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Abstract: Electro-oxidation is an effective approach for the removal of 2-chlorophenol from wastewater.
The modeling of the electrochemical process plays an important role in improving the efficiency of
electrochemical treatment and increasing our understanding of electrochemical treatment without
increasing the cost. The backpropagation artificial neural network (BP–ANN) model was applied to
predict chemical oxygen demand (COD) removal efficiency and total energy consumption (TEC).
Current density, pH, supporting electrolyte concentration, and oxidation–reduction potential (ORP)
were used as input parameters in the 2-chlorophenol synthetic wastewater model. Prediction accuracy
was increased by using particle swarm optimization coupled with BP–ANN to optimize weight
and threshold values. The particle swarm optimization BP–ANN (PSO–BP–ANN) for the efficient
prediction of COD removal efficiency and TEC for testing data showed high correlation coefficient
of 0.99 and 0.9944 and a mean square error of 0.0015526 and 0.0023456. The weight matrix analysis
indicated that the correlation of the five input parameters was a current density of 18.85%, an initial
pH 21.11%, an electrolyte concentration 19.69%, an oxidation time of 21.30%, and an ORP of
19.05%. The analysis of removal kinetics indicated that oxidation–reduction potential (ORP) is closely
correlated with the chemical oxygen demand (COD) and total energy consumption (TEC) of the
electro-oxidation degradation of 2-chlorophenol in wastewater.

Keywords: BP–ANN; PSO–ANN; electro-oxidation

1. Introduction

Wastewater produced by various industrial processes contains large quantities of chlorophenol
compounds, which are highly toxic and resistant to biological degradation [1]. The compound
2-chlorophenol is a typical chlorophenol compound that is listed as a priority pollutant by the
Environmental Protection Agency, given its carcinogenic properties [2,3]. Electro-oxidation, an effective
technology that does not require the use of extra reagents, is commonly used to remove chlorophenol
compounds from wastewater because of its high efficiency, rapid reaction rate, and environmental
friendliness [4,5]. However, the energy cost of the electro-oxidation process limits its application [6].

The establishment of appropriate models for electro-oxidation is essential given the complexity
of this process. Modeling of the electrochemical process plays an important role in improving the
efficiency of electrochemical treatment and a further understanding of electrochemical treatment without
increasing the cost. Empirical models and semi-empirical models, such as pseudo-first-order kinetics [7],
pseudo-second-order kinetics [8], a computational fluid dynamics (CFD) model, and response surface
methodology (RSM) model, are usually established for the prediction of electrochemical process
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behaviors. Bu et al. [9] established the kinetic model of the degradation of oxcarbazepine (OXC) using
electrochemically-activated persulfate (EC/PS) based on two assumptions. Conventional mathematical
or mechanistic models can be used to predict the final state of the system only under given
circumstances [10]. Wang et al. [11] calculated the velocity distribution and turbulence distribution
of a new type of tubular plunger flow reactor by CFD. CFD can reveal the mass transfer process
and mechanism of an electrochemical reactor, but it is still affected by grid mass, transfer mode,
and calculation [12,13]. Song et al. [14] optimized the electrochemical simultaneous removal of the
ammonia nitrogen process using RSM, which showed a good prediction. The main disadvantage of
RSM is that it cannot effectively improve approximation accuracy, even with an increase in the number
of sample points. Electrochemistry is a complex non-linear process, and it is difficult to explain it
clearly through traditional empirical and semi-empirical modeling.

In contrast to traditional mathematical models, scholars have done some research on the non-linear
prediction model of the electrochemical process. Artificial Neural Networks (ANNs) do not require the
modeling of a detailed mathematical formulation of a system and have been used to determine complex
relationships between input and output data [15]. Daneshvar et al. [16] established an ANN model for
the decolorization process of dyeing wastewater by electroflocculation. This model can predict the color
removal rate under different experimental conditions. Researchers pointed out that ANN has good
prospects for the prediction of complex systems [17,18]. Belkacem et al. [19] applied a backpropagation
artificial neural network (BP–ANN) prediction of oxytetracycline removal in an electro-oxidation
system, which chose 14 nodes from the hidden layer, the LM (Levenberg-Marquardt)algorithm,
the logsig transfer function of the hidden layer, and the purelin transfer function of the output layer.
However, the researchers did not verify the reliability of the network or compare the algorithms and
transfer functions on the network. Moreover, BP–ANN easily falls into the local minimum and has
a poor global convergence rate [20]. The further optimization of the BP–ANN has also attracted growing
attention [21]. Particle swarm optimization (PSO) is an algorithm that simulates the foraging behavior
of birds [22]. Khajeh and coworkers [23] integrated PSO in a BP–ANN model for the specification of
optimal initial weights and threshold values by updating generations to avoid the local minimum and
achieve global convergence quickly and correctly.

