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Abstract  
Retinal degenerative diseases affecting the outer retina in its many forms (inherited, 
acquired or induced) are characterized by photoreceptor loss, and represent currently 
a leading cause of irreversible vision loss in the world. At present, there are very few 
treatments capable of preventing, recovering or reversing photoreceptor degeneration or 
the secondary retinal remodeling, which follows photoreceptor loss and can also cause 
the death of other retinal cells. Thus, these diseases are nowadays one of the greatest 
challenges in the field of ophthalmological research. Bone marrow derived-mononuclear 
stem cell transplantation has shown promising results for the treatment of photoreceptor 
degenerations. These cells may have the potential to slow down photoreceptor loss, 
and therefore should be applied in the early stages of photoreceptor degenerations. 
Furthermore, because of their possible paracrine effects, they may have a wide range 
of clinical applications, since they can potentially impact on several retinal cell types at 
once and photoreceptor degenerations can involve different cells and/or begin in one cell 
type and then affect adjacent cells. The intraocular injection of bone marrow derived-
mononuclear stem cells also enhances the outcomes of other treatments aimed to protect 
photoreceptors. Therefore, it is likely that future investigations may combine bone marrow 
derived-mononuclear stem cell therapy with other systemic or intraocular treatments to 
obtain greater therapeutic effects in degenerative retinal diseases.
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Introduction 
It is estimated that there are at least 215 million people with 
moderate or severe visual impairment in the world, and 36 million 
of whom are blind (Flaxman et al., 2017). Retinal degenerations may 
compromise the cells of the outer retina (e.g., retinitis pigmentosa 
(RP), age-related macular degeneration (AMD), Stardgardt disease) 
or the inner retina (e.g., glaucoma, diabetic retinopathy). This review 
focused on the outer retinal degenerative diseases, which are at 
present one of the leading causes of irreversible blindness in the 
world (Wong et al., 2014; Flaxman et al., 2017), and course with 
photoreceptor loss, although their pathophysiological mechanisms 
may vary depending on the disease.

Search Strategy and Selection Criteria
We have conducted a Medline/PubMed search of articles published 
between 1990 and 2021 using the following search terms: bone 
marrow-derived mononuclear stem cells OR bone marrow-derived 
stem cells OR stem cells OR BM-MSC OR bone marrow AND retina OR 
retinal degeneration OR retinal transplantation OR photoreceptors. 
The results were further screened by reading titles and abstracts. In 
case of doubt, the methodology was also reviewed to determine the 
type of bone marrow stem cells used.

Inherited Retinal Degenerations
Inherited photoreceptor degenerations encompass a heterogeneous 
group of over 80 diseases (Tatour and Ben-Yosef, 2020) with more 
than 200 different genes involved (RetNet; https://sph.uth.edu/
retnet/) (Tatour and Ben-Yosef, 2020), and are among the most 
common genetic diseases in humans. These diseases are usually 
distinguished according to their mode of inheritance that can 
be autosomal recessive (50–60% of cases), autosomal dominant 
(30–40% of cases) or X-linked (5–15% of cases) (Pfeiffer et al., 2020; 
Tatour and Ben-Yosef, 2020) and to their clinical phenotype. RP is the 
most common inherited photoreceptor degeneration and represents 
a major cause of visual disability and blindness. RP has become a 
worldwide health issue, as it causes irreversible blindness at working 
ages. Its worldwide prevalence is approximately 1 in 4000 (Daiger et 
al., 2013), with variations according to geographical locations. RP is 
the result of different genetic mutations that usually affect rods or 
the retinal pigment epithelium (RPE) (Di Pierdomenico et al., 2017; 
Dias et al., 2018), impacting on functions that are essential to the 
normal functioning and survival of photoreceptors (Daiger et al., 
2013; Swaroop and Sieving, 2013). The onset of RP is characterized 
by a progressive loss of photoreceptors, first rods and then cones, 
making it clinically different from other forms of inherited retinal 
degenerations that are not progressive or in which cone degeneration 
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precedes rod degeneration. This means that patients affected by 
RP typically experience nyctalopia and tunnel vision early in the 
disease due to the initial loss of rods and, in later stages, a gradual 
decline in visual acuity due to secondary cone degeneration. At 
this point, one of the big questions to be resolved in understanding 
this disease arises: why do cones degenerate following rod loss? 
Another major challenge related to inherited retinal degenerations 
is their heterogeneity which complicates both their clinical diagnosis 
and therapeutic approaches. Indeed, mutations of the same gene 
can cause different clinical phenotypes, whereas similar clinical 
phenotypes can be the result of mutations of different genes (Daiger 
et al., 2013; Swaroop and Sieving, 2013).

Age-Related Macular Degeneration
AMD is the most common acquired cause of photoreceptor 
degeneration. AMD is becoming a major public health concern 
due to the increase in life expectancy (Wong et al., 2014; Wong, 
2020). It is estimated that by 2040, the number of people affected 
by AMD will increase to 288 million (Wong et al., 2014). AMD is a 
multifactorial disease caused by both genetic (Fritsche et al., 2016) 
and environmental risk factors (Jones et al., 2017). The disease is 
characterized by a progressive degeneration of photoreceptors 
and RPE cells in the central retina, causing irreversible blindness 
in older adults (Wong et al., 2014; Wong, 2020). There are two 
major subtypes of AMD: dry (non-neovascular or atrophic) and wet 
(exudative or neovascular). Typically, AMD starts as the dry form 
and in around 15% of patients progresses to the wet form (Kim and 
Lad, 2020). There are several effective therapeutic options for the 
wet form of the disease (Kim and Lad, 2020). However, no effective 
treatment for dry AMD, suffered by 85% of all AMD patients, has 
yet been found (Kim and Lad, 2020). Retinal degenerative diseases 
are therefore multifactorial and very complex diseases triggered by 
genetic and environmental factors, but that can also be exacerbated 
by factors such as light exposure (Garcia-Ayuso et al., 2018b, 2019) 
or diet (Garcia-Ayuso et al., 2018b).

