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Abstract
Background Emerging evidence suggest that DNA-PK complex plays a role in the cellular response to oxidative stress, in 
addition to its function of double strand break (DSB) repair. In this study we evaluated whether DNA-PK participates in 
oxidative stress response and whether this role is independent of its function in DNA repair.
Methods and results We used a model of  H2O2-induced DNA damage in PC12 cells (rat pheochromocytoma), a well-known 
neuronal tumor cell line. We found that  H2O2 treatment of PC12 cells induces an increase in DNA-PK protein complex levels, 
along with an elevation of DNA damage, measured both by the formation of γΗ2ΑX foci, detected by immunofluorescence, 
and γH2AX levels detected by western blot analysis. After 24 h of cell recovery, γΗ2ΑX foci are repaired both in the absence 
and presence of DNA-PK kinase inhibitor NU7026, while an increase of apoptotic cells is observed when DNA-PK activity 
is inhibited, as revealed by counting pycnotic nuclei and confirmed by FACS analysis. Our results suggest a role of DNA-PK 
as an anti-apoptotic factor in proliferating PC12 cells under oxidative stress conditions. The anti-apoptotic role of DNA-PK 
is associated with AKT phosphorylation in Ser473. On the contrary, in differentiated PC12 cells, were the main pathway to 
repair DSBs is DNA-PK-mediated, the inhibition of DNA-PK activity causes an accumulation of DNA damage.
Conclusions Taken together, our results show that DNA-PK can protect cells from oxidative stress induced-apoptosis inde-
pendently from its function of DSB repair enzyme.
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Introduction

Oxidative stress induces DNA damage, and the unrepaired 
or improperly repaired DNA lesions increase genomic 
instability, which can cause cell death, senescence, or dys-
regulation of cellular functions. Oxidative stress can induce 
cellular damage by Reactive Oxygen Species (ROS) gen-
eration, which are constantly produced inside the cell and 
able to cause modifications or alterations of DNA with 
serious consequences especially for neuronal cells that last 
throughout life [1–3]. DNA damages induce and coordinate 
a complex signal-transduction network composed by sev-
eral pathway activation, collectively named DNA Damage 
Response (DDR), which can detect DNA lesions and arrest 
the cell cycle or promote cell death (apoptosis) in case of 
severe and irreparable damage [4–6]. In mammalian cells, 
the most severe form of DNA damage (double strand breaks, 
DSBs) is repaired by non-homologous end joining (NHEJ) 
and homologous recombination (HR) [7, 8]. NHEJ is consid-
ered the prevalent DSB repair pathway operating in neurons, 
which relies on the DNA-dependent protein kinase (DNA-
PK) complex [9].

DNA-PK is a PI3 kinase family member (which includes 
also Ataxia telangiectasia and Rad3-related, ATR and 
Ataxia-telangiectasia mutated kinase, ATM) preferentially 
phosphorylating serine and threonine residues followed by 

a glutamine, although other S-T/hydrophobic residues are 
also phosphorylated [10–12]. The active protein is a tri-
meric complex composed of the catalytic subunit, DNA-
dependent protein kinase catalytic subunit (DNA-PKcs), and 
the Ku70/86 heterodimer which binds to DNA ends with 
very high affinity and functions as regulatory subunit that 
stimulates DNA-PKcs kinase activity [13]. Moreover, the 
Ku subunits have been implicated in the cellular response 
to oxidative stress [14]. In addition to its role in DNA DSB 
repair, DNA-PK has been involved in several pathways 
including stress response modulation, apoptosis, telomere 
homeostasis and specific gene transcription [15]. The other 
members of PI3 kinase family, such as ATM, also has been 
involved in oxidative stress response and can be directly acti-
vated by hydrogen peroxide  (H2O2) [16, 17]. Indeed ROS 
over-production leads to rapid ATM dimerization/activation 
and downstream ATM signalling thus modulating cellular 
metabolism and cell survival, repairing oxidative DNA dam-
age, and inducing antioxidant enzyme expression to maintain 
redox homeostasis [16, 18]. ROS can also activate DNA-PK 
and its downstream signalling similar to ATM [19]. Indeed, 
DNA-PK has been found to associate with base excision 
repair (BER) protein complex essential for removing oxida-
tive base damage [20]. Among the BER components, X-ray 
repair cross-complementing protein 1 (XRCC1) directly 
interacts with and is phosphorylated by DNA-PK [21]. In 
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addition, Peddi et al. reported that DNA-PKcs deficiency 
compromises BER activity and inhibits the efficient pro-
cessing of DNA lesions induced upon IR or  H2O2 treatment 
[22]. Although recent evidences have implicated a role of 
DNA-PK in oxidative stress response [19], the molecular 
mechanism by which DNA-PK functions in the oxidative 
stress response remains to be elucidated.

In this study we evaluated whether DNA-PK participates 
in oxidative stress response and whether this role is inde-
pendent of its function of DNA repair. To test this hypoth-
esis, we used a  H2O2-mediated oxidative stress model in 
rat pheochromocytoma line 12 (PC12) cells, a well-known 
neuronal cell line, to study the effect of oxidative stress on 
DNA-PK complex expression levels and function.

