were identified as consensus biomarkers.

Machine learning models and cross-validation. Machine learning methods have been widely used for 
constructing classifiers/hypothesis that can explain complex relationships in the data20. In this study, a total of 
6 machine learning algorithms were applied to evaluate the prediction performance of biomarkers including 
decision tree (J48), boosting tree, bagging tree, RandomForest, Naïve Bayes and K-nearest neighbors (kNN). The 
implementation of the machine learning algorithms was based on WEKA machine learning package21. A brief 
introduction to the 6 machine learning algorithms was summarized as follows.

The decision tree algorithm J48, also known as C4.5 algorithm22, is a tree-based classifier that has been exten-
sively applied in related bioinformatics problems such the identification of biomarkers23 and the prediction of 
NGHC24–26. In this study, the default confidence parameters of the confidence threshold and minimal number of 
samples in the left node were utilized for tree pruning to avoid overfitting.

In addition to the single decision tree classifier, three ensemble learning algorithms of boosting, bagging and 
RandomForest were implemented to leverage the power of multiple classifiers that have been shown to improve 
the overall prediction accuracy and reduce overfitting problems27,28. The boosted decision tree classifier was 
developed by applying AdaBoost.M1 algorithm29 to create an accurate classifier by combining many relatively 
weak decision trees. The weak classifiers were sequentially built with modified weights of samples. For each itera-
tion, the samples correctly classified by many of the previous weak classifiers get a lower weight, and the misclassi-
fied samples get a higher weight. The AdaBoost.M1 algorithm hereby focuses on the samples with higher weights 
from the previous classifier. The number of trees is a parameter that should be tuned to achieve the highest per-
formance. In this study, the area under the receiver operating characteristic curve (AUC) value was utilized for 
parameter tuning of the number of trees (ranged from 5 to 50). The final prediction is based on a majority vote 
rule from all weak classifiers.

The bagging algorithm based on the combination of bootstrap sampling and aggregation methods has been 
shown to effectively reduce variance and avoid overfitting30. For creating a bagging decision tree classifier, mul-
tiple decision tree classifiers were trained on individual random subsets that are bootstrap sampled from the 
training dataset. The prediction is made by aggregating prediction results from the constructed classifiers using a 
majority vote rule. In this study, the boosting and bagging algorithms were both implemented using the decision 
tree algorithm J48 as their base learner. AUC values were utilized for determining the optimal number of trees 
(ranged from 5 to 50).

RandomForest31 is another popular decision tree-based ensemble algorithm that has been shown to be useful 
in many applications32–35. The RandomForest classifier aims to reduce variance to avoid overfitting problems and 

ftp://anonftp.niehs.nih.gov/drugmatrix/
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improve prediction performances of decision trees by training a set of fully grown decision trees utilizing boot-
strap samples from the training dataset and randomly selected features36–38. The number of features for construct-
ing a fully grown decision tree is set to 1 +  log2(the number of features). The optimal number of trees ranged from 
5 to 50 was determined based on AUC performance. The prediction of a given sample is based on a majority vote.

In addition to the decision tree and ensemble methods, two classifiers were also evaluated for their prediction 
performance of the selected markers including Naïve Bayes and K-nearest neighbor (kNN) classifiers. Naïve 
Bayes method is a simple yet powerful classification method based on the Bayes’ theorem39. Given a hypothesis H 
and an evidence E, the posterior probability can be calculated based on a prior probability and a likelihood using 
the following equation: | = | ×H EPr[ ] E H H

E
Pr[ ] Pr[ ]

Pr[ ]
. Although it is based on a naïve assumption that features are 

independent, many studies showed its excellent performance for various applications40–42.
The instance-based learning algorithm kNN is a non-parametric classification method. The new sample was 

classified according to the classes of k nearest training samples by a majority vote rule. Euclidean distance was 
used to calculate the distance between two samples to identify the nearest training samples. The optimal number 
of nearest neighbors k ∈  {1, 3, 5} for KNN was determined using the AUC performance.

The development of machine learning classifiers and selection of optimal parameters were only based on the 
training dataset. To avoid overfitting in the training process, a leave-one-out cross-validation (LOOCV) method 
was utilized to evaluate the performance of selected markers on the training dataset. For each iteration, a sample 
is selected to validate the model constructed by using the remaining samples. After all samples are evaluated, the 
LOOCV performance is obtained by calculating the overall AUC performance.

Independent test. Johnson and Johnson (JNJ) dataset9 was used for independent test of the developed mod-
els. The JNJ dataset consisting of 1-day gene expression data for 10,399 probes was obtained from Codelink plat-
form based on the treatment of 9 NGHCs and 54 NHCs on Sprague-Dawley rats using single maximum tolerance 
doses. The JNJ dataset was download from the public database of Chemical Effects in Biological Systems (CEBS) 
(ftp://157.98.192.110/ntp-cebs/datatype/microarray/J&J/) and log2-transformed.