Establishing an efficient and reliable ANN model for predicting the behavior of electrochemical
oxidation processes can reduce energy cost and is a fundamental step toward their control.
The input parameters of ANN network are one of the key factors in establishing an ANN network.
Oxidation–reduction potential (ORP) has been employed as an integrated indicator in various
fields to describe the redox characteristic of any given chemical reaction system [24]. ORP has
a good relationship with the chemical oxygen demand (COD) of electro-oxidation [25]. Wang and
coworkers [26] constructed a model of the multiparameter linear relationship between ORP and Qsp
(specific electrical charge) and between a COD and Cl−1 concentration to reflect quantitatively the effect
of the current density, Cl−1 concentration, pollutant load, and reaction time on the electro-oxidation
system. Basha et al. [27] built a BP–ANN model to predict the effect of electro-oxidation on COD
removal, but ORP was not considered in the input parameters.

In this study, PSO–BP–ANN models were constructed to predict the COD removal efficiency and
total energy consumption (TEC) of electro-oxidation. ORP was used as one of the input parameters.
First, BP–ANN and the selection of the number of hidden layers and training algorithm were discussed
in detail. Then, the PSO algorithm was used to optimize the weight and threshold of BP–ANN and
identify the optimal parameters of the PSO algorithm. Experimental values were compared with
output variables predicted by PSO–BP–ANN. The importance of each input variable was determined.
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2. Materials and Methods

2.1. Data Set

All electro-oxidation experiments were conducted with a 3 L-capacity laboratory-scale plate
cell with a circulating tank. The used datasets were obtained from a previous study [25]. A total of
190 experimental runs (Table A1) were performed in the galvanostatic mode under a current density of
8 mA cm−2 to 25 mA cm−2, an original pH of 3 to 11, an electrolyte concentration of 0.05mol L−1 to
0.12 mol L−1, a reaction time of 0 h to 2 h, and ORP values of −68 mV to 500 mV, as shown in Table 1.

Table 1. Experimental conditions. ORP, oxidation–reduction potential.

Run no. Current Density
(mA cm−2)

Na2SO4
Concentration

(mol L−1)
Initial pH Electrolysis

Time (h) ORP Flow
Mode

0–190 8–25 0.05–0.12 3–11 0–2 −68–500 continuous

During the Electro-oxidation, an ORP (SX-630, Sanxin, China) and a pH (SX711, Sanxin, China)
probe were installed in the electrolysis bath for online monitoring of ORP/pH. COD was determined
according to Chinese standard HJ/T 399-2007 with slight modifications. The solution was measured at
a wavelength of 440 nm using a UV-visible spectrophotometer (UV-2910, Hitachi, Japan).

A specific electrical charge (Qsp, Ah L−1) was calculated by using the following equation [26]:

Qsp = j ·A ·
t
V

(1)

where j is current density (A cm−2), A is the effective area of the electrode (cm2), V is the effective
volume of the plate cell (L), and t is the reaction time during the electro-oxidation process (h).

TEC (kWh m−3) was calculated in a previous study as follows [28]:

TEC = Qsp ·U (2)

where Qsp is a specific electrical charge, and U (V) is the cell voltage.

2.2. BP–ANN Coupled with PSO

ANNs have different architectures. The ANN used in this study has three layers: an input layer
that receives electro-oxidation information, a hidden layer that processes information, and an output
layer that calculates COD removal and TEC results [29]. During BP learning, the actual outputs are
compared with the target values to derive error signals, which are propagated backward by layers to
adjust the weights in all lower layers [30]. The architecture of a neural network and the BP algorithm is
presented in Figure 1.

The flowchart of BP–ANN coupled with PSO is shown in Figure 2. The ANN model was developed
using MATLAB R2016a software. A total of 190 runs of the electro-oxidation process data were applied
to develop the models for the prediction of COD removal efficiency and TEC. The available data were
divided into training, validation, and testing subsets, of which 80% (152) were randomly selected
for network training, 10% (19) were used for validation, and 10% (19) were applied to test network
accuracy. Current density, original pH, electrolyte concentration, oxidation time, and ORP were used
as five input parameters, and COD removal efficiency and TEC were considered as the two output.
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Figure 2. Flowchart of a backpropagation artificial neural network (BP–ANN) combined with particle
swarm optimization (PSO).