Our data clearly demonstrate that the DNA-PK complex 
expression and activity are stimulated by oxidative stress. 
Enhanced apoptosis in the presence of DNA-PK kinase 
inhibitor provides evidence that its role of reparative DNA 
enzyme is disjuncted by its antiapoptotic role. Indeed, we 
found that accumulated Histone H2AX phosphorylation 
(γH2AX) foci are repaired after 24 h recovery both in the 
absence and presence of DNA-PK inhibitor.

In conclusion, our study indicates that DNA-PK may have 
a crucial role in cellular oxidative stress response and the 
enhancement of its activity may open new perspectives for 
the treatment of ROS-related diseases.

Materials and methods

Cell culture and treatments

PC12 cells were a kind gift from Prof. Silvia Biocca, Uni-
versità degli Studi di Roma Tor Vergata, Dipartimento di 
Medicina dei Sistemi (original source: LA Green’s lab [23].

PC12 cells were cultured and passaged as previously 
described [24]. Briefly, PC12 cells were cultured in RPMI 
1640 medium (invitrogen) supplemented with 10% horse 
serum (HS, Euroclone), 5% fetal bovine serum (Euroclone), 
2 mM L-glutamine (BioWest), 100 units/ml penicillin and 
100 µg/ml streptomycin (BioWest). The cells were cultured 
on 100-mm/35 mm-diameter tissue culture dishes (Falcon™, 
BD Biosciences) and maintained in a 37 °C incubator in a 
water-saturated, 5% CO2 atmosphere. When the cultured 
cells reached 80–90% confluency (split ratio 1:4), they were 
detached by trypsinization (0.025% trypsin-EDTA) and sub-
cultured. Cells were centrifuged and harvested after trypsi-
nization (0.025% trypsin-EDTA).

To induce neuronal differentiation, PC12 cells were cul-
tured on Matrigel in RPMI-1640 medium supplemented 
with 5% HS, 2% FBS and penicillin-streptomycin contain-
ing 100 ng/ml NGF (mouse nerve growth factor 2.5 S grade 

I, Alomone Labs) for 7-9 days. Medium was replaced every 
2 days.

Different concentrations of  H2O2 were tested in the oxi-
dative stress injury model according to the previous studies 
[25, 26]. Cell viability was assessed to determine the optimal 
 H2O2 concentration. In our model, 0.3 mM  H2O2 was con-
sidered the best concentration for the oxidative experiments. 
DNA-PK inhibitor NU7026 (Calbiochem) was diluted at 
7.1 mM and used for cell treatment at final concentration 10 
µΜ. Insulin was purchased from Sigma-Aldrich and used at 
the final concentration of 100 nM for different incubation 
times (10–30 min).

We routinely checked our cell cultures and confirm it to 
be free of mycoplasma contamination by using “MycoStrip 
mycoplasma detection kit from Invivoen.

Western blot analysis

Protein extracts derived from cultures were subjected to 
determination of protein concentration by using the bicin-
choninic acid kit (Micro BCA, Pierce). Appropriate amount 
of protein extracts was boiled for 5 min in SDS-PAGE 
Laemmli buffer (50 mM Tris-HCl, pH 6.8, 2% SDS, 10% 
glycerol, 0.1% bromophenol blue, 50 mM DTT) and sepa-
rated by SDS-PAGE (5% polyacrylamide for DNA-PKcs, 
10% for Ku70, Ku86, AKT β-Actin and β-tubulin). Pro-
teins were electrotransferred onto nitrocellulose membrane 
(HybondTM C-extra, Amersham Biosciences, UK limited) 
at 30 V overnight at 4 °C for DNA-PKcs and 100 V for 1 h 
at 4 °C for the other analyzed proteins. Membranes were 
blocked for 1 h at room temperature (RT) with 10% (w/v) 
milk in TBS-T solution (blocking buffer, 0.1% Tween20 in 
1.3 M NaCl, 200 mM KCl, 250 mM Tris-HCl, pH 7.5) and 
incubated overnight at 4 °C with primary antibodies and then 
with the appropriate horseradish peroxidase-conjugated sec-
ondary antibody for 1 h at RT. Immunoreactive bands were 
detected by enhanced chemiluminescence detection system 
(EuroClone). The following primary antibodies were used: 
mouse DNA-PKcs Ab-4 mixture 1:400 (NeoMarkers MS-
423-P); goat anti Ku70 1:400 (Santa Cruz Biotechnology 
sc-1486); goat anti Ku86 1:500 (Santa Cruz Biotehnology 
sc-1484); Rabbit anti total AKT 1:1000 (Cell Signaling 
CST-9272); rabbit anti pospho Ser-473 AKT 1:1000 (Cell 
Signaling CST-9271 S); rabbit anti pospho Thr-308 AKT 
1:1000 (Cell Signaling CST-9275 S); mouse anti anti-β-
Actin 1:1000 (Sigma A3853); mouse anti β-tubulin 1:1000 
(Sigma T8328); mouse anti γH2AX antibody 1:1000 (Milli-
pore (Ser139), clone JBW301); rabbit anti-Caspase3 1:1000 
(Cell Signaling CST-9662); rabbit anti-PARP-1 1:1000 (Cell 
Signaling CST-9542); rabbit anti total ERK 1:1000 (Cell 
Signaling CST-9102) and rabbit anti phospho-ERK (p42 and 
p44) 1:1000 (Cell Signaling CST-9101) in TBS-T containing 
2 or 5% milk for 2 h or overnight at 4 °C with gentle shaking. 
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After extensive washing in TBS-T, membranes were probed 
for 1 h at RT with Horseradish peroxidase-conjugated anti-
bodies donkey anti-mouse IgG 1:100,000 (715-035-151) and 
anti-rabbit IgG 1:100,000 (711-035-152) (Jackson Immu-
noResearch), anti-goat IgG 1:500,000 (sc-2768) (Santa Cruz 
Biotechnology) were used as secondary antibodies, diluited 
in TBS-T containing 2% milk and washed thoroughly with 
TBS-T. Blots were scanned and densitometric analysis was 
performed by using ImageQuant software (GE Healthcare). 
Protein loading was monitored by normalization to anti-β-
Actin or β-Tubulin.

