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ABSTRACT

Recent work has demonstrated an unexpected
prevalence of copy number variation in the human
genome, and has highlighted the part this variation
may play in predisposition to common phenotypes.
Some important genes vary in number over a high
range (e.g. DEFB4, which commonly varies between
two and seven copies), and have posed formidable
technical challenges for accurate copy number typing,
so that there are no simple, cheap, high-throughput
approaches suitable for large-scale screening. We
have developed a simple comparative PCR method
based on dispersed repeat sequences, using a
single pair of precisely designed primers to amplify
products simultaneously from both test and refer-
ence loci, which are subsequently distinguished
and quantified via internal sequence differences. We
have validated the method for the measurement of
copy number at DEFB4 by comparison of results
from >800 DNA samples with copy number measure-
ments by MAPH/REDVR, MLPA and array-CGH. The
new Paralogue Ratio Test (PRT) method can require
as little as 10 ng genomic DNA, appears to be com-
parable in accuracy to the other methods, and for
the first time provides a rapid, simple and inexpen-
sive method for copy number analysis, suitable
for application to typing thousands of samples in
large case-control association studies.

INTRODUCTION

Several recent studies have demonstrated that some genes or
groups of genes can show variation in copy number, and that
this variation can have important functional consequences

(1–6). For example, the genes CCL3L1, CCL4L1 and
TBC1D3 are present on a segmental duplication that can
vary between 0 and 10 copies per person (7); this variation
appears to be a determinant of individual susceptibility to,
and progression of, infection with HIV-1 (8). Similarly, a
group of beta-defensin genes including DEFB4 commonly
varies between two and seven copies per person, with occa-
sional extremely expanded alleles containing 8–11 repeats
visible as ‘euchromatic variants’ of 8p23.1 (9). These beta-
defensin genes, as well as the independently variable alpha-
defensins DEFA1A3 (10–12), are candidate genes for
variation in susceptibility to infectious disease, as well as
autoimmune and inflammatory disorders (10), and low copy
number of the DEFB4 segmental duplication has been
associated with Crohn’s disease of the colon (13).

Where frequent copy number variation encompasses the
0–3 copy number range, many established technologies can
be used to provide rapid, cheap and accurate measurement
of DNA copy number. In contrast, where the copy number
range is higher, such as for CCL3L1 or the DEFB4 cluster,
accurately distinguishing a count of five copies from six
requires a precision not available from easily implemented
methods. For example, combining MAPH with determination
of Restriction Enzyme Digest Variant Ratios (MAPH/
REDVR) has been capable of high reproducibility in deter-
mining copy number at DEFB4 (10) and DEFA1A3 (11),
but uses large amounts of genomic DNA (>1 mg) and is
labour-intensive. Real-time PCR is gaining in popularity as
a method of determining copy number (8,13), but requires
careful set-up and does not easily provide the highest
throughput required for large association studies.

An ideal high-throughput method for measuring copy
number in large-scale association studies would be accurate,
inexpensive, robust and use only small amounts of genomic
DNA, and the pressing need for methods with these proper-
ties is increasingly recognized (14). In assessing pathological
deletions or duplications of single-copy genes, relatively
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simple multiplex fluorescent PCR methods (15–17) have
delivered an acceptable level of accuracy in this range.
Multiplex fluorescent PCR methods compare the amount of
PCR product made from a test amplicon with the yield
from a reference locus in the same multiplex reaction.
These approaches have the advantage of simplicity, but are
prone to variability. The experimental variability of multiplex
PCR is presumably due to the different amplification proper-
ties of the test and reference loci, and the differential sensitiv-
ity of the yield of each amplification reaction to the precise
conditions. To obtain reliable results in multiplex PCR,
great care needs to be taken with a number of experimental
factors, including DNA quality and (as far as possible)
matching the amplification properties of test and reference
amplicons. Some of this experimental variation has been
reduced by the design of short amplicons, combined with
careful attention to primer design and PCR conditions, in
the QMPSF technology (15,16).

In this study we have adapted the quantitative multiplex
PCR approach by using primers designed to amplify from
repeated DNA elements. The primers are precisely designed
to amplify from a copy of the element within the variable
repeat unit, plus exactly one other unlinked reference locus.
We have applied this method to the copy-variable DEFB4
repeat unit, and compare the results from this approach
with results on the same samples from three independent
alternative methods. This new PRT method is comparable
in accuracy to these alternative methods, and its simple
format, and requirement for only small (10–20 ng) amounts
of genomic DNA, should allow accurate, inexpensive and

rapid copy number typing of large cohorts of samples in
association studies.