Two prediction score metrics, the coefficient of correlation (R2), and mean square error (MSE),
were computed using the following equations to evaluate the fitting and prediction accuracy of the
constructed models [31]:

R2 =

n∑
i=1

( fexp,i − Fexp)( fANN,i − FANN)√
n∑

i=1
(( fexp,i − Fexp)

2( fANN,i − FANN)
2)

(3)

MSE =

n∑
i=1

( fexp,i − fANN,i)
2

n
(4)
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where Fexp = 1
n

n∑
i=1

fexp,i, FANN = 1
n

n∑
i=1

fANN,i, n is the number of samples used for modeling, f exp is the

experimental value, and fANN is the network-predicted value.

3. Results and Discussion

3.1. Removal Kinetics

The apparent reaction rate constants for COD removal were calculated in accordance with
Equation (5) [32]:

ln[CODt] = ln[COD0] −Kt (5)

where COD0 and CODt are the COD values of the initial and final pollutant concentrations (mg L−1),
respectively; t is the electrolysis time (min); and K is the apparent reaction rate constant (min−1).
The apparent reaction rate constants calculated in accordance with Equation (3) for the current densities
of 8, 10, 12, 14, 15, 18, 20, and 25 mA cm−2 were 0.0072, 0.0107, 0.0118, 0.0160, 0.0202, 0.0212, 0.0224,
and 0.0232 min−1, respectively. The linear relationship between the logarithmic values of COD and
electrolysis time is depicted in Figure 3. Table 2 shows that the correlation coefficient R2 of linear
fitting was greater than 0.9989. This result indicates that COD removal satisfies the first-order reaction
kinetics equation.
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Figure 3. Linear relationship between the logarithmic values of chemical oxygen demand (COD) and
electrolysis time.

Table 2. K and correlation coefficient values under various current densities.

Current Density j (mA cm−2) Regression Line K (min−1) R2

8 Y = 0.00724x + 5.59842 0.0072 0.9999
10 Y = −0.01074x + 5.59842 0.0107 0.9999
12 Y = −0.01177x + 5.59842 0.0118 0.9998
14 Y = −0.01602x + 5.59842 0.0160 0.9998
15 Y = −0.02023x + 5.59842 0.0202 0.9997
18 Y = −0.02121x + 5.59842 0.0212 0.9995
20 Y = −0.02242 + 5.59842 0.0224 0.9992
25 Y = −0.02322 + 5.59842 0.0232 0.9989

Other parameters, such as temperature (T), pH value, and electricity can be obtained when the
influent quality and flow rate are held constant in the electrolytic cell. The kinetic constant K is only
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related to current density (j) under the conditions of the original pH of 3 and Na2SO4 concentration of
0.10 mol L−1 [11].

K = Mja (6)

The relationship between K and J can be inferred from Table 2.

K = 0.0012 j0.9485 (7)

From Equation (5), Equation (7) can be expressed as

ln[CODt] = ln[COD0] − 0.0012 j0.9485t (8)

which describes the relationship among COD, current density, and oxidation time.
The optimal electro-oxidation conditions were initially determined by considering the effective

factors of current density, original pH value, and electrolyte concentration. A COD removal efficiency
of 100% was obtained with the optimal operating parameters of a current density of 15 mA cm−2,
an original pH of 3, and a Na2SO4 concentration of 0.10 mol L−1 at 120 min. The dependencies of
the values of COD, ORP, TEC, and Qsp under a current density of 15 mA cm−2, an original pH of 3,
and a Na2SO4 concentration of 0.10 mol L−1 during electrochemical oxidation are shown in Figure 4.
COD removal efficiency, TEC, and Qsp increased with electro-oxidation time. COD removal efficiency,
TEC, Qsp, and ORP were 77.9%, 24.2 kWh m−3, 1.375 Ah L−1, and 383 mV, respectively, when oxidation
time was 1 h. The ORP value decreased from 494 mV to 190 mV within 5 min of electrolysis and then
increased gradually to 500 mV during degradation.
Int. J. Environ. Res. Public Health 2019, 16, x 7 of 17 
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density of 15 mA cm−2, original pH of 3, and an Na2SO4 concentration of 0.10 mol L−1.