Immunofluorescence analysis

Immunofluorescence analysis was performed on proliferat-
ing and differentiated PC12 cells grown on matrigel-coated 
glass coverslips, fixed with phosphate buffer containing 
4% paraformaldehyde and permeabilized with 0.2% Triton 
X-100 to then be processed for immunofluorescence analy-
sis according to [27]. Anti MAP2 antibody (1:500, Sigma) 
and mouse anti γH2AX antibody 1:500 (Millipore (Ser139), 
clone JBW301) were used as primary antibodies by incuba-
tion for 1 h at 37 °C in 1× PBS containing 0.05% Tween 20 
and 3% BSA, followed by a 30 min incubation at 37 °C with 
the secondary antibodies (Alexa 488, Alexa 568, Molecular 
Probes). Nuclei were counterstained with Hoechst and sam-
ples were mounted on glass slides and cover slipped with 
antifade glycerol mounting. For apoptotic cell detection, pic-
notic nuclei were counted and the percentage was calculated 
on the total cell number/field (10× objective) [28]. Images 
were acquired with an Eclipse 80i Nikon Fluorescence 
Microscope (Nikon Instruments, Amsterdam, Netherlands).

Cell cycle and apoptosis by FACS analysis

For cell cycle analysis PC12 cells were mechanically dis-
sociated and resuspended in Nicoletti’s buffer, containing 
0.1% Sodium Citrate, 10 mM NaCl, 0.1% Triton X-100, 
200 mg/mL Propidium Iodide (PI) and 200 mg/mL RNAse 
A [29]. Following 30 min incubation at room temperature 
cells were acquired with a FACSCanto flow cytometer (BD 
Biosciences).

Statistical analysis

Statistical analysis was conducted in R language (R Core 
Team (2020). R: A language and environment for statisti-
cal computing. R Foundation for Statistical Computing, 
Vienna, Austria. URL https:// www.R- proje ct. org/). As a first 
step, normality and homoscedasticity were assessed using 
Shapiro-Wilk test (R function: shapiro.test()) and Levene’s 
(R function: leveneTest(), “car” package), respectively. The 
assumptions showed to be met in our data set. Successively, 

significant differences between groups were evaluated with 
unpaired two-tailed t-test, one-way ANOVA and two-way 
ANOVA with interaction, depending on the specific experi-
mental design as reported in the “Results” section. In case 
of significant omnibus tests, Tukey’s Honestly-Significant-
Difference (R function: TukeyHSD()) was applied for per-
forming multiple pairwise-comparison between the means of 
groups. When two-way analyses were conducted and interac-
tion was significant, main effects were not reported, whereas 
the complete post-hoc test results were shown in the figures. 
A significant difference was accepted at p-values below 0.05.

Results

H2O2 treatment of PC12 cells induces up‑regulation 
of DNA‑PK complex expression

H2O2 is known to increase ROS production in cells, often 
leading to apoptosis and cell death [30, 31]. It has been 
shown that oxidative damage can cause nuclear and mito-
chondrial DNA damage, and can modulate expression of 
repair enzymes in neuronal cells [32, 33]. DNA-PK complex 
kinase activity is regulated by different mechanisms, includ-
ing modification in protein levels of the catalytic subunit 
DNA-PKcs and/or the regulatory subunits Ku70 and Ku86 
[34–36].

To evaluate whether  H2O2 can modulate DNA-PKcs 
protein levels in PC12 cells thus influencing DNA repair, 
we first treated proliferating PC12 cells with  H2O2 at dif-
ferent concentrations and at different times. PC12 cells 
were exposed to concentrations of  H2O2 in a range of 
0.05–0.5 mM for 1 h, 4, and 24 h and then western blot 
analysis was performed on whole cell extracts. A two-way 
ANOVA showed a significant interaction between  H2O2 con-
centrations and exposure time [F(8, 45) = 17.75, p < 0.001], 
thus meaning that DNA-PKcs protein levels were up-reg-
ulated in a  H2O2 concentration-dependent manner with 
different profiles over time (Fig. 1). Particularly, post-hoc 
tests showed that 1 h exposure determines an increase of 
DNA-PKcs protein levels as  H2O2 concentration grows; a 
step-like behavior was observed after 4 h exposure, with a 
plateau at higher  H2O2 concentrations; for the 24 h-treatment 
DNA-PKcs levels varied in a  H2O2 concentration independ-
ent manner. Indeed, we observed a strong reduction (90%) of 
DNA-PKcs levels at 24 h treatment with 0.05 mM which was 
unexpected and inexplicably reproducible (Fig. 1). Moreo-
ver, 0.5 mM  H2O2 treatment yielded the greatest effect both 
in acute (1 h) and chronic treatment (24 h) (250%, and 220% 
increase respectively), differently from 4 h-treatment that 
reached its maximum (189%) already at 0.3 mM  H2O2. We 
then analyzed whether treatment of PC12 cells with  H2O2 
was able to modulate protein levels of the DNA-PK complex 