Results and Discussion
Inconsistency among previously identified biomarkers for NGHC. Previous studies reported several 
sets of NGHC biomarkers based on only a single dataset with different chemical lists, experimental designs, and 
microarray platforms1,4,7–10,12,17–19. To give an overview, the overlaps between published biomarkers have been col-
lected and analyzed. As shown in Supplementary Figure S1, there is no common biomarker among the previous 
studies1,7,8,13,14,24. A consensus set of biomarkers is desirable for predicting NGHCs and providing better insights 
into the underlying mechanisms. Figure 1 shows the system flow of this study for the identification of consensus 
biomarkers.

Construction of a chemical list for the identification of biomarkers. This study aimed to identify 
consensus biomarkers based on multiple gene expression datasets of a relatively large chemical list without incon-
sistent classifications from previous studies for predicting NGHCs. A large chemical list was firstly collected from 
literatures consisting of 50 NGHCs and 224 NHCs (Supplementary Table S1). Subsequently, gene expression 
data matching the 274 chemicals were extracted for identifying differentially expressed genes. After removing 
chemicals without corresponding gene expression data from DMA, DMC, GSE8858 and TG-GATEs datasets, a 
total of 232 chemicals (43 NGHCs and 189 NHCs) were utilized for the identification of consensus biomarkers.

Identification of consensus biomarkers. Among the four microarray datasets, the common exposure 
styles are 1-day single dose and 3-day repeated doses using a highest tolerated dose. This study focused on the 
data of 1-day single dose because of its potential applications. To identify consensus biomarkers, only gene expres-
sion profiles derived from the exposure style were utilized. For each of the four microarray datasets, differentially 
expressed genes (DEGs) were firstly identified using t-test (p <  0.05) and 1.5-fold changes on original expression 
values between NGHCs and NHCs. The numbers of DEGs are 142, 155, 231 and 1280 for DMA, DMC, GSE8858 
and TG-GATEs, respectively. Finally, 4 common DEGs of A2m, Ca3, Cxcl1 and Cyp8b1 in all four microarray 

Dataset #Probe #NGHC #NHC Description Reference

DMA
Affymetrix whole genome 230 
2.0 rat GeneChip®  array

31099 25 47
▪   National Toxicology Programs of the 

National Institute of Environmental 
Health Sciences in U.S.A

▪  3 doses: Low, Medium and High
▪  4 time points: 0.25, 1, 3 and 5 days

Fielden et al.7

 DMC
 The GE Codelink™  rat array 10399 39 138

GSE8858
CodeLink UniSet Rat I 
Bioarray

10399 35 121 ▪  Maximum tolerated dose
▪  3 time points: 1, 3 and 5 days

Liu et al.8

TG-GATEs
Affymetrix Rat Genome 230 
2.0 array 31099 12 93

▪  The TGx Project in Japan
▪  3 doses: Low, Medium, High
▪   8 time points: 3, 6, 9 and 24 hours; 3, 7, 

14 and 28 days

Uehara et al.1

Table 1.  Summary of microarray datasets.

ftp://157.98.192.110/ntp-cebs/datatype/microarray/J&J/
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datasets were identified as consensus biomarkers. A Venn diagram showing the overlap between datasets was 
generated by jvenn43 and shown in Supplementary Figure S2.

The means of log2-transformed expression values of the 4 consensus biomarkers in four microarray datasets 
for NGHCs and NHCs were shown in Supplementary Table S2. As expected, platform variation existed that the 
expression values were similar on the same platforms (DMC and GSE8858 from Codelink platform; DMA and 
TG-GATEs from Affymatrix) but different from other platforms. Different dosages of chemicals could also affect 
the expression values to vary between different microarray datasets. Details on dosages for the four microarray 
datasets were available in Supplementary Table S3. Generally, down-regulated expression of the four biomarkers 
could be the predictive markers for NGHC.

Development of prediction models using consensus biomarkers. To evaluate the prediction ability 
of the four consensus biomarkers, prediction models were firstly developed by applying machine learning tech-
niques whose prediction performance were evaluated based on leave-one-out cross-validation (LOOCV). Due to 
the platform variations are shown in Supplementary Table S2, four prediction models were separately constructed 
for each of the four microarray datasets. A total of six machine learning algorithms including J48, boosted deci-
sion trees, bagging decision trees, RandomForest, kNN and Naïve Bayes classifier were evaluated for developing 
best prediction models giving highest AUC performances. Please note that the support vector machines with-
out a built-in mechanism for dealing missing data were not assessed in this study. Figure 2 shows the LOOCV 
performance of the consensus biomarkers using various algorithms for datasets of DMA, DMC, GSE8858 and 
TG-GATEs. For k-nearest neighbor classifier, the best parameter of k giving the highest AUC performance is 3. 
Among the six algorithms, bagging decision trees perform consistently well with AUC values of 0.775, 0.793, 
0.717 and 0.740 using 15, 15, 48 and 48 trees for DMA, DMC, GSE8858, and TG-GATEs, respectively.