The typical multiple regression equation showing the relationship among ORP, current density,
original pH, Na2SO4 concentration, reaction time, and COD removal efficiency was obtained as follows:

COD% = −0.16276 + 0.00281 j + 0.01709pH + 1.5595[Na2SO4]

+0.00495t + 9.766624E− 4ORP
(9)
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The typical multiple regression equation representing the relationship among influential
parameters and TEC was obtained and is shown below:

TEC = −39.06431 + 1.97416 j + 0.2894pH + 66.72156[Na2SO4]

+0.46082t + 0.00664ORP
(10)

The R2 values for COD removal efficiency and TEC were 0.8878 and 0.93223, respectively.
These values reflect a good correlation among COD, TEC, j, pH, t, Na2SO4 concentration, and ORP.
ORP values provide a complete indicator of the effect of current density, electrolyte concentration, pH,
and reaction time on the performance of the electro-oxidation system. Therefore, the ORP value can
be used as an effective controlling factor for the prediction of COD removal efficiency and the TEC
of electro-oxidation.

3.2. BP–ANN Prediction of 2-Chlorophenol Removal

The tangent sigmoid was selected as the transfer function for the input layer nodes to the hidden
layer, and the purelin was selected as the transfer function for the hidden layer nodes to the output
layer. All data were normalized within a range of −1 and 1 before being fed to the networks to increase
training speed and facilitate modeling and prediction.

In this study, the numbers of input and output nodes were 5 and 2, respectively, and were equal
to the numbers of input and output data. The number of neurons has a considerable effect on network
performance. For example, the network cannot achieve the desired error if the number of neurons is too
small, or overfitting may occur if the number of neurons is too large. Thus, determining the appropriate
number of neurons in the hidden layer is necessary. This number can usually be determined by using
the following empirical formula in accordance with Hecht–Nielsen’s theorem [33]:

NH = 2Ni + 1 (11)

where NH is the number of hidden neurons, and Ni is the number of input variables, which is 5 in
the present work. Equation (11) shows that the node number in the hidden layer was approximately
11. Then, BP networks with different hidden neurons from 6–16 were compared on the basis of
the maximization of R2 and the minimization of MSE for the testing dataset. Table 3 shows that
the BP–ANN that contains 6–16 hidden neurons in the prediction of the electro-oxidation process.
The optimal BP–ANN model provided an R2 and MSE of 0.9344 and 0.0137232 for COD removal
efficiency, respectively, and an R2 and MSE of 0.9355 and 0.013127 for TEC, respectively when the
hidden neurons were 10. Under the optimal network, BP–ANN in the prediction of COD removal
efficiency and TEC and the correlations between the experimental and predicted sets are illustrated
in Figure 5. The error range of COD was (−0.058, 0.249) and TEC (−0.079, 0.391). The network
performance is good, but the error range shows that the deviation of individual points is large.

The training algorithm also affects the performance of BP networks. A wide variety of training
functions with 10 neurons used in the hidden layer was studied to select a good BP network.
Table 4 presents the data for R2 and MSE under different training functions of BP networks.
The Levenberg–Marquardt back propagation (trainlm) training algorithm, which maximized the R2 and
minimized the MSE of COD removal efficiency and TEC, was identified as the best training function.
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Table 3. Evaluation of the prediction performance of the BP–ANN model for the testing dataset.

NH
COD Removal Efficiency TEC

R2 MSE R2 MSE

6 0.9151 0.0155151 0.9277 0.014145
7 0.8741 0.0127321 0.8896 0.013234
8 0.8781 0.0152728 0.9025 0.016566
9 0.9292 0.0149617 0.9148 0.003826

10 0.9344 0.0137232 0.9355 0.013127
11 0.8998 0.0146919 0.9051 0.016887
12 0.8447 0.0165818 0.9077 0.014058
13 0.9032 0.0141709 0.9185 0.013157
14 0.8231 0.0158827 0.893 0.016551
15 0.874 0.0165818 0.8987 0.014344
16 0.8451 0.0153163 0.9021 0.013923
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Figure 5. Performance of the BP–ANN predicting COD removal efficiency and TEC between
experimental and predicted data sets (COD removal efficiency testing set (a), TEC testing set (b));
correlations between experimental and predicted set (COD removal efficiency testing set (c), TEC testing
set (d)).
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Table 4. Predictions of backpropagation (BP) models with different training algorithms for the
testing dataset.