https://www.R-project.org/
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regulatory subunits, Ku70 and Ku86. In both cases we found 
a significant interaction between  H2O2 concentrations and 
exposure time [Ku 86: F(8, 45) = 8.50, p < 0.001; Ku 70: F(8, 
45) = 101.13, p < 0.001]. Densitometric analysis of immuno-
reactive bands (Fig. 1) showed that only a short treatment 
(1 h) could increase levels of both proteins in a  H2O2 dose 
dependent manner.

These findings support the hypothesis that DNA-PK 
expression is induced rapidly after DNA damage with a 
mechanism that needs further investigation.

H2O2 treatment induces DNA damage in PC12 cells 
which is repaired after recovery

To analyze whether the upregulation of DNA-PK com-
plex was associated with repairing of  H2O2-mediated 
DNA damage, we chose the optimal dose of 0.3 mM as 
the smallest dose inducing DNA-PK complex protein 
level increment (200% increase, 1 h treatment). We then 
evaluated the DNA damage and repair kinetics by moni-
toring the formation and disappearance of γH2AX foci, 
a well-known and sensitive molecular marker of DNA 

damage, using immunofluorescence (Fig. 2). Cells having 
more than 10 foci/nucleus were scored positive. Left panel 
shows a representative immunofluorescence of γH2AX 
foci formation after 0.3 mM of  H2O2 1 h treatment.

We then performed a kinetics of γH2AX dephospho-
rylation at different times after  H2O2 removal, up to 24 h, 
in which cells were maintained in fresh growing medium 
(condition defined as “Recovery” time). As it would be 
expected, a significant interaction was found between 
the effect of damage and the effect of exposure time on 
the amount of γH2AX positive cells [F(3, 24)=119.45, 
p < 0.01] (Fig. 2, right panel). Post hoc tests revealed that 
0.3 mM  H2O2 was able to induce a significant 75% increase 
(p < 0.001) of γH2AX positive cells as compared to con-
trol, 1 h after treatment (baseline). Successively, during 
the post-treatment repair time (Recovery), the percentage 
of γH2AX foci-positive cells gradually declined reaching 
the same levels as the untreated control cells 24 h after 
recovery (30% of γH2AX foci positive cells, p = 0.99).

These results may suggest that after exposure to an oxi-
dative damage, cells may respond by up-regulating DNA 
repair enzymes to overcome the injury.

Fig. 1  Representative western blots of DNA-PKcs complex in PC12 
cells treated for 1, 4, and 24 h with different mM doses of  H2O2. 
After  H2O2 incubation, cells were processed to obtain whole cellular 
extracts as described in “Materials and Methods” section and DNA-
PKcs, Ku86 and Ku70 protein levels were assayed by western blot 
analysis. β-Actin was used as loading control. Densitometric quan-
titation of the immunoreactive bands corresponding to DNA-PKcs, 
Ku70 and Ku86 are represented in plots. Values in plots represent the 

normalized percent changes in protein levels with respect to control 
(100%) after exposure to  H2O2. Results were representative of 5 inde-
pendent experiments. [*] Significant differences (p < 0.05) between 
time points within each concentration. [Concentration labels on bars] 
Significant differences (p < 0.05) between concentrations (0, 0.05, 
0.1, 0.3, and 0.5) at the same time point, i.e. conc. labels are reported 
on a bar when a contrast between that group and any on its left is 
significant
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Inhibition of DNA‑PK kinase activity increases 
apoptosis without affecting DNA repair 
in proliferating PC12 cells

To establish whether DNA-PK complex kinase activity 
has a role in DNA repair following  H2O2, we performed 
experiments in presence of NU7026 (10 µM), a specific 
DNA-PK kinase inhibitor. Figure  3A shows that after 
0.3 mM  H2O2 treatment, PC12 cells accumulate γH2AX 
foci (69%, t(6)=11.45, p < 0.001). After 24 h recovery, 
differences in means between untreated,  H2O2-treated, 
NU7026-added cells were not significant [F(3, 9) = 3.059, 
p = 0.096]. PC12 cells repaired foci both in the absence and 
presence of NU7026 inhibitor, indicating that other DNA-
PK independent repair mechanisms may be operative in 
proliferating PC12 cells. Western blot analysis of protein 
levels of γH2AX confirmed the presence of DNA damage 
following 1 h 0.3 mM  H2O2 treatment, that decreased after 
recovery both in absence and presence of DNA-PK inhibi-
tor (Fig. 3B).