Common Features of Degenerative Retinal 
Diseases
Photoreceptor loss is typically an early event occurring in outer 
degenerative retinal diseases. Indeed, it is now widely acknowledged 
that inherited photoreceptor degenerations trigger an irreversible 
sequence of events, namely retinal remodeling, which causes a 
progressive alteration of all retinal layers eventually leading to 
retinal ganglion cell (RGC) death (Villegas-Perez et al., 1998; Garcia-
Ayuso et al., 2010, 2018b). RGCs are the efferent retinal neurons; 
their axons form the optic nerve and are therefore necessary for 
visual information to reach the brain. Retinal remodeling is thus 
considered a negative plasticity of the retina and has been divided 
into four different phases (Pfeiffer et al., 2020): (i) First, there is 
primary photoreceptor stress and death and onset of a glial reaction; 
(ii) later there is secondary photoreceptor degeneration, manifested 
in the case of RP by cone death, and involvement of microglia, 
Müller and RPE cells. This phase is concluded with the total loss of 
photoreceptors; (iii) subsequently there is tissue remodeling that 
encompasses neuronal rewiring, disorganization of the whole retina 
and neuronal death; (iv) and finally there is progressive neuroration, 
including RGC loss (Garcia-Ayuso et al., 2019). During the early 
stages of retinal degeneration, glial cells play an important role (Di 
Pierdomenico et al., 2020b; Pfeiffer et al., 2020). Microglial cells 
become activated and migrate from the inner to the outer retinal 
layers to phagocytose dying photoreceptors (Di Pierdomenico et 
al., 2017, 2018, 2020b), while astrocytes and Müller cells become 
hypertrophic, overexpress glial fibrillary acidic protein and fill 
the space left by dead photoreceptors to form a glial seal (Di 
Pierdomenico et al., 2017, 2018, 2020b; Pfeiffer et al., 2020). Retinal 
remodeling is a common feature of all photoreceptor degenerations 
regardless of the primary cause of degeneration (Garcia-Ayuso et al., 
2018a, 2019; Pfeiffer et al., 2020). Understanding the events involved 
in retinal remodeling will enable scientists to find windows of 
opportunity to develop vision rescue therapies for the degenerative 
retinal diseases that currently lack of effective treatment, such as the 
aforementioned AMD and RP.

Strategies to Treat Retinal Degenerations
Traditionally, the main objective of research in photoreceptor 
degeneration has been two-fold, on the one hand to develop 
therapies that prevent or at least delay the death of photoreceptors 

and on the other hand therapies that replace them to restore vision 
(Bloch et al., 2019). If therapies that prevent or delay photoreceptor 
loss are achieved, this will in turn protect the inner retinal layers from 
the negative plasticity of retinal remodeling and, therefore, healthy 
RGCs will be preserved, enabling visual information to still reach 
the brain in the event that it is necessary to replace photoreceptors 
(Villegas-Perez et al., 1998; Garcia-Ayuso et al., 2010, 2018a, 
2019). As noted above, there are many genetic defects involved in 
inherited photoreceptor degenerations. This makes it particularly 
hard to successfully apply gene therapy to many of these diseases. A 
genetic treatment was approved worldwide 4 years ago for inherited 
photoreceptor degenerations caused by mutations in the RPE65 
gene, but unfortunately this mutation affects a relatively small 
number of patients (Apte, 2018). Nevertheless, for gene therapy 
to be fully effective, the ongoing expression of the diseased gene 
must also be considered, since the disease will keep progressing if 
the defective gene is still expressed. Moreover, the aforementioned 
retinal remodeling needs to be avoided or reversed, otherwise this 
therapy would have limited effect in the later stages of the disease. 

At present, research efforts in outer retinal degenerations have 
focused on developing pharmacological therapies to delay 
photoreceptor loss and/or cellular therapies to replace lost 
photoreceptors (Dias et al., 2018). Nevertheless, other therapies such 
as intravitreal injections of anti-vascular endothelial growth factor 
drugs or steroids have been documented to halt the progression of 
the neovascular form of AMD (Bakri et al., 2019) and/or ameliorate 
the retinal diseases that course with oedema (Barquet, 2015). 
Although intravitreal injections are by now widely and repeatedly 
used, they are not exempt from adverse effects (Di Pierdomenico et 
al., 2016), a fact that could limit their therapeutic potential, especially 
when several injections are needed. It is therefore important to 
explore other therapeutic options that avoid repeated intraocular 
injections.

Promising therapeutic results have been achieved in animal models 
of retinal degeneration through the use of several therapies that 
include: (i) neurotrophic factors such as basic fibroblast growth factor 
2, ciliary neurotrophic factor (CNTF) or pigment epithelium-derived 
factor (Di Pierdomenico et al., 2018; Valiente-Soriano et al., 2019, 
2020b); (ii) anti-apoptotic, antioxidant and anti-inflammatory drugs 
(Appelbaum et al., 2017; Chan et al., 2020); (iii) microglial inhibitors 
such as minocycline (Di Pierdomenico et al., 2018); (iv) nutritional 
supplements like the amino acid taurine (Trouillet et al., 2018) or 
the polyphenol resveratrol (Wiedemann et al., 2018); (v) melanopsin 
gene therapy (De Silva et al., 2017); (vi) retinal prosthesis (Prevot 
et al., 2020); (vii) photoreceptor transplantation (Ortin-Martinez et 
al., 2017; Garita-Hernandez et al., 2019; Lorach et al., 2019); and 
(vii) stem cell therapy (see also next section) (Otani et al., 2002; 
Zaverucha-do-Valle et al., 2014; Di Pierdomenico et al., 2020a; Adak 
et al., 2021). However, in clinical trials, these treatments have not 
been shown to be capable of preventing, recovering or reversing 
retinal degeneration or ultimately preventing or reversing the 
devastating effects of retinal remodeling.