BP–ANN
Training
Function

COD Removal Efficiency TEC

R2 MSE R2 MSE

Batch training with weight and bias
learning rules trainb 0.86209 0.0134868 0.88977 0.0162386

BFGS quasi-Newton backpropagation trainbfg 0.90721 0.0161285 0.77684 0.0184532
Bayesian regularization

backpropagation trainbr 0.8426 0.012 0.84645 0.0157329

Unsupervised batch training with
weight and bias learning rules trainbu 0.91427 0.0143475 0.84693 0.0159821

Cyclical order weight/bias training trainc 0.79387 0.0183421 0.78352 0.0173493
Powell-Beale conjugate gradient

backpropagation traincgb 0.84096 0.0183258 0.81842 0.016399

Fletcher-Reeves conjugate gradient
backpropagation traincgf 0.88913 0.0159525 0.89006 0.0144586

Polak-Ribi’ere conjugate gradient
backpropagation traincgp 0.89724 0.0153866 0.73305 0.0191479

Batch gradient descent traingd 0.91312 0.016002 0.88845 0.0158414
Gradient descent with adaptive
learning rate back propagation traingda 0.91939 0.0191324 0.88416 0.0159636

Batch gradient descent
with momentum traingdm 0.88482 0.0163147 0.85786 0.0184368

Variable learning
rate backpropagation traingdx 0.91799 0.0143824 0.78431 0.0189369

Levenberg–Marquardt
back-propagation trainlm 0.9344 0.0137232 0.9355 0.013127

3.3. Optimization of the Weight and Threshold Value of BP–ANN

The PSO–BP–ANN can be optimized for selection purposes by optimizing (1) swarm size,
(2) maximum iteration, (3) cognition coefficient C1, and (4) social coefficient C2 (Table A2). Table 5
displayed PSO control parameters, R2, and training MSE for the testing dataset. The PSO–ANN
containing a swarm size of 50, a maximum iteration of 200, C1 of 1.5, and C2 of 1.5 was selected as the
best model for the electrochemical process of interest. The optimal PSO–BP–ANN models provided R2

of 0.99 and 0.9944 for COD removal efficiency and TEC, and MSE values of 0.0015526 and 0.0023456,
respectively, for the testing dataset. The performance of the optimal PSO–BP–ANN in the prediction of
COD removal efficiency and TEC and the correlations between the experimental and predicted sets
are illustrated in Figure 6. The PSO–BP–ANN selected for the efficient prediction of 2-Chlorophenol
removal in an electro-oxidation system was containing 10 hidden neurons, trainlm training algorithm,
swarm size of 50, maximum iteration of 200, C1 of 1.5, and C2 of 1.5.

Table 5. PSO–ANN with different parameters of the PSO algorithm.

Number of
Neurons

Swarm
Size

Max
Iteration

Cognition
Coefficient (C1)

Social
Coefficient (C2)

COD Removal
Efficiency TEC

R2 MSE R2 MSE

10 10 200 1.5 1.5 0.9528 0.0024367 0.9781 0.0024975
10 30 200 1.5 1.5 0.9783 0.0034865 0.9878 0.0022
10 50 200 1.5 1.5 0.99 0.0015526 0.9944 0.0023456
10 70 200 1.5 1.5 0.976 0.0015874 0.9878 0.0038921
10 100 200 1.5 1.5 0.9736 0.00173 0.9977 0.003281
10 120 200 1.5 1.5 0.98 0.0019062 0.9983 0.0031672
10 50 100 1.5 1.5 0.9852 0.0011566 0.9834 0.0012677
10 50 150 1.5 1.5 0.9695 0.0021488 0.9876 0.001835
10 50 250 1.5 1.5 0.9891 0.0012508 0.9812 0.0033047
10 50 200 0.5 2.5 0.9767 0.0024646 0.9882 0.0026686
10 50 200 1 2 0.9888 0.00179873 0.9891 0.0012586
10 50 200 2 1 0.9874 0.0023016 0.9919 0.0034017
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efficiency testing set (c), TEC testing set (d)).

3.4. Assessment of the Importance of Variables

The weight matrix of the neural net can be used to assess the relative importance of various input
variables for output variables [31]. The relative importance of input variables on the value of COD
removal efficiency and TEC as calculated by particle swarm optimization BP–ANN (PSO–BP–ANN) is
shown in Table 6. Sensitivity analysis indicated order of relative importance the operational parameters
on the electro-oxidation as: electrolysis time > pH > electrolyte concentration > ORP > current density.
The table indicates that all of the variables have strong effects on COD removal efficiency and TEC.
Therefore, none of the variables studied in this work should be neglected in the analysis.