To compare with previously published biomarkers, bagging decision tree algorithm were also applied to eval-
uate their LOOCV performance. Two biomarker sets consisting of 237 and 9 genes1 named F23 and U9, respec-
tively, were utilized for performance comparison. As the Codelink platform consisted of fewer probes, only 10 out 
of 23 the probes from F23 and 2 out of 9 probes from U9 were utilized for evaluating prediction performance for 

Figure 1. Flowchart of consensus biomarker identification and independent test. A chemical list was firstly 
collected from literature. Secondly, consensus biomarkers were identified based on the chemical list without 
inconsistent classifications. Prediction models based on machine learning algorithms were subsequently 
constructed using the consensus biomarkers and validated on an independent test JNJ dataset. Finally, 
inconsistently classified chemicals were reanalyzed using the developed models.
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datasets of DMC and GSE8858. As shown in Fig. 3, the consensus biomarkers from this study achieved consistent 
prediction performance. The other two biomarker sets identified from previous studies performed worse than the 
consensus biomarkers in three microarray datasets expect for TG-GATEs. The high performance of the other two 
biomarker sets for TG-GATEs might be overestimated because 10 out of 12 NGHCs in TG-GATEs were associ-
ated with oxidation stress-related mechanisms and the two biomarker sets were selected based on the mechanism. 
In general, the average AUC value of 0.803 using the consensus biomarkers is higher than 0.572 and 0.602 using 
previously published biomarker sets.

Recently, Li et al. has proposed a resampling statistics for evaluating the robustness of biomarkers44. To address 
the robustness issue, a similar approach has been adopted for assessing the consensus biomarkers. First, a total of 
60 resampling sub-datasets were constructed by randomly selecting 80 chemicals from the DMC dataset. Each 
sub-dataset maintained the same ratio of NGHCs and NHCs as that of the original set, with <50% sample overlap 
among the sub-datasets. Subsequently, the 60 distinct random sub-datasets were utilized for assessing the robust-
ness of the 4 consensus biomarkers and 4 biomarker subsets, each consisting of 3 out of the 4 consensus biomark-
ers. Based on the bagging algorithm, the 4 consensus biomarkers generate an averaged AUC value of 0.701 ±  0.081 
(mean ±  SD), while the biomarker subsets generate a slightly lower AUC value of 0.679 ±  0.075. A certain degree of 
variation was observed. The robustness issue might be further studied by applying a knowledge-based CSS (com-
binatory cancer hallmark–based gene signature sets) approach45. The CSS approach based on a resampling-based 
Multiple Survival Screening (MSS) algorithm is capable of selecting a robust set of biomarkers from a set of 
mechanism-based candidate genes and might be further applied for identifying biomarkers of NGHCs.

Independent test of consensus biomarkers. To further evaluate the prediction ability of the identified 
consensus biomarkers, a JNJ dataset consisting of 1-day single maximum dose exposures of 9 NGHCs and 45 
NHCs9 was utilized to independently test the developed models. Figure 4 showed the prediction performances 
using the consensus biomarkers and two published biomarker sets. Since the JNJ dataset is based on Codelink 
platform, only models trained on DMC and GSE8858 datasets were applied to independently predict chemicals 
from the JNJ dataset. The consensus biomarkers achieved highest performances with AUC values of 0.753 and 
0.852 for DMC and GSE8858, respectively. The other two biomarker sets performed much worse with AUC val-
ues of 0.6 and 0.544 for DMC and GSE8858 using 10 biomarkers from F23, and of 0.723 and 0.48 for DMC and 
GSE8858 using 2 biomarkers from U9, respectively. A poor performance (AUC =  0.49) on the JNJ dataset using 
F23 biomarkers was also shown in the previous study7. A possible reason for incorrect classification of the JNJ 
dataset might be the different exposure styles. Their model was developed using biomarkers identified from a 
microarray dataset of 5-day repeated doses, while the test is performed on the JNJ dataset of 1-day single dose7. 
The model constructed in this study using the same exposure style (1-day single dose) largely improved the per-
formance of F23 biomarkers with an AUC of 0.6. Altogether, our consensus biomarkers worked fine for all tested 
datasets that were expected to be useful in future applications while the others were specific for a given dataset. 
The results also suggested that datasets from consistent exposure styles were more predictable. This study utilized 
datasets of coherent exposure styles of 1-day single highest tolerated dose achieve good prediction performance.