MATERIALS AND METHODS

Samples and formats

Genomic DNA from Dutch and HapMap samples was used at
concentrations of 5–10 ng/ml, and for most experiments
samples were arrayed in 96-well microtitre plates and
processed in batches of 96. Dutch genomic DNA samples
included those from the Nijmegen Biomedical Study (18).
All liquid-handling operations could be carried out using
multi-channel pipettes.

MLPA and array-CGH data

MLPA was carried out as described (19) using 250 ng
genomic DNA and the SALSA MLPA kit P139 Defensin
from MRC-Holland, and data were analyzed as described
(20). Array-CGH data were downloaded from the Wellcome
Trust Sanger Institute website www.sanger.ac.uk/humgen/
cnv/data. Details on methods used to collect the data, down-
loading from the website and clones used are also available
on the site.

PRT assay

PCR was carried out using 5 ng input genomic DNA,
0.5 mM primer HSPD5.8F (CCAGATGAGACCAGTGTCC)
and 0.5 mM FAM- or HEX-labelled primer HSPD5.8R
(TTTTAAGTTCAGCAATTACAGC) (Figure 1), in a buffer

Figure 1. Principle of the PRT assay at DEFB4. The top line shows the general structure of the repeat unit containing DEFB4 (which has two inverted rather than
tandem repeats in the March 2006 assembly). The middle panel shows the locations of the genes SPAG11, DEFB4 and DEFB103–107, together with the
locations of probes or amplicons used in MAPH, REDVR, MLPA and PRT, and the extent of the clone (10C3) used in array-CGH (’WT Whole Genome aCGH’).
In the detailed display at the bottom, the primers amplify products from the HSPDP3 pseudogene upstream of DEFB4 on chromosome 8, and from a reference
copy on chromosome 5, but have multiple mismatches (bold) with other copies of the element. In this way a single primer pair can be used to amplify two very
similar products, one from near DEFB4, the other from chromosome 5.
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[modified from (21)] containing final concentrations of
50 mM Tris–HCl (pH 8.8), 12 mM ammonium sulphate,
5 mM magnesium chloride, 125 mg/ml BSA (non-acetylated,
Ambion Inc), 7.4 mM 2-mercaptoethanol and 1.1 mM each
dNTP (sodium salts), with 0.5U Taq DNA polymerase in a
total volume of 10 ml. Products were amplified using 30 cycles
of 95�C for 30 s, 53�C for 30 s and 70�C for 30 s, followed by
a single ‘chase’ phase of 53�C for 1 min/70�C for 20 min to
enhance complete extension in the final round and hence
reduce levels of single-stranded DNA products. The cycle
number of 30 was chosen after empirical tests to determine
conditions that yielded quantifiable (i.e. not saturating) amo-
unts of product; the annealing temperature was also chosen
after empirical comparisons, and the choice of 53�C is near
the maximum annealing temperature that can be used, pro-
bably associated with a reduction in the efficiency of
amplification.

Two amplifications were carried out for each sample, one
with a fluorescent FAM label, the other with a fluorescent
HEX label; 1 ml of each PCR product was added, without
further purification, to a 10 ml digestion containing 1·
ReAct 2 buffer [50 mM Tris–HCl (pH8.0), 10 mM MgCl2,
50 mM NaCl] (Invitrogen) and 5U HaeIII (New England
Biolabs). After incubation at 37�C for 4–16 h, 2 ml was
added to 10 ml HiDi formamide with ROX-500 marker
(Applied Biosystems), and analyzed by electrophoresis on
an ABI3100 36 cm capillary using POP4 polymer and an
injection time of 30 s.

Data analysis

Peak areas corresponding to the 302 bp HaeIII fragment from
near DEFB4 and the 315 bp fragment from chromosome 5
were recorded for both FAM- and HEX-labelled products
using GeneScan and Genotyper software (Applied Biosys-
tems). The ratio 302/315 bp was compared between FAM-
and HEX-labelled products, and results were accepted if the
difference between the ratios was <15% of their mean; this
criterion led to the rejection of �10% of tests (Figure 2).