Table 6. Relative importance of input variables on the value of COD removal efficiency and TEC.

Input Variable Importance (%)

current density 18.85%
original pH 21.11%

electrolyte concentration 19.69%
electro-oxidation time 21.30%

ORP 19.05%
Total 100%
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4. Conclusions

In this study, the main object is development and construction of novel model that could make
efficient prediction of electro-oxidation removal of 2-Chlorophenol on the basis of batch electro-oxidation
experiments. The analysis of removal kinetics indicated that ORP was closely correlated with COD
removal efficiency and TEC and was one of the important input parameters of PSO–BP–ANN.
PSO–BP–ANN was developed through the optimization of the weights and thresholds of BP–ANN.
The PSO–BP–ANN that contained 10 hidden neurons, trainlm training algorithm and possessed
a swarm size of 50, maximum iteration of 200, C1 of 1.5, and C2 of 1.5 was identified as the best
model for predicting 2-chlorophenol degradation through electro-oxidation. The PSO–BP–ANN
model provided accurate predictions and R2 of 0.99 and 0.9944 for COD removal efficiency and TEC,
and MSE values of 0.0015526 and 0.0023456 respectively for the testing dataset. The weight matrix
revealed that the order of relative importance for the operational parameters of the electro-oxidation is:
electrolysis time > pH > electrolyte concentration > ORP > current density. For comparative purposes,
performance data for the ANN methodology in various electrochemical processes are summarized in
Table A3.
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Appendix A

Table A1. The results of the electro-oxidation experiment.

Number Current Density pH Na2SO4 Concentration Time ORP COD Removal Efficiency TEC

1 8 6.5 0.1 5 12 0.092 0.940
2 10 6.5 0.1 5 14 0.112 1.354
3 14 6.5 0.1 5 71 0.117 2.018
4 15 6.5 0.1 5 80 0.123 2.250
5 16 6.5 0.1 5 125 0.120 2.443
6 18 6.5 0.1 5 130 0.136 3.128
7 20 6.5 0.1 5 144 0.143 3.133
8 25 6.5 0.1 5 150 0.160 3.958
9 15 3 0.1 5 190 0.206 2.200

10 15 4 0.1 5 180 0.183 2.406
11 15 5 0.1 5 173 0.163 2.313
12 15 7 0.1 5 60 0.151 2.506
13 15 9 0.1 5 -38 0.119 2.525
14 15 11 0.1 5 -68 0.088 2.434
15 15 3 0.05 5 162 0.105 2.025
16 15 3 0.08 5 183 0.153 2.438
17 15 3 0.1 5 190 0.206 2.200
18 15 3 0.12 5 180 0.183 2.688
19 8 6.5 0.1 15 50 0.231 2.820
20 10 6.5 0.1 15 61 0.271 4.063
21 12 6.5 0.1 15 73 0.299 5.019
22 14 6.5 0.1 15 100 0.305 6.055
23 15 6.5 0.1 15 140 0.322 6.750
24 16 6.5 0.1 15 190 0.332 7.328
25 20 6.5 0.1 15 220 0.372 9.400
26 25 6.5 0.1 15 230 0.423 11.875
27 15 3 0.1 15 275 0.372 6.600
28 15 4 0.1 15 210 0.345 7.219
29 15 5 0.1 15 187 0.302 6.938
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Table A1. Cont.

Number Current Density pH Na2SO4 Concentration Time ORP COD Removal Efficiency TEC