Stem cell therapy
Stem cell  therapy, either in the form of stem cell-derived 
photoreceptors or retinal pigment epithelium (Davis et al., 2016; 
Ribeiro et al., 2021) or in the form of undifferentiated stem cells 
(Grant et al., 2002), appears to be at present possibly one of the 
most promising treatments for retinal degenerations. One of its 
main advantages is that a single treatment can be used for a wide 
variety of diseases regardless of their genetic background. When 
transplanted to the retina, stem cells derived from different sources 
(see below) could theoretically divide and differentiate into normal 
retinal cells and substitute the damaged or lost retinal cells (Jones et 
al., 2017; Shen, 2020). In general terms, the use of stem cells shows 
good safety profiles, although there have been two reports of severe 
proliferative vitreoretinopathy, and even retinal detachments after 
intravitreal injection of adipose tissue-derived stem cells (Kuriyan 
et al., 2017) or mesenchymal stem cells (MSCs) (Satarian et al., 
2017). Nowadays, to date the largest clinical trials using intravitreal 
injections of bone marrow derived-mononuclear stem cells (BM-
MNCs), subject of this review, have not reported any adverse events 
(NCT01560715, NCT01518127) (Siqueira et al., 2011, 2015b; Cotrim 
et al., 2020; Wang et al., 2020). Also, no appreciable adverse effects 
have been found in animal studies using xenotransplantation of 
BM-MNCs to the vitreal or subretinal space (Di Pierdomenico et al., 
2020a). Whether these differences in the incidence of adverse effects 
are due to the nature of the transplanted cells and/or the routes of 
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administration are questions that remain to be investigated (Dias et 
al., 2018). Various types of stem cells have been identified in several 
easily accessible tissues such as bone marrow, blood, umbilical 
cord and adipose tissue (Jones et al., 2017; Shen, 2020; Singh et al., 
2020). Thus, stem cells have been frequently used in regenerative 
therapies, as they are a source of neurotrophic and pro-survival 
factors, including brain-derived neurotrophic factor, CNTF, glial cell 
line-derived neurotrophic factor and basic fibroblast growth factor 2 
(Adak et al., 2021) and they also have anti-gliotic (Di Pierdomenico et 
al., 2020a) and other effects (Millan-Rivero et al., 2018). 

The largest amount of adult stem cells is found in the bone marrow 
(Shen, 2020). Since these cells can be harvested from the adult 
bone marrow, autologous personalized treatment is possible, which 
could facilitate the approval of this treatment when compared to 
other treatments based on other types of stem cells that could pose 
ethical issues or donor-matching problems. In systemic diseases 
compromising the function of bone marrow cells such as diabetes, 
allogeneic rather than autologous transplantation could also be used. 
Then, donor-matching should be used to avoid side effects, increase 
survival of transplanted cells and enhance the therapeutic effect of 
the transplants. Donor-matched allogeneic transplants are widely 
used standard procedures that should not pose any ethical problems 
to be approved for clinical studies.

The bone marrow aspirate contains two different types of stem cells: 
hematopoietic stem cells (HSCs) and MSCs (Singh et al., 2020). Each 
cell type is obtained with a different method of isolation, and show 
variable cell composition and properties. The whole fraction of BM-
MNCs is usually obtained from the iliac crest by needle puncture 
aspiration and isolated by density gradient-based separation (Di 
Pierdomenico et al., 2020a). This BM-MNCs suspension contains 
MSCs and HSCs, in proportions ranging from 0.01-0.001% for MSCs 
and 0.5–5% for HSCs (CD34+).

The aim of this review is to assess the state of the art of the 
treatment of diseases that course with photoreceptor degeneration 
with the transplantation of BM-MNCs. 

Bone marrow-derived stem cells therapies for degenerative retinal 
disorders 
In higher vertebrates, the central cavities of axial and long bones 
contain the bone marrow, the main tissue of new blood cell 
production after birth. Among all bone marrow cell components, 
HSCs, which are localized close to the endosteum bone surface 
and around the blood vessels, have self-renewal capacity and 
are responsible for the production of all mature blood cells (i.e., 
erythrocytes, platelets, granulocytes, lymphocytes and monocytes), 
a process called hematopoiesis. The HSCs are contained in the total 
fraction of BM-MNCs, usually express the CD34 surface marker and 
can be classified according to their expression of certain molecules 
into lineage positive (Lin+) and lineage negative (Lin–) subpopulations 
that represent different differentiation potential into the different 
blood cell subpopulations, but they can express also other molecules 
such as c-kit, CD133, or Sca-1 (see below). It is well known that 
maintenance of HSC functional capacities needs the support of a 
complex and specialized bone marrow microenvironment called 
“HSC niche” that is mainly composed by non-hematopoietic cell 
types such as supporting MSCs, adipocytes, fibroblasts, perivascular 
cells, vascular endothelial cells, osteoclasts and osteoblasts (Wei and 
Frenette, 2018), which greatly influences the equilibrium between 
HSC self-renewal and lineage-specific differentiation (Pinho and 
Frenette, 2019).