We also evaluated the percentage of apoptotic cells after 
0.3 mM  H2O2 1 h treatment (Fig. 3C). After 24 h recovery, 
the percentage of apoptotic cells significantly varied with 
cell conditions [F(3, 9) = 52.74, p < 0.001]; pairwise com-
parisons were thus evaluated with post hoc tests. Figure 3C 
shows that  H2O2 treatment caused a 30% of apoptotic cells 
(p < 0.001) during recovery. This amount further increased 
in the presence of 10 µM NU7026 by approx. 15% as com-
pared with  H2O2-treated cells (p = 0.019). This result was 
surprising because, in the same conditions, DNA dam-
age was repaired as indicated by the return to basal level 

of γH2AX foci (Fig. 3A) and suggests a protective role of 
DNA-PK under oxidative stress conditions.

In addition, we confirmed the occurrence of apoptosis 
after 0.3 mM  H2O2 1 h treatment and following 24 h recovery 
both in the presence ad absence of 10 µM NU7026 by FACS 
analysis (Fig. 3D).

Because post-mitotic cells adopt mainly NHEJ to repair 
damaged DNA [37, 38], we evaluated the effect of  H2O2 
4 h treatment on NGF-differentiated PC12 cells (Fig. 4), 
a well-known neuronal model [39–42], and γH2AX foci 
were counted after 24 h recovery (Fig. 4B). We found that 
untreated control cells showed about 4% of nuclei positive 
to γH2AX. 4 h of exposure to  H2O2 induced foci accumula-
tion in 65% of nuclei [t(6) = 40,278, p < 0.01]. Analysis of 
variance showed a significant effect of 24 h recovery on the 
amount of γH2AX positive cells [F(3, 12)=540.2, p < 0.01]. 
The presence of 10 µM NU7026 DNA-PK inhibitor, signifi-
cantly decreased the ability to repair DNA damage, such 
that 60% of cells remained positive to γH2AX (p < 0.001), 
and will likely undergo cell death (Fig. 4B). Western blot 
analysis of protein levels of γH2AX confirmed the presence 
of DNA damage following 4 h 0.3 mM  H2O2 treatment, that 
decreased after recovery only in the absence of DNA-PK 
inhibitor (Fig. 4 C).

Overall these experiments support an anti-apoptotic role 
of DNA-PK independent of its DNA repair activity in prolif-
erating cells where different DNA repair mechanisms oper-
ate. On the contrary, in neuronal cells, where DNA damage 
(specifically DSBs) is mostly repaired by NHEJ, the repair 
activity of DNA-PK complex may play a pivotal role in cell 
viability.

Fig. 2  Left Panel. Immunofluorescence images of proliferating PC12 
cells in the absence or presence of 0.3 mM  H2O2 treatment. Only 
cells exposed to  H2O2 treatment show γH2AX positive foci (green) 
in nuclei counterstained with Hoechst (red). Scale bar, 5 μm. Right 
Panel. After exposure with 0.3 mM  H2O2 for 1 h (baseline), PC12 
cells were incubated for 4, 8, and 24 h with fresh  H2O2-free medium 
(recovery condition). Cells were fixed and stained with anti-γH2AX 
antibody and subjected to immunofluorescence microscopy. The 
number of γH2AX-positive cells were counted and plotted as his-

tograms to show the repair kinetics of damaged DNA. After 24 h 
recovery, DNA damages are completely repaired. Results were rep-
resentative of 5 independent experiments. [*] Significant differences 
(p < 0.05) between +/−  H2O2 conditions at each time point. [Time 
labels on bars] Significant differences (p < 0.05) between time points 
(1 h, 4 h, 8 h, and 24 h) in the same  H2O2 condition, i.e. time labels are 
reported on a bar when a contrast between that group and any on its 
left is significant. (Color figure online)
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The anti‑apoptotic function of DNA‑PK 
under oxidative stress conditions is associated 
with AKT phosphorylation of Serine 473 in PC12 
cells

It is known that severe DNA damage induces the activation 
of apoptosis and signals of phosphorylation of other pro-
teins are activated and transduced. To study the molecular 

mechanism underlying the anti-apoptotic function of DNA-
PK complex in proliferating PC12 cells exposed to oxidative 
stress, we performed western blot analysis on whole cell 
extracts looking at the expression of several key proteins 
involved in the apoptotic pathway (i.e. AKT, Caspase 3 and 
PARP). The serine/threonine protein kinase B (PKB), also 
known as AKT, is a downstream effector of phosphatidylino-
sitol 3-kinase (PI3K) and a major regulator of a variety of 

Fig. 3  PC12 cells were treated for 1 h with 0.3 mM  H2O2 and then 
incubated for 24 h with fresh medium with or without NU7026 
(10 µM), a potent DNA-PK inhibitor. Cells were fixed and stained 
with anti-γH2AX antibody to count foci and nuclei were counter-
stained with Hoechst to count condensed and/or fragmented nuclei 
as apoptotic cells. A Bar chart showing that γH2AX foci are repaired 
after a 24 h recovery even if DNA-PK activity is inhibited. As sup-
plementary information, percentage foci without recovery (grey 
background) are reported to show the increase after  H2O2 treatment. 
B Representative western blots of γH2AX in PC12 cells treated for 
1 h with 0.3 mM of  H2O2 confirming the repair of DNA damage 
both in presence and absence of DNA-PK inhibitor during recovery. 
After  H2O2 incubation, cells were processed to obtain whole cell 
extracts as described in “Materials and Methods” section. β-actin 
was used as loading control. Image is representative of 3 independ-