30 15 7 0.1 15 120 0.287 7.519
31 15 9 0.1 15 56 0.248 7.575
32 15 11 0.1 15 13 0.195 7.301
33 15 3 0.05 15 250 0.269 6.075
34 15 3 0.08 15 265 0.324 7.313
35 15 3 0.1 15 275 0.372 6.600
36 15 3 0.12 15 230 0.360 8.063
37 8 6.5 0.1 25 60 0.338 4.700
38 10 6.5 0.1 25 70 0.394 6.771
39 12 6.5 0.1 25 80 0.438 8.365
40 14 6.5 0.1 25 112 0.461 10.092
41 15 6.5 0.1 25 156 0.484 11.250
42 16 6.5 0.1 25 224 0.499 12.213
43 18 6.5 0.1 25 256 0.544 15.638
44 20 6.5 0.1 25 259 0.550 15.667
45 25 6.5 0.1 25 270 0.623 19.792
46 15 3 0.1 25 290 0.484 11.000
47 15 4 0.1 25 231 0.450 12.031
48 15 5 0.1 25 201 0.396 11.563
49 15 7 0.1 25 145 0.377 12.531
50 15 9 0.1 25 85 0.349 12.625
51 15 11 0.1 25 44 0.291 12.169
52 15 3 0.05 25 278 0.384 10.125
53 15 3 0.08 25 280 0.456 12.188
54 15 3 0.1 25 290 0.484 11.000
55 15 3 0.12 25 245 0.493 13.438
56 8 6.5 0.1 35 73 0.428 6.580
57 10 6.5 0.1 35 80 0.498 9.479
58 12 6.5 0.1 35 91 0.556 11.711
59 14 6.5 0.1 35 125 0.584 14.128
60 15 6.5 0.1 35 170 0.612 15.750
61 16 6.5 0.1 35 240 0.637 17.099
62 18 6.5 0.1 35 260 0.671 21.893
63 20 6.5 0.1 35 273 0.688 21.933
64 25 6.5 0.1 35 283 0.752 27.708
65 15 3 0.1 35 310 0.592 15.400
66 15 4 0.1 35 240 0.550 16.844
67 15 5 0.1 35 210 0.472 16.188
68 15 7 0.1 35 180 0.458 17.544
69 15 9 0.1 35 100 0.424 17.675
70 15 11 0.1 35 53 0.363 17.036
71 15 3 0.05 35 292 0.477 14.175
72 15 3 0.08 35 305 0.566 17.063
73 15 3 0.1 35 310 0.592 15.400
74 15 3 0.12 35 303 0.588 18.813
75 8 6.5 0.1 45 85 0.497 8.460
76 10 6.5 0.1 45 110 0.574 12.188
77 12 6.5 0.1 45 115 0.640 15.057
78 14 6.5 0.1 45 153 0.674 18.165
79 15 6.5 0.1 45 172 0.706 20.250
80 16 6.5 0.1 45 248 0.736 21.984
81 18 6.5 0.1 45 270 0.762 28.148
82 20 6.5 0.1 45 287 0.786 28.200
83 25 6.5 0.1 45 292 0.836 35.625
84 15 3 0.1 45 324 0.690 19.800
85 15 4 0.1 45 260 0.640 21.656
86 15 5 0.1 45 218 0.546 20.813
87 15 7 0.1 45 190 0.543 22.556
88 15 9 0.1 45 101 0.487 22.725
89 15 11 0.1 45 66 0.428 21.904
90 15 3 0.05 45 301 0.569 18.225
91 15 3 0.08 45 318 0.656 21.938
92 15 3 0.1 45 324 0.690 19.800
93 15 3 0.12 45 310 0.700 24.188
94 8 6.5 0.1 55 90 0.550 10.340
95 10 6.5 0.1 55 120 0.640 14.896
96 12 6.5 0.1 55 130 0.704 18.403
97 14 6.5 0.1 55 170 0.741 22.202
98 15 6.5 0.1 55 179 0.774 24.750
99 16 6.5 0.1 55 250 0.804 26.869
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Table A1. Cont.

Number Current Density pH Na2SO4 Concentration Time ORP COD Removal Efficiency TEC