If accepted, the mean of the ratios of the FAM- and HEX-
labelled products was used in further analysis. Although
naı̈ve inference of a copy number equal to double the mean
ratio would lead to reasonably accurate results, there were
small but definite shifts between experiments in the relative
amplification of the test and reference products. Mean ratios
were therefore used in conjunction with reference standards
to calibrate each experiment, and the resulting (least-squares)
linear regression used to infer the copy numbers for unknown
samples. In most experiments MAPH/REDVR copy numbers
were used to calibrate PRT assays; subsequently, DNA sam-
ples giving reproducible results from several PRT assays
have also been successfully used as calibration standards.

RESULTS AND DISCUSSION

We reasoned that many of the problems of accuracy and
reproducibility associated with multiplex PCR might be
avoided if the test and reference amplicons were as similar
as possible. This principle has recently been successfully
exploited in an innovative approach to the diagnosis of
trisomy; because some sequences present on chromosome

21 (for example) have nearly identical paralogues at another
site in the genome, a single pair of primers can be used to
amplify both test and reference loci, distinguishing them
via minor differences of internal sequence (22). Although
copy-variable loci are very unlikely to contain extensive
regions with nearly identical counterparts at other locations,
we were able to exploit the same advantages of amplifying
both test and reference loci with a single primer pair by
designing precisely placed primers in a diverged (low copy
number) repetitive sequence, thereby allowing a Paralogue
Ratio Test (PRT).

A heat-shock protein pseudogene of �2 kb (HSPDP3) is
found �2 kb upstream of the DEFB4 gene (Figure 1), and
at 10 locations elsewhere in the genome. We were able to
design primers that matched the copy near DEFB4 and one
other copy on chromosome 5 exactly, but which had multiple
mismatches to copies at other chromosomal locations. The
(test) chromosome 8 (DEFB4) and (reference) chromosome
5 copies give PCR products too close in size (443 and 447
bp respectively) to separate reliably by capillary electrophor-
esis, but they could be easily distinguished and quantified
after digestion with the restriction enzyme HaeIII to give
products of 302 and 315 bp. Because products from other
copies of the pseudogene were predicted to have characteris-
tic alternative fragment lengths following HaeIII digestion,
the absence of detectable fragments of these lengths confir-
med that under the conditions used, the products detected
came exclusively from the chromosome 5 and chromosome
8 loci. Measuring the ratios of products from the test and
reference loci (see ‘Materials and Methods’) allowed infer-
ence of DEFB4 copy number, which was linearly related to
product ratio.

In the absence of ‘gold standard’, error-free methods to
count DEFB4 copy numbers for reference samples, we vali-
dated the method by comparisons with results from three
other established techniques. PRT was used to type 591
genomic DNA samples which had already been typed for

Figure 2. Comparison of ratios (chromosome 8: chromosome 5) from FAM-
and HEX-labelled products in a single experiment. Pairs of ratios (triangles)
meeting the quality-control criteria (73 samples) cluster around groups
corresponding to copy numbers of 2, 3, 4, 5 and 6. Crosses show results
rejected for having too great a difference between FAM and HEX ratios
(10 samples).
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DEFB4 copy number by the MAPH/REDVR method. The
MAPH/REDVR approach uses a primary copy number esti-
mate by MAPH (23), refined by examining ratios of sequence
variants from the repeat unit (10,11). For 486 samples (82%),
a single PRT assay gave the same integer copy number as
MAPH/REDVR; for a further 64 samples (11%), the
MAPH/REDVR copy number was confirmed by PRT on
repeat testing. Thus for 93% of samples, the MAPH/
REDVR value was confirmed by PRT either on first-pass
testing or after a single repeat test. For 25 samples (4.2%)
PRT consistently gave a value different from MAPH/
REDVR, and for these samples MAPH/REDVR was assumed
to have been in error. No consistent results were obtained for
16 samples (2.7%).

A subset of 135 of these samples was also typed by MLPA
(19), so that this smaller sample set was typed by three
independent methods: MAPH/REDVR, PRT and MLPA.
For samples which had undergone more than one PRT
assay, only the first test result was included in this analysis.
These three methods appear to be comparable in their accu-
racy; all three methods agreed on the integer copy number
for 113 out of 135 samples (84%), and of the 22 remaining
samples, the result from one method disagreed with the
other two—first-pass PRT gave the discordant result for
seven samples, MAPH/REDVR for 6 samples, and MLPA
for nine samples. From the 135 MLPA results, 119 (88%)
agreed with the integral copy number measured by a single
PRT assay. Comparisons between unrounded MLPA copy
number estimates and unrounded copy number values from
first-pass PRT are shown in Figure 3. As expected, clusters
of values corresponding to integral copy numbers are seen,
and the spread of measured values is higher at higher copy
number.