In the context of regenerative medicine and tissue engineering, 
the use of bone marrow aspirates or concentrates, which contain 
the different bone marrow cell subpopulations and other soluble 
molecules such as cytokines and growth factors, have been 
extensively used in the last years to promote tissue healing (Wilkinson 
et al., 2020). However, there is currently no scientific consensus on 
which specific bone marrow cell component is most appropriate to 
use in each preclinical or clinical situation. Thus, in animal studies 
therapeutic interventions have often used the whole BM-MNCs 
fraction containing all its cell subtypes (Zaverucha-do-Valle et al., 
2014; Di Pierdomenico et al., 2020a), or fractions containing only 
some specific bone marrow cell subtypes, i.e., Lin–, CD34+, c-Kit+, 
CD133+ or Sca-1+ HSCs (Otani et al., 2002; Moisseiev et al., 2016; 
Qi et al., 2017; Shao et al., 2018), endothelial precursor cells (Otani 
et al., 2002), or MSCs (Lucas-Ruiz et al., 2019), either purified 
by different selection methods (e.g., magnetic cell separation by 
depletion or enrichment using monoclonal antibodies) (Otani et al., 

2002), or expanded in ex vivo cultures with or without addition of 
different growth factors (Lucas-Ruiz et al., 2019). In this context, two 
animal studies have shown beneficial effects of bone marrow-derived 
stem cells: Zaverucha-do-Valle et al. (2014) have documented that, 
although the whole BM-MNC fraction has a limited time survival 
in the rat vitreous after transplantation, these cells increase RGC 
survival and axonal outgrowth 14 days after optic nerve crush. 
Otani et al. (2002) have found that the intravitreal injection of bone 
marrow Lin– subpopulation contributed to injury-associated retinal 
angiogenesis. Some of these cell-based approaches have been also 
used in clinical trials and most of them have shown a good safety 
profile (Singh et al., 2020; Wang et al., 2020).

MSCs are a heterogeneous population of adult stem cells that can be 
isolated from almost every organ and connective tissue of the body. 
The most commonly employed source for obtaining MSCs is also the 
bone marrow, and indeed MSCs are contained in the total fraction of 
BM-MNCs, but they are also abundant in other adult tissues such as 
adipose tissue, dental tissues and umbilical cord blood, as well as in 
perinatal and foetal tissues (i.e., amniotic membrane, amniotic fluid 
and Wharton jelly´s within the umbilical cord stroma) (Lim, 2017). 
MSCs have the ability to differentiate into cells of the mesodermal 
lineage, such as osteoblasts, adipocytes and chondrocytes, but also 
into different cell types from the ectodermic lineage such as epithelial 
cells and neurons. Moreover, MSCs do not express human leukocyte 
antigen-class II molecules and possess low immunogenicity, so MSCs 
isolated from human leukocyte antigen-mismatched unrelated 
donors can be transplanted into the recipient with no systemic 
immunosuppression and with no immune rejection. Remarkably, 
numerous studies in the last years have described the important 
immunomodulatory and neuroprotective properties of MSCs, 
which are mediated by direct cell-to-cell contacts and by secretion 
of soluble molecules with anti-inflammatory, i.e., prostaglandin E2 
(PGE2), transforming growth factor, hepatocyte growth factor, nitric 
oxide, and heme-oxygenase, and neurotrophic properties, i.e., nerve 
growth factor, brain-derived neurotrophic factor and CNTF) (Uccelli 
et al., 2008; Millan-Rivero et al., 2018), being therefore considered 
as an optimal cell type for regenerative medicine strategies. On the 
other hand, bone marrow HSCs have a number of unique properties 
including self-renewal, differentiation into cells of three germ layers, 
paracrine trophic and immunosuppressive effects and a prominent 
pro-angiogenic and neuroregenerative potential (Bakondi et al., 2009; 
Kamei et al., 2013; Li, 2013; Park et al., 2017). However, the use of 
specific bone marrow HSC subpopulations as grafts is less common 
in regenerative medicine strategies than the non-purified whole BM-
MNCs fraction, because obtaining highly purified HSCs in sufficient 
quantities implies additional purification steps and increased costs. 
Moreover, the whole BM-MNCs fraction contains not only a mixture 
of HSCs at different stages of maturation, but also MSCs, lymphoid 
and myeloid cells, hemangioblasts and non-hematopoietic precursor 
cells, including those from endothelial origin, which are able of 
forming new blood vessels in vitro and in vivo and to differentiate 
into a variety of non-endothelial cell types including microglia and 
epithelium (Otani et al., 2002; Kucia et al., 2005). However, although 
there is a large number of studies demonstrating the beneficial 
effects of BM-MNCs transplants in ocular affectations, there are no 
comparative studies between the administration of this cell source, 
bone marrow HSCs and bone marrow MSCs and, therefore, it 
remains to be elucidated which of these yields the best therapeutic 
response.