ent experiments. C Bar chart showing that 0.3 mM  H2O2 treatment 
caused a 30% of apoptotic cells after 24 h recovery. A further increase 
is observed in the presence of 10 µM NU7026, as compared with 
 H2O2-treated cells (+15%). In addition, without repair (grey back-
ground)  H2O2 treatment did not induce augmented apoptosis (p = 38). 
Bars in the plot represent mean ± S.D. of apoptotic cells expressed 
as percentage. D FACS analysis was conducted to confirm the occur-
rence of apoptosis after 0.3 mM  H2O2 1 h treatment followed by 24 h 
recovery both in the presence ad absence of 10 µM NU7026. Cells 
were stained with PI, according to Nicoletti’s protocol. Histograms 
show DNA content distribution in the different experimental condi-
tions and indicate an increase of approx. 20% in apoptotic cells in the 
presence of DNA-PK inhibitor. Apoptotic cells appear with fractional 
DNA content before the peak of G1 cells



1096 Molecular Biology Reports (2022) 49:1089–1101

1 3

cellular processes, including metabolism, transcription, anti-
apoptotic, proliferation, and growth [43, 44]. Activation of 
AKT requires phosphorylation at two key regulatory sites 
as follows: Thr-308 and Ser-473, the second one within a 
C-terminal hydrophobic motif, leads to full activation of 
AKT [45, 46].

We compared AKT phosphorylation pattern of PC12 cells 
treated with increasing  H2O2 concentrations, ranging from 
0.1 to 0.5 mM, without pre-treatment with NU7026 or with 
a 24 h incubation with 10 µM NU7026 (Fig. 5A). To this 
aim a two-way ANOVA was conducted on protein phos-
phorylation by NU7026-treatment and by  H2O2 concentra-
tions. Significant interactions were found for Ser-473 [F(3, 
24)=3.43, p < 0.001]; successively post hoc tests were run. 
As shown in Fig. 5A, western blots of whole cell extracts of 

PC12 cells in the absence of NU7026 pre-treatment showed 
that all the  H2O2 tested concentrations are capable to induce 
a strong increase of phosphorylated Ser-473AKT levels (25 
fold as compared to control cells treated with 0.5 mM  H2O2, 
p < 0.001), while no significant alteration was observed for 
the phosphorylation in Thr-308 (data not shown). Differ-
ently, western blot analysis of protein extracts from NU7026 
pre-treated PC12 cells 24 h before  H2O2 exposure, showed a 
strong reduction of AKT phosphorylation of Ser-473 (38% 
reduction NU7026 treated cells at 0.1 mM  H2O2; 57% reduc-
tion NU7026 treated cells at 0.3 mM  H2O2; 39% reduction 
NU7026 treated cells at 0.5 mM  H2O2, p < 0.01 in all cases). 
These results suggest a major anti-apoptotic role of DNA-PK 
that involves AKT phosphorylation in Ser-473. To verify 
the specificity of DNA-PK function in AKT regulation after 

Fig. 4  A Proliferating PC12 cells were differentiated with NGF for 
7 days to be then exposed to  H2O2 followed by a recovery in fresh 
medium. Cells were then fixed and immunolabelled for γH2AX foci 
detection. Upper panel. A microscopic field of proliferating PC12 
cells in the absence of NGF showing a circular morphology and a 
field of PC12 cells after NGF treatment with a typical neuronal mor-
phology, are shown in phase contrast images. After 7 days of NGF 
treatment, PC12 cells acquire neuronal features as indicated by the 
labelling with MAP2 (green) and DNA (red). Lower panel. Immu-
nofluorescence of NGF-differentiated PC12 cells exposed to 0.3 mM 
 H2O2 for 4 h followed by a 24 h recovery in fresh medium. Immunola-
belled cells show the presence of γH2AX foci after exposure to  H2O2 
(green). During recovery, differentiated PC12 cells maintain γH2AX 
foci (green) in the presence of NU7026 as compared to control cells. 

Scale bar, 5 μm. B Bar chart showing that in NGF-differentiated PC12 
cells exposed to 0.3 mM  H2O2 for 4 h followed by a 24 h recovery in 
fresh medium, γH2AX foci are not repaired in presence of DNA-PK 
inhibitor, NU7026 (+55%, vs.  H2O2-treated, p = 0.015). For com-
pleteness, without recovery the effect of  H2O2-damage is shown 
(Mdiff=61%, t(6)=40.27, p < 0.001). Bars in the plots represent mean 
± S.D. of cells expressed as percentage. *p < 0.05; ***p < 0.001. C 
Representative western blots of γH2AX in differentiated PC12 cells 
treated for 4 h with 0.3 mM of  H2O2 confirming the maintenance of 
DNA damage in presence of DNA-PK inhibitor during recovery. 
After  H2O2 incubation, cells were processed to obtain whole cell 
extracts as described in “Materials and Methods” section. β-tubulin 
was used as loading control. Image is representative of 3 independent 
experiments. (Color figure online)
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oxidative stress, we tested another stimulus known to induce 
Ser-473 AKT phosphorylation such as insulin treatment. 
Cells were exposed to insulin treatment (100 mM) for 10 or 
30 min and whole cell extracts analyzed for Ser-473 AKT 
phosphorylation in absence or presence of DNA-PK inhibi-
tor. As shown in Fig. 5B, insulin induces Ser-473 AKT phos-
phorylation (both after 10 and 30 min treatment) which is not 
affected by DNA-PK kinase activity inhibition, indicating 
that DNA-PK is not involved in the activation of downstream 
effector AKT following insulin treatment. Similarly, DNA-
PK, upon insulin treatment, is not essential for the ERK (p44 
and p42) phosphorylation activation in PC12 cells (Fig. 5B).