We estimated rates of error for single-pass PRT typing
from a larger data set, combining results from MAPH/
REDVR and PRT data, plus the MLPA results for the subset
of 135 samples, to define a consensus copy number for
all 575 samples (after removing the 16 samples for which
no consistent data were obtained). First-pass PRT results

disagreeing with this consensus were scored as measurement
errors. There were two striking patterns in the distribution of
error for single-pass PRT typing. First, the highest copy
numbers had the greatest error, as expected for a method
that relies on ratios of measurements. Estimated error rates
were <10% for copy numbers of 2, 3 and 4, but rose to 20%
or higher for samples with copy numbers of six or more
(Figure 4a). Second, unrounded PRT values close to an inte-
ger value were more likely to give the correct integer value;
values within 0.2 of an integer had estimated error rates
<10%, but if the unrounded value was as much as 0.4
from an integer value, the error rate was >30%
(Figure 4b). Overall, the analyses suggested that a single
PRT test yielded the correct integral value in 89% of sam-
ples (511 out of 575), a figure that can be further improved
by confirmatory and repeat testing as recommended below.

As a further comparison of PRT with established metho-
dology, PRT was used to type 261 samples from the HapMap
collection (24). These data were then compared with array-
CGH data from a clone (10C3) within the DEFB4 repeat
unit. Figure 5 shows the comparison between unrounded
PRT results and normalized signal from array-CGH of
clone 10C3, demonstrating clusters of data-points corres-
ponding to integral copy numbers of 2, 3, 4 and 5, with a

Figure 4. Correlation between error attributable to first-pass PRT and (a)
copy number or (b) absolute difference between the unrounded and integer
values measured (‘residual’). In each case the inferred percentage error in
each subcategory is shown by the open columns. Shaded columns show the
relative frequencies of each copy number or residual category in the data set.

Figure 3. Comparison between unrounded copy number estimates from PRT,
with unrounded data from MLPA for the same 135 samples.
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greater spread at copy numbers of 6 and 7. Integral copy
numbers from array-CGH data were assigned to these sam-
ples based on ranges defined by the clusters, and agreed
with the PRT-derived integer copy number for 202 samples
(77%). This relatively low figure combines error attributable
to PRT with an unknown but presumably higher rate of error
from array-CGH. Analysis of flanking SNP haplotypes in
the HapMap samples showed very weak evidence for asso-
ciation with flanking haplotypes, and no SNPs or haplotypes
were found that could reliably be used as a surrogate for copy
number typing.

Finally, a total of 99 samples underwent duplicate testing
by PRT without any prior selection for concordance or disag-
reement with expected values, and 83 (83.8%) gave the same
integer values on both tests. Because the frequency of sam-
ples with discordant duplicate tests is expected to be approxi-
mately twice the rate of error for a single test, this suggests
that the error rate for integer values from a single PRT test
is �8.1% (95% confidence interval 5.6–11.8%).

All these analyses together suggest that a single PRT
test would on its own return the correct integer value in
�85–95% of tests. In typing large numbers of samples for
case-control association studies using any error-prone mea-
surement or genotyping method, a compromise has to be
made between throughput and the cost and replication work
required to obtain accurate data. The accuracy of PRT testing
for copy number could clearly be improved by requiring
concordant duplicate testing of all samples, but for many
large-scale studies such a doubling of the genotyping cost
and effort may not be justified. The patterns discovered in
our analyses suggest that a low error rate can be achieved
with selective re-testing of samples. For example, if re-testing
was triggered by integral copy numbers of five or more
with unrounded PRT values >0.3 from the nearest integer,
then the data predict that only 15% of samples would require
re-testing, and of the 85% of results accepted by these crite-
ria, �92% would return the correct integral value. Depending
on the balance required between throughput, cost, labour and
accuracy, alternative criteria for acceptance or re-testing can
be formulated.

In the presence of somatic mosaicism, the true copy
number in a DNA sample may not be an integer, but instead

an intermediate value reflecting the mean copy number of the
cell population. In such a case, if the correct measure of
copy number is frequently non-integral, it is predicted that
multiple measurements of the same samples (typed by several
methods, or in duplicate by a single method) should have
a tendency to cluster around non-integer values. In our data
set, common mosaicism should therefore be detectable as a
significant correlation between residuals (i.e. the unrounded
measurement minus the rounded integer value) between
duplicate PRT tests or between different methods. No such
correlation was detected in our data (not shown), suggesting
that determination of a whole number of repeats is the biolo-
gically relevant measurement result, and in turn that differ-
ences between the measured values and integer values are
the results of measurement error.