Routes of cell delivery
Numerous animal studies have reported that bone-marrow derived 
cells injected into the eye, both intravitreally and subretinally, may 
be able to integrate into the retinas and replace dead or defective 
cells, or release different growth factors leading to increased cell 
survival, growth and function of resident retinal cells (Wang et al., 
2010; Moisseiev et al., 2016), and have also showed in clinical trials 
some clinical improvement in visual function and absence of severe 
side effects (Siqueira et al., 2011). The administration route may 
have a significant impact in the subsequent therapeutic outcomes. 
Accordingly, intravitreal administration (Figure 1A) of bone marrow-
derived stem cells into the vitreous, and thus close to the inner 
retina, has been shown to delay axotomy-induced RGC loss and to 
promote neuroregeneration by inducing axon regeneration through 
increased secretion of trophic factors (Zaverucha-do-Valle et al., 
2014). Otherwise, the subretinal administration route (Figure 1B), 
that delivers bone marrow-derived stem cells closer to the outer 
retinal layers and thus to photoreceptors, has been described to 
possess a more direct therapeutic effects on the subretinal space, 
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being therefore considered as a suitable therapeutic alternative for 
external vitreoretinal disorders (Peng et al., 2017). However, both 
these routes of administration may occasionally produce some 
unwanted side events, such as retinal detachment, disturbance 
of the structures of the retina, intraocular inflammation or ocular 
hemorrhage (Falavarjani and Nguyen, 2013). Other reported, 
although less employed, cell delivery strategies include epiretinal, 
subretinal, retrobulbar and sub-tenon administration and have 
showed also beneficial therapeutic outcomes in some preclinical and 
clinical situations (Guan et al., 2013; Tzameret et al., 2015; Weiss and 
Levy, 2018, 2020, 2021).

Figure 1 ｜ Common routes of cell delivery to the rat retina.
Drawings depicting the procedure for performing intravitreal (A) and 
subretinal (B) injections in rats.

Figure 2 ｜ Possible mechanisms of action of bone marrow derived-
mononuclear stem cells (BM-MNCs).
Drawing showing a BM-MNC and its possible mechanisms of action. Modified 
using https://smart.servier.com/.

A

B

Mechanisms of action of bone marrow-derived cells 
transplantation
Reported mechanisms of action of allogeneic bone marrow-derived 
stem cell transplantation include (Figure 2): (i) cell replacement 
of degenerated retinal cells due to their trans-differentiation 
properties (Tomita et al., 2002; Chan-Ling et al., 2006); (ii) induction 
of retinal cell survival and differentiation through their paracrine 
effects: secretion of growth and neurotrophic factors, i.e., nerve 
growth factor, brain-derived neurotrophic factor, CNTF, glial cell line-
derived neurotrophic factor, transforming growth factor, stem cell 
growth factor, platelet-derived growth factor, epidermal growth 
factor, fibroblast growth factor and insulin-like growth factor (Wang 
et al., 2010; Millan-Rivero et al., 2018); (iii) stimulation of retinal 
neovascularization by increasing the secretion of pro-angiogenic 
factors, mainly vascular endothelial growth factor, and thus favoring 
retinal microhemodynamics (Grant et al., 2002; Otani et al., 2002; 
Millan-Rivero et al., 2018); (iv) protection of photoreceptors through 
up-regulation of anti-apoptotic genes (i.e., Mad1, Yy-1, Crybb2, Cryaa 
and Cryba1 genes) and prevention of oxidative stress damage (Otani 
et al., 2004); (v) promotion of neuronal rescue by establishing new 
synaptic connections (Otani et al., 2004); (vi) modulation of host 
immunological responses: secretion of anti-inflammatory molecules 
(i.e., transforming growth factor, prostaglandin E2 (PGE2), PGE2 
receptor (PGE2R), nitric oxide, interferon and thrombospondin-1 
and down-regulation of pro-inflammatory cytokines (i.e., tumor 
necrosis factor, interleukin-1 and interferon (Millan-Rivero et al., 

2018; Hermankova et al., 2019); (vii) activation of ocular stem/
progenitor cells (Crisostomo et al., 2008); and (viii) release of 
extracellular vesicles and exosomes, which contain proteins, mRNA, 
microRNA, lipids, ribosomes and mitochondria, allowing cell-to-cell 
communication (Mead and Tomarev, 2017; Seyedrazizadeh et al., 
2020). Among all these mechanisms of action, the secretion by bone-
marrow derived cells of a variety of molecules with neurotrophic 
properties has been the most consistent finding in numerous of the 
above-mentioned studies. These effects have been observed both 
after intravitreal transplantation of cells into the retina (Millan-Rivero 
et al., 2018) or even after their intravenous infusion (Wang et al., 
2010). The BM-MNCs however, do not seem to integrate within the 
retina and replace the degenerated cells. As noted above (see section 
Bone marrow-derived stem cells therapies for degenerative retinal 
disorders), the whole BM-MNCs fraction contains a heterogeneous 
population of cells and, although it contains a small proportion of 
pluripotential cells that could in theory migrate into the retina, the 
majority tend to differentiate into mesodermal tissues (Fafian-Labora 
et al., 2015; Wang et al., 2020). Therefore, it is widely accepted that 
the adult retina is not as receptive to the integration of donor cells as 
previously thought and that the production of neurotrophic factors 
by the BM-MNCs is probably the main mechanism of action of the 
transplants and not cell integration and differentiation.

There is numerous evidence suggesting that bone marrow-derived 
stem cells could represent a suitable cell therapy product for 
ocular diseases associated with retinal gliosis and photoreceptor 
degeneration such as diabetic retinopathy, retinal ischemia, optic 
neuritis, AMD and RP (Siqueira et al., 2013; Cotrim et al., 2017; Ding 
et al., 2017; Satarian et al., 2017; Di Pierdomenico et al., 2020a), 
which have led to the implementation of different phase I and phase 
II clinical trials aimed at evaluating safety and efficacy of the above 
commented cell types.