The induction of apoptosis is associated with activation 
of aspartate-specific cysteine proteases (Caspases) that are 
present as inactive zymogens containing an N-terminal pro-
domain and large and small catalytic subunits. Caspases are 
activated either by autocatalytic processing and/or cleavage 

by other caspases at internal Asp residues following a variety 
of death stimuli, including oxidative DNA [47].

We found that following  H2O2 treatment PC12 cells 
undergo apoptosis mediated by the activation of Caspase-3 
cleavage (Fig. 5C). Interestingly, a 24 h treatment of cells 
with 10 µM NU7026, a concentration that blocks DNA-PK 
activity, increased Caspase-3 processing (Fig. 5C), sup-
porting a protective role of DNA-PK under oxidative stress 
conditions. Caspase-mediated apoptotic cell death is accom-
plished through the cleavage of several key proteins required 
for cellular functioning and survival [48], including PARP-1 
whose cleavage is considered to be a hallmark of apoptosis 
[49]. By western blot we observed, along with Caspase-3 
activation, an increase in the cleaved PARP-1 (Fig. 5C).

Thus, DNA-PK exerts an anti-apoptotic function associ-
ated with Caspase-3 processing, which is further increased 
when DNA-PK activity is inhibited by NU7026 (Fig. 5C).

Fig. 5  Western blot analysis of AKT phosphorylation in proliferat-
ing PC12 cells pre-exposed for 24 h with 10 µM NU7026 and then 
incubated for 30 min with different doses of  H2O2 (A) or for 10 
and 30 min with 100 nM insulin (B). C Analysis of full length and 
cleaved Caspase-3 and cleaved-PARP-1 protein levels in PC12 cells 
pre-treated for 24 h with NU7026 and for 30 min with 0.5 and 1 mM 

 H2O2. Results were representative of 5 independent experiments. [*] 
Significant differences (p < 0.05) between NU7026 conditions within 
each concentration. [Concentration labels on bars] Significant differ-
ences (p < 0.05) between concentrations (0, 0.1, 0.3, 0.5) in the same 
NU7026 conditions, i.e. conc. labels are reported on a bar when a 
contrast between that group and any on its left is significant
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Collectively, these experiments showed that DNA-PK-
mediated anti apoptotic function, upon  H2O2-dependent 
oxidative stress, is associated with AKT phosphorylation 
in Ser-473 and involves the processing of Caspase-3 signal-
ling cascade.

Discussion

DNA repair represents a strategy to overcome the DNA dam-
ages accumulated by the cells upon exposure to different 
agents. Whenever DNA damage is too extensive, the DDR 
pathway can trigger cellular senescence and/or apoptosis 
[50, 51]. Among a wide range of possible DNA lesions, 
oxidized bases and DNA single strand breaks (SSBs) are 
the most common [52]. However, DNA DSBs are the most 
lethal form of DNA damage which, if left unrepaired, can 
induce a prominent loss of genetic material and ultimately 
cell death. Misrepaired DSBs are also deleterious because of 
their capability to cause genomic rearrangements, mutagen-
esis and more in general genomic (or mitochondrial) insta-
bility. These events are more critical in neurons, because 
they have a reduced DNA repair ability and a slower rate 
of DNA repair compared to proliferating cells, as for other 
differentiated cells [53, 54].

DSBs are repaired in neurons by the NHEJ pathway that 
relies on the DNA-dependent protein kinase complex [55].

In this study we evaluated the role of DNA-PK in oxida-
tive stress response by using the PC12 cell model, a well-
known neuronal cell line. In particular, we studied the effect 
of oxidative stress on DNA-PK complex expression levels 
and activity both in proliferating and differentiated PC12 
cells. In addition, we assessed a possible dual role of DNA-
PK as repair enzyme and an anti-apoptotic factor.

We found that: (i)  H2O2 treatment of PC12 cells induces 
up-regulation of DNA-PK complex protein levels; (ii) inhi-
bition of DNA-PK kinase activity, by using the selective 
DNA-PK inhibitor NU7026, increases apoptosis without 
affecting DNA repair in proliferating PC12 cells; (iii) the 
anti-apoptotic role of DNA-PK is independent of its DNA 
repair activity in proliferating cells, however, in neuronal 
cells, where DSBs are mostly repaired by NHEJ, the inhibi-
tion of DNA-PK activity causes an accumulation of DNA 
damage which would probably lead to cell death; (iv) DNA-
PK anti apoptotic function is associated with AKT phospho-
rylation in Ser-473 and involves the processing of Caspase-3 
signalling cascade.

This study shows that  H2O2, at biologically relevant con-
centrations that are found in cells during acute and chronic 
inflammation processes, causes a marked increase in γH2AX 
foci, hallmark of DNA breaks, along with a significant eleva-
tion in the expression of DNA-PKcs and its regulatory subu-
nits Ku70 and Ku86. It is likely that the observed induction 

of DNA-PK complex is required to counteract oxidative 
stress response that would otherwise lead to DNA dam-
age and decreased in cell viability. Further studies will be 
required to unveil the mechanisms inducing the rapid DNA-
PK expression increase after DNA damage.