Figure 2. ROC curves representing the LOOCV performance of consensus biomarkers on four microarray 
datasets. 
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Analysis of the consensus biomarkers. There are four consensus biomarkers identified in this study 
including Ca3, Cyp8b1, A2m, and Cxcl1. The possible roles of the biomarkers for NGHC were discussed as 
follows. Carbonic anhydrase III (Ca3) is a cytosolic protein found in skeletal muscle, liver, and adipose tissue 
of mammals46. A significant decrease in Ca3 expression levels was found in rat hepatocarcinogenesis47. The 
downregulation of Ca3 levels by the treatment of ethanol and a hepatotoxicant of carbon tetrachloride was also 
reported12,48,49. The depletion of Ca3 is also a useful biomarker for liver injury50. The usefulness of downregulated 
Ca3 levels for identifying NGHCs has also been demonstrated in this study.

Cyp8b1 (cytochrome p450, family 8, subfamily b, polypeptide 1) is a key enzyme involved in bile acid biosyn-
thetic pathway which converts chenodeoxycholic acid to cholic acid51. An animal study showed the suppression 
of Cyp8b1 mRNA levels in tumorigenic hepatitis52. This could result in shunting toward alternative pathways, 
oxidative damage, and activation of pro-inflammatory second messengers, as well as disrupted signaling through 
lipid-sensitive nuclear receptors, such as peroxisome proliferator–activated receptors and retinoid X and liver X 
receptors53.

A2m and Cxcl1 are two novel biomarkers identified in this study that have not been directly associated with 
non-genotoxic hepatocarcinogenesis. A2m (a2-macroglobulin) is a member of the thiol ester protein family whose 
mRNA levels in rat liver were found to be linked to acute inflammation54 and NGHC-induced tumorigenesis55–57.  
Cxcl1 (C-X-C motif chemokine ligand 1) was found to be associated with drug-induced liver injury58, cirrhosis59,  
and hepatitis60. The two biomarkers could be further investigated to give insights into the mechanism of 
non-genotoxic hepatocarcinogenesis.

Reclassification of inconsistently classified chemicals. The classification of several NGHCs is still 
controversial due to different criteria and doses and could change according to new evidence. During the con-
struction of chemical lists, a total of 16 chemicals were annotated with inconsistent classifications with both 
NGHC and NHC from literature. A summary of the 16 inconsistently classified chemicals and corresponding 
maximum tolerated doses is shown in Table 2. The analysis of the inconsistently classified chemicals based on 
the consensus biomarkers could provide mechanism-based reclassification. The developed bagging decision tree 
models were applied to reanalyze the 16 chemicals based on the consensus biomarkers. Figure 5 represented a 
heatmap showing the expression levels of the consensus biomarkers on four microarray datasets and reclassifi-
cation for the 16 chemicals. Three out of the 16 chemicals of beta-estradiol, diethylstilbestrol and rifampin were 
consistently classified as NGHCs. Among the 11 chemicals reclassified as NHCs, 5 chemicals were analyzed solely 
by the model built on TG-GATEs due to the availability of expression data including ethionamide, haloperidol, 
sulfasalazine, tannic acid and triamterene. Chemicals of acetaminophen, ethanol, griseofulvin, isoniazid and 
tamoxifen were reclassified as NHCs based on gene expression profiles from DMC, GSE8858, and TG-GATEs. 
Simvastatin was classified as NHC based on a majority rule that models of DMA, DMC and GSE8858 support 
the classification except for the TG-GATEs model. The difference of simvastatin doses might lead to inconsistent 
classification (1200 mg for DMA, DMC, and GSE8858; 400 mg for TG-GATEs). The remaining two chemicals of 
carbamazepine and diazepam were still undefined due to conflict results from the models. Carbamazepine was 

Figure 3. LOOCV performances for consensus biomarkers and published biomarkers. 

Figure 4. Independent test performances for consensus biomarkers and published biomarkers. 
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classified as both an NGHC (DMC and GSE8858 models) and NHC (DMA and TG-GATEs models). Diazepam 
was classified as an NGHC (DMA and DMC models) and NHC (GSE8858 and TG-GATEs models).

Conclusion
The identification of consensus biomarkers based on multiple microarray datasets could provide better insights 
into the mechanism of NGHCs. This study identified four consensus biomarkers based on a large collection of 
chemical lists and four microarray datasets for predicting NGHCs and reanalyzed chemicals with inconsistent 
classification. Bagging decision tree models were subsequently developed for predicting NGHCs with average 
AUC values of 0.756 and 0.803 for LOOCV and independent test, respectively. The inconsistently classified chem-
icals were reclassified according to the consensus biomarkers. The developed models and biomarkers could be 
useful for prioritizing NGHCs for further experimental validation that could be a potential alternative to the 
2-years rodent bioassay.
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