The analysis assumes that the reference locus (in this case
on chromosome 5) does not itself vary in copy number, and
that substitutional mismatches at either the test or reference
locus primer binding sites do not lead to ‘drop-out’ of one
or more copies. In addition to their absence from all available
sequence databases and sequence trace archives, substitu-
tional variants do not appear to pose a problem at the chromo-
some 5 reference locus for DEFB4 measurement; drop-out of
one copy at the reference locus should lead to apparent dou-
bling of the copy number of the test locus, and no PRT results
showed a discrepancy of exactly double the consensus value.
Drop-out at the test locus may lead to subtler anomalies,
including failure of only a single copy to amplify, reducing
the apparent copy number by one. In particular, gene conver-
sion among diverged members of a copy-variable array (3)
could act to propagate even quite rare substitutional variants,
leading to errors in the estimation of copy number. It is
unlikely that this is a significant source of error at DEFB4;
in addition to the close agreement of results from different
methods, where the methods disagreed, there was no tendency
for PRT to record systematically lower values than MAPH/
REDVR or MLPA. Further reassurance on both these sources
of drop-out may be obtained by use of a second PRT system
with a different reference locus, and using a different part of
the repeat element; at DEFB4 a second PRT system can be
generated using a reference locus on chromosome 4. Although
in practice the assay does not frequently give rise to partial
digestion products, incomplete action of HaeIII might in
principle distort the product ratios. However, one would
predict that (unless incomplete digestion affected the test
and reference loci differentially) the correct product ratios
would nevertheless be preserved in the population of com-
pletely digested molecules. Furthermore, there is no absolute
need to use restriction digestion as the method to discri-
minate test and reference products; the assay could easily be
modified to determine the ratios using other methods such as
pyrosequencing.

How general is the applicability of PRT to copy number
measurement? Although many genes and regions have been
defined as copy variable, the true extent of the variable region
has been accurately determined for only a few. Consequently,
the precise extent of the DNA to be measured cannot be
defined for most loci. Furthermore, even when there are
appropriately diverged dispersed repeats, without extensive
individual examination it is not easy to assess the critical
requirement for a pair of primers specific to precisely two

Figure 5. Comparison between first-pass PRT typing (unrounded values) and
normalized signal from a clone from the DEFB4 region in array-CGH for 261
samples from the HapMap study.

PAGE 5 OF 8 Nucleic Acids Research, 2007, Vol. 35, No. 3 e19



loci. Compounding this problem is the uncertainty surround-
ing the extent to which primer mismatches can be relied upon
to discriminate against additional, alternative amplification
products. Finally, we have not yet determined whether
using two or more co-amplified reference loci may be as
accurate as using a single reference locus; if so, then the
scope for developing accurate PRT systems may be even
wider than we suggest here.

Where there are closely linked paralogous sequences, as
may frequently happen in the evolution of gene family clus-
ters, paralogues assumed to be present at constant copy num-
ber may be used as specific reference loci. Thus, for example,
the CYP2D8P pseudogene has been used as a reference locus
in the accurate measurement of gene copy number for
CYP2D6 (25), and the RHCE gene, usually present at two
copies, could be used as an effective reference locus for
RHD. However, it is very difficult to be sure that gene con-
version does not exchange test and reference sequences in
such local tandem arrays, and at other loci such as
DEFA1A3 it is known that the paralogous variants can
interchange locations (11).

For this reason an unlinked reference locus is desirable.
To examine how frequently a copy-variable locus would
harbour a sufficiently diverged repeat element to allow a
PRT assay, we examined 20 well-characterized examples
of gene-containing copy-variable regions in addition to
DEFB4. We found 18 loci at which primers could be
designed to amplify a test product plus exactly one reference
product, with mismatches to other genomic loci (Table 1). In
many cases, the two products differ in size, so that no restric-
tion enzyme digestion or other sequence-specific processing
is required to distinguish them. Some of the systems proposed
involve diverged members of sequence families present in the
genome at very high copy number (Alu, FLAM-C, L1) for
which it may be difficult to generate the locus-specificity

required. Nevertheless, although they remain to be tested in
practice, at many of these loci it is clear that the primers
are very likely to form the basis of a specific and accurate
PRT assay for copy number. We may therefore conserva-
tively suggest that useful PRT systems could be designed
for at least 50% of copy-variable genes.
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