Further, we showed that PC12 cells accumulate γH2AX 
foci that are repaired after a 24 h recovery both in the 
absence and presence of the DNA-PK inhibitor NU7026, 
indicating that other DNA-PK independent repair mecha-
nisms may be involved. Indeed, proliferating cells possess 
other DNA repair systems such as the HR that can guarantee 
further genome stability [56]. Remarkably, while the capac-
ity to repair γH2AX foci is maintained in proliferating PC12 
cells after 24 h recovery, inhibition of DNA-PK complex 
activity determines an increase in the percentage of apop-
totic cells, indicating an additional role of DNA-PK as an 
anti-apoptotic agent.

The fact that DNA-PK might possess multiple functions 
is in line with other studies showing that this kinase has 
some unusual properties. For example, its high cellular con-
centration [57], its presence both in the nucleus and in the 
cytoplasm [58], far in excess of what is probably needed for 
NHEJ function.

ROS generation is known to cause DNA lesions, both 
SSBs and DSBs and accumulation of DNA damage may 
represent a great concern for cells that do not replicate, such 
as terminally differentiated neurons. In fact, DNA damage 
caused by  H2O2 in neurons, that have high levels of tran-
scription and oxidative stress, may misdirect them to re-enter 
cell cycle albeit unsuccessfully, which in turn can lead to 
accumulation of excessive DNA damage causing neuronal 
death. Indeed, we show that differentiated PC12 cells, like-
wise post-mitotic neurons, upon exposure to  H2O2, are not 
able to repair lesions in presence of DNA-PK inhibitor and 
may undergo cell death. This idea is also supported by the 
observation that in migrating cortical neurons oxidative 
DNA damage is normally repaired by NHEJ and failure in 
the repairing machinery triggers neuronal apoptosis [59]. 
Our data presented here may be important in understanding 
the roles of DNA repair enzymes and the mechanisms main-
taining genomic stability in non-proliferating cells.

Moreover, we have previously demonstrated that in 
PC12 cells aggregated β-amyloid impairs DNA-PK activity 
mainly through ROS production [34]. Hence, it is possi-
ble that exposure to oxidative injuries in the presence of of 
amyloidogenic proteins, such as β-amyloid in Alzheimer’s 
Disease and huntingtin protein in Huntington Disease, elicits 
neuronal cell death by inhibition of DNA-PK anti-apoptotic 
function, leading to neurodegeneration.

It is known that DNA-PK can regulate AKT Ser-473 
phosphorylation [45, 60, 61]. Moreover, Surucu et al. dem-
onstrated that DNA-PK phosphorylates AKT Ser-473 upon 
induction of DNA DSBs [62]. However, the regulation of 
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AKT by DNA-PK under oxidative conditions remained to 
be established. Here we show that  H2O2 treated prolifer-
ating PC12 cells, following DNA-PK inhibition, undergo 
apoptosis, as shown by the cleavage of Caspase-3 and 
its target PARP-1, and this death signalling is associated 
with the phosphorylation of AKT in Ser-473. Differently, 
DNA-PK activation following  H2O2 treatment does not 
affect AKT phosphorylation in Thr-308. This differences 
in residues phosphorylation is in agreement with previous 
observations showing that DNA-PK directly phosphoryl-
ates AKT on Ser-473 in vitro and its activity in cells is 
potently inhibited by LY-294002 and wortmannin, two 
PI3K-specific inhibitors [63]. In addition, AKT phospho-
rylation at Ser-473 was greatly diminished in DNA-PKcs 
short interfering (si)RNA-treated cells, and DNA-PKcs-
deficient cells [64]. Furthermore, we showed that DNA-PK 
is unlikely to be a physiological upstream kinase mediating 
AKT phosphorylation upon insulin treatment, while its 
kinase activity has AKT as major target under oxidative 
stress conditions.

Other than its essential role in NHEJ, because DNA-PK 
is also a critical player in cell survival/death and gene tran-
scription, it is compelling to suggest that DNA-PK can have 
distinct and independent functions critical for cellular home-
ostasis. These different roles, that deserve further analysis, 
may be dependent on variations in the cell cycle status, and 
the abundance of DNA-PKcs in different tissues.

Oxidative stress is linked to a long diverse list of human 
diseases including neurodegeneration and cancer. Indeed, 
the inhibition of DNA-PK is a very promising target in 
anticancer research since the efficacy of radiotherapy and 
some chemotherapies, working by inducing DNA DSBs in 
tumor cells, can be compromised by the efficient repair of 
DNA damage through activation DNA-PK [65].

Oxidative stress has also been suggested as the possible 
cause behind the inevitable process of aging, thus, identi-
fication and understanding of the key factors responsible 
for DNA repair and their multiple functions can unveil 
potential intervention points of human pathologies caused 
by oxidative stress.

In conclusion, our findings provide insight into the 
pathophysiological mechanisms underlying oxidative stress 
damage and suggest innovative and effective treatments for 
ROS-related diseases, exploiting DNA-PK-based therapeu-
tics and/or compounds able to activate DNA-PK function.
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