BM-MNC therapy in retinal degenerations
To date, there is no cure or effective treatment for degenerative 
retinal diseases caused by different aetiologies leading to 
visual impairment and even irreversible blindness. Most of the 
currently available treatments are based on intraocular injection 
of neurotrophic factors (Di Pierdomenico et al., 2018; Dias et al., 
2018; Valiente-Soriano et al., 2020a) or anti-angiogenic agents (Di 
Pierdomenico et al., 2016) in the early stages of degeneration (see 
above). New treatments such as gene therapy, optogenetics or cell 
replacement are being investigated (Dias et al., 2018; McClements 
et al., 2020), the latter focusing on the more advanced stages of 
degeneration. However, until more information is available about the 
outcomes of these new therapies, sustained neuroprotection seems 
to be, among others, one of the potential strategies applicable to 
the different types of degenerative diseases of the retina, mainly 
in their early stages. Among the different strategies, stem cells 
represent one of the most promising options. Its paracrine trophic 
effect, which includes the sustained secretion of immunomodulatory, 
neurotrophic, and anti-angiogenic factors (see above) (Park et al., 
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2017), should lead to neuroprotective effect comparable to the 
achieved with neurotrophic factors. What is interesting is that, if 
injected cells could survive long-term in the retina, these beneficial 
effects could be more prolonged over time, as they could potentially 
be an enduring source of neuroprotection. Moreover, gene therapy 
could elicit long-term expression of neurotrophic factors by the 
transplanted cells.

Preclinical and Clinical Studies Conducted with 
Bone Marrow-Derived Mononuclear Stem Cells
Preclinical trials
An early preclinical study suggested that intravitreally injected BM-
MNCs had the ability to incorporate and differentiate into retinal 
neural cells in a rat model of retinal degeneration (Tomita et al., 
2002). Recent preclinical studies have shown that the allogeneic 
intravitreal transplantation of BM-MNCs from healthy donors 
increases RGC survival and axonal outgrowth in an experimental 
model of optic nerve crush (Zaverucha-do-Valle et al., 2014). 
However, the effect on RGC survival was transitory and only lasted 
up to 14 days after the transplantation. Attempts to improve it 
with a second injection were also unsuccessful (Zaverucha-do-
Valle et al., 2014). A more recent work from our group studied 
the transplantation of adult human BM-MNCs into two rat models 
of inherited retinal degeneration with different aetiologies (Di 
Pierdomenico et al., 2020a). In this work, we suggested that 
although the xenotransplant of human BM-MNCs did not achieve 
a higher photoreceptor survival in the degenerating rat retina, it 
showed a promising anti-gliotic effect which encourages further 
study. Specifically, the proposed anti-gliotic effect could be an 
important key in the treatment of photoreceptor degenerations (Di 
Pierdomenico et al., 2020a), since it could prevent the formation 
of the glial seal (Garcia-Ayuso et al., 2019; Di Pierdomenico et al., 
2020b). Therefore, according to preclinical studies, BM-MNCs could 
represent a hopeful therapy for the treatment of these and other 
retinal diseases and deserve further studies. It is important that the 
delivery routes used in the trials of BM-MNCs into the retina have 
a reasonably low risk so that the safety and efficacy of the cells can 
be adequately assessed (see above). Di Pierdomenico et al. (2016) 
explored the two main routes of intraocular delivery, intravitreal and 
subretinal injections, both having their advantages and concerns (see 
above), and showed that both routes are feasible and have similar 
outcomes (Di Pierdomenico et al., 2020a), even when the intravitreal 
injections release cells into the vitreous, close to the inner retina, 
and subretinal injections deliver them into the subretinal space, 
closer to the target population: the photoreceptors. Unfortunately, 
animal studies have not corroborated the initial idea that BM-MNCs 
could integrate and differentiate into retinal cells (Tomita et al., 2002; 
Park et al., 2017).

The effectiveness of BM-MNCs transplantation to the eye could be 
related to the number of CD34+ HSCs present in the suspension 
(Moisseiev et al.,  2016; Singh et al.,  2020). Because their 
neuroprotective effect may depend on their paracrine trophic effect 
(Park et al., 2017), it would not depend on the integration and 
differentiation of the cells. However, a recently published work has 
proposed that these cells can integrate into the retinal surface and 
the retinal vasculature following their intravitreal injection (Yazdanyar 
et al., 2020), but failed to show an integration in the outer retinal 
layers, the target of the treatment in photoreceptor degenerations. 
Nonetheless, the fact that the neuroprotective effect of these cells 
relies on their paracrine trophic effect, favors that this therapy can 
have an impact on a wider range of diseases as they could act on 
several cell populations at once. 

Clinical trials
Based on the early promising results on preclinical studies, two pilot 
clinical studies were designed to study the autologous intravitreal 
injection of BM-MNCs in eyes with inherited and/or acquired retinal 
degeneration (Jonas et al., 2010; Siqueira et al., 2011). Both studies 
concluded that the autologous intravitreal injection of BM-MNCs 
is a feasible and safe technique, but none of them were able to 
document a relevant improvement in visual acuity (Jonas et al., 2010; 
Siqueira et al., 2011). However, the results could be biased because 
the participants in one of the studies were at the end stage of their 
ocular diseases (Jonas et al., 2010) and both studies transplanted 
autologous cells, whose effect could be limited as they may have the 
same genetic defects of the retinal neurons (Siqueira et al., 2011). 
Two more recent studies have shown resolution of cystoid macular 

oedema associated with RP (Siqueira et al., 2013) and resolution 
of macular oedema and improvement of visual acuity in patients 
with diabetic retinopathy and retinal vein occlusion (Siqueira et 
al., 2015a) following the intravitreal injection of autologous BM-
MNCs. This group has also showed an improvement in quality of 
life in 20 patients with RP using the same treatment, although this 
improvement could only be confirmed during the first 3 months 
following the intravitreal injection and it could have been influenced 
by a subjective psychological component (Siqueira et al., 2015b). 
More recently, the same group documented that the intravitreal 
injection of autologous BM-MNCs achieved a significant improvement 
in visual function in ten patients with atrophic AMD and no adverse 
events (Cotrim et al., 2017). The Stem Cell Ophthalmology Treatment 
Study (SCOTS) and its follow-up Stem Cell Ophthalmology Treatment 
Study (SCOTS 2) are registered clinical trials that have studied the 
effect of autologous BM-MNCs transplantation in different retinal 
and optic nerve diseases and have used various ocular routes of 
administration depending on the disease and its severity (Weiss and 
Levy, 2020, 2021). These studies have shown after transplantation 
improvements in visual acuity in diseases such as Stargardt’s disease 
(Weiss and Levy, 2021), RP (Weiss and Levy, 2018) and dry AMD 
(Weiss and Levy, 2020). However, the SCOTS were uncontrolled 
studies, as the injections were applied bilaterally and there were no 
untreated eyes, and therefore it is difficult to draw conclusions from 
them.

To date, there are 16 registered clinical trials (http://clinicaltrials.gov) 
exploring the effect of bone marrow-derived stem cells in different 
retinal degenerations, 10 of them specifically exploring the effect of 
BM-MNCs (Table 1). However, not many results have been published 
so far with the mononuclear cell fraction. Interestingly, clinical trials 
generally use autologous transplantation in older patients, which may 
limit the success of the therapy as aging could impair the paracrine 
trophic effect of BM-MNCs (Yeganeh et al., 2021), while preclinical 
trials often use allogeneic transplantation from young donors. 

It is important to note that the different types of cells harvested from 
bone marrow have been referred to generically as “bone marrow stem 
cells” in different studies, thereby not always clearly differentiating 
between the different types of cells isolated. This requires a review 
of the methodology of cell isolation to determine which type of bone 
marrow stem cell was used, and this fact was not always correctly 
clarified in the published studies. The main outcomes of the clinical 
and preclinical studies are summarized in Table 2.

Concluding Remarks and Future Directions
Photoreceptor degenerations are currently a leading cause 
of irreversible and untreatable vision loss. These incurable 
diseases therefore represent one of the greatest challenges 
of ophthalmological research. In the field of photoreceptor 
degenerations, investigations have traditionally focused on finding 
therapies to replace dead photoreceptors, such as photoreceptor 
prostheses or transplantation. However, it is now widely accepted 
that all diseases coursing with photoreceptor degeneration have 
a common end: the complete remodeling of the retina and the 
subsequent alteration of the inner retina (Garcia-Ayuso et al., 2010; 
Garcia-Ayuso et al., 2014; Garcia-Ayuso et al., 2019; Pfeiffer et al., 
2020), which would compromise the outcomes of these treatments. 
Therefore, it is important to stop or slow down photoreceptor 
degeneration in its early stages, as this would increase the window 
of time in which the above-mentioned treatments aimed at replacing 
photoreceptors could be successful.

The BM-MNC transplantation may have, among other treatments, 
potential therapeutic benefits as it could be capable of slowing 
down photoreceptor degenerations and, therefore, improve the 
patients’ quality of life (Siqueira et al., 2015b). The ability of these 
cells to substitute the lost photoreceptors is under debate, but their 
potential paracrine effect (Park et al., 2017) suggests for them a 
wide range of clinical applications since it could potentially impact 
on several cell types at once. This is of particular interest as retinal 
diseases can involve different cell types in the retina or begin in 
one cell and then affect adjacent cells. In addition, the use of BM-
MNCs allows autologous or allogeneic transplantation without the 
need of immunosuppression. Furthermore, these cells are obtained 
from adult tissue so there would be no ethical concerns for the use 
of embryonic tissue, as it may be the case with the use of other 
stem cell types. Finally, the intraocular injection of BM-MNCs could 
enhance the outcomes of other treatments aimed at stopping or 
replacing dead photoreceptors, and therefore future lines of work 
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Table 1 ｜ Summary of the current clinical trials designed to evaluate the neuroprotective effect of BM-MNCs in retinal degenerations

Identifier Disease Administration route Status Location

NCT01068561 Retinitis pigmentosa Intravitreal injection Completed phase I University of Sao Paulo (Sao Paulo, Brazil)
NCT02280135 Retinitis pigmentosa Intravitreal injection Completed phase I Clinical University Hospital Virgen de la Arrixaca (Murcia, Spain)
NCT01560715 Retinitis pigmentosa Intravitreal injection Completed phase II University of Sao Paulo (Sao Paulo, Brazil)
NCT01518842 Ischemia Intravitreal injection Unknown University of Sao Paulo (Sao Paulo, Brazil)
NCT01914913 Retinitis pigmentosa Not specified Completed phase I/II Chaitanya Hospital, Pune (India)
NCT00550498 Behcet's syndrome Intravitreal injection Terminated* Rheumatology Research Center, Behcet’s Disease Unit (Shariati 

Hospital)
Tehran University of Medical Sciences (Tehran, Iran)

NCT01518127 Age-related macular 
degeneration

Intravitreal injection Completed phase I/II University of Sao Paulo (Sao Paulo, Brazil)

NCT01834079 Ocular atrophy Intrathecal injection Completed phase I/II Chaitanya Hospital, Pune (India)
NCT01920867 Age-related macular 

degeneration
Inherited retinal dystrophy
Optic nerve disease
Glaucoma

Retrobulbar
Subtenon
Intravitreal
Intravenous and/or 
Intraocular injections

Not applicable 
(Enrolling by invitation)

MD Stem Cells (Westport, Connecticut, United States)

NCT03011541 Age-related macular 
degeneration
Retinitis pigmentosa
Stargardt´s disease
Optic neuropathy
Nonarteritic ischemic optic 
Neuropathy
Optic atrophy
Optic nerve disease
Glaucoma
Leber´s hereditary optic 
Neuropathy

Retrobulbar
Subtenon
Intravitreal
Intravenous and/or 
Intraocular injections

Not applicable 
(Recruiting)

MD Stem Cells (Westport, Connecticut, United States)

*No improvement obtained in three cases. Retinal detachment observed in two cases. NCT: National Clinical Trial. 

Table 2 ｜ Summary of preclinical and clinical studies conducted with BM-MNCs

Reference Type of study Disease/Animal models Cells Administration routes Main findings

Di Pierdomenico et al., 
2020a 

Preclinic P23H-1 rats
RCS rats

BM-MNCs Intravitreal injection
Subretinal injection

Decreased retinal gliosis

Moisseiev et al., 2016 Preclinic Retinal degeneration C3H/
HeJ mice (rd1)

BM-MNCs 
CD34+ cells

Intravitreal injection Potential trophic regenerative effects

Park et al., 2014 Preclinic Ischemia-reperfusion GMP-grade 
BM -derived 
CD34+ cells

Intravitreal injection Good long-term transplant tolerance

Zaverucha-do-Valle et 
al., 2014 

Preclinic Optic nerve crush BM-MNCs Intravitreal injection Promotion of neuroregeneration

Zaverucha-do-Valle et 
al., 2011 

Preclinic Optic nerve crush BM-MNCs Intravitreal injection Neuroprotection and neuroregeneration 
mediated by FGF-2

Tomita et al., 2002 Preclinic Mechanical retinal 
damage 

BM-MNCs Intravitreal injection Differentiation into retinal neural cells
Repair of damaged retinal cells

Weiss and Levy, 2021 Clinical Trial
SCOTS

Stargardt Disease BM-MNCs Stem Cell Ophthalmology 
Treatment Study (SCOTS): Different 
combinations of retrobulbar, 
subtenon, intravitreal, intra-optic 
nerve, subretinal and intravenous 
injection

Improved vision (visual acuity) or stability

Weiss and Levy, 2020 Clinical Trial
SCOTS 

Age-Related Macular 
Degeneration

BM-MNCs SCOTS Improvement of average visual acuity or 
stability

Weiss and Levy, 2018 Clinical Trial
SCOTS

Retinitis Pigmentosa BM-MNCs SCOTS Improvement of average visual acuity or 
stability

Cotrim et al., 2017 Clinical Trial Atrophic age-related 
macular degeneration

BM-MNCs 
CD34+ cells

Intravitreal injection Improved visual acuity
Improved macular sensitivity threshold

Siqueira et al., 2015a Clinical Trial Diabetic retinopathy
Central retinal vein 
occlusion

BM-MNCs Intravitreal injection Decreased macular oedema
Improved retinal function
Improved visual acuity

Siqueira et al., 2013 Clinical Trial Retinitis pigmentosa BM-MNCs Intravitreal injection Resolution of macular oedema
Improvement in visual acuity
Improvement in macular sensitivity

Siqueira et al., 2011 Clinical Trial Retinitis pigmentosa
Cone-rod dystrophy
Diabetic Retinopathy

BM-MNCs Intravitreal injection One line improvement in best-corrected 
visual acuity
No detectable structural or functional 
toxicity over a period of 10 months

Jonas et al., 2010 Clinical Trial Age-related macular 
degeneration Glaucoma

BM-MNCs Intravitreal injection Technical feasibility of intravitreal injection

BM: Bone marrow; BM-MNCs: bone marrow derived-mononuclear stem cells; CD: cluster of differentiation; FGF-2: basic fibroblastic growth factor-2; GMP: 
good manufacturing practices; RCS: Royal College of Surgeons; SCOTS: Stem Cell Ophthalmology Treatment Study.
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could combine this treatment with other systemic or intraocular 
treatments. Moreover, we have documented that intravitreal and 
subretinal xenotransplantation of BM-MNCs in immunosuppressed 
animals has beneficial therapeutic effects, particularly an anti-gliotic 
effect, in two models of inherited photoreceptor degenerations with 
different aetiologies (Di Pierdomenico et al., 2020a). We believe 
that this effect could be increased if autologous or allogeneic 
transplantation is used. We plan to continue this research work 
in order to improve the results of the transplants and to find out 
how they ultimately attain their beneficial effects. However, several 
questions remain unanswered: (i) could allogeneic or autologous 
transplant accomplish the integration and differentiation of 
transplants cells thus achieving higher neuroprotective effects? (ii) 
Could the transplant route (intravitreal or subretinal) influence these 
outcomes? (iii) Could BM-MNCs transplantation improve the results 
of other treatments aimed at replacing photoreceptors, such as 
retinal prostheses or photoreceptor transplants? Finally, investigators 
and clinicians should keep in mind that there are many types of stem 
cells and that for their use, it is mandatory to follow the regulations 
and also obtain the approval of the ethics committees of their 
institutions.

In summary, BM-MNC transplants to the retina may have 
beneficious effects that could be accomplished through different 
action mechanisms, although the predominant effect seems to be 
a paracrine neurotrophic action. This may explain why they have 
positive actions in different ocular diseases irrespective of their 
pathophysiology. Thus, we suggest that this transplantation could 
be used in combination with other therapies to increase their 
therapeutic effects. However, there remain some unanswered 
questions about BM-MNCs transplantation into the eye and further 
research will be necessary to shed light on this field and specially to 
elucidate the survival, mechanism of action and therapeutic potential 
of these cells. 
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