100 18 6.5 0.1 55 276 0.819 30.525
101 20 6.5 0.1 55 286 0.840 34.467
102 25 6.5 0.1 55 293 0.884 43.542
103 15 3 0.1 55 383 0.779 24.200
104 15 4 0.1 55 288 0.718 26.469
105 15 5 0.1 55 256 0.614 25.438
106 15 7 0.1 55 205 0.621 27.569
107 15 9 0.1 55 106 0.545 27.775
108 15 11 0.1 55 83 0.475 26.771
109 15 3 0.05 55 312 0.651 22.275
110 15 3 0.08 55 353 0.734 26.813
111 15 3 0.1 55 383 0.779 24.200
112 15 3 0.12 55 363 0.765 29.563
113 8 6.5 0.1 70 97 0.617 13.160
114 10 6.5 0.1 70 124 0.717 18.958
115 12 6.5 0.1 70 160 0.782 23.422
116 14 6.5 0.1 70 186 0.819 28.257
117 15 6.5 0.1 70 193 0.849 31.500
118 16 6.5 0.1 70 251 0.869 34.197
119 18 6.5 0.1 70 282 0.891 43.785
120 20 6.5 0.1 70 288 0.902 43.867
121 25 6.5 0.1 70 292 0.925 55.417
122 15 3 0.1 70 410 0.857 30.800
123 15 4 0.1 70 305 0.804 33.688
124 15 5 0.1 70 280 0.712 32.375
125 15 7 0.1 70 215 0.728 35.088
126 15 9 0.1 70 127 0.635 35.350
127 15 11 0.1 70 87 0.557 34.073
128 15 3 0.05 70 321 0.721 28.350
129 15 3 0.08 70 383 0.824 34.125
130 15 3 0.1 70 410 0.857 30.800
131 15 3 0.12 70 380 0.826 37.625
132 8 6.5 0.1 90 105 0.691 16.920
133 10 6.5 0.1 90 139 0.791 24.375
134 12 6.5 0.1 90 160 0.863 30.114
135 14 6.5 0.1 90 198 0.882 36.330
136 15 6.5 0.1 90 205 0.914 40.500
137 16 6.5 0.1 90 252 0.924 43.968
138 18 6.5 0.1 90 282 0.963 56.295
139 20 6.5 0.1 90 291 0.975 56.400
140 25 6.5 0.1 90 296 0.981 71.250
141 15 3 0.1 90 435 0.931 39.600
142 15 4 0.1 90 356 0.89 43.313
143 15 5 0.1 90 313 0.834 41.625
144 15 7 0.1 90 230 0.813 45.113
145 15 9 0.1 90 146 0.729 45.450
146 15 11 0.1 90 98 0.663 43.808
147 15 3 0.05 90 335 0.792 36.450
148 15 3 0.1 90 435 0.931 39.600
149 15 3 0.12 90 423 0.893 48.375
150 8 6.5 0.1 110 121 0.737 20.680
151 10 6.5 0.1 110 140 0.827 29.792
152 12 6.5 0.1 110 173 0.894 36.806
153 14 6.5 0.1 110 193 0.920 44.403
154 15 6.5 0.1 110 210 0.947 49.500
155 16 6.5 0.1 110 254 0.951 53.739
156 18 6.5 0.1 110 285 0.981 68.805
157 20 6.5 0.1 110 291 0.990 68.933
158 25 6.5 0.1 110 293 1.000 87.083
159 15 3 0.1 110 480 1.000 48.400
160 15 5 0.1 110 330 0.931 50.875
161 15 7 0.1 110 235 0.900 55.138
162 15 9 0.1 110 150 0.809 55.550
163 15 11 0.1 110 108 0.740 53.543
164 15 3 0.05 110 367 0.846 44.550
165 15 3 0.08 110 412 0.933 53.625
166 15 3 0.1 110 480 1 48.400
167 15 3 0.12 110 430 0.927 59.125
168 8 6.5 0.1 120 125 0.76 22.560
169 10 6.5 0.1 120 143 0.845 32.500
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Table A1. Cont.

Number Current Density pH Na2SO4 Concentration Time ORP COD Removal Efficiency TEC

170 12 6.5 0.1 120 182 0.911 40.152
171 14 6.5 0.1 120 189 0.933 48.440
172 15 6.5 0.1 120 215 0.959 54.000
173 16 6.5 0.1 120 256 0.96 58.624
174 18 6.5 0.1 120 283 0.99 75.060
175 20 6.5 0.1 120 291 1 75.200
176 25 6.5 0.1 120 292 1 95.000
177 15 3 0.1 120 500 1 52.800
178 15 4 0.1 120 420 0.984 57.750
179 15 5 0.1 120 346 0.953 55.500
180 15 7 0.1 120 240 0.924 60.150
181 15 9 0.1 120 152 0.832 60.600
182 15 11 0.1 120 115 0.767 58.410
183 15 3 0.05 120 370 0.858 48.600
184 15 3 0.08 120 435 0.936 58.500
185 15 3 0.1 120 500 1.000 52.800
186 15 3 0.12 120 435 0.940 64.500
187 12 6.5 0.1 5 43 0.118 1.673
188 18 6.5 0.1 15 200 0.37 9.383
189 15 4 0.1 110 380 0.957 52.938
190 15 3 0.08 90 400 0.891 43.875

Table A2. Partly of PSO–BP–ANN training function code.

Training Function Code

net = newff(inputn,outputn,hiddennum,{‘logsig’,‘purelin’},‘traingdx’);
c1 = 1.5;
c2 = 1.5;

maxgen = 200;
sizepop = 50;

Vmax = 1;
Vmin = −1;
popmax = 5;

popmin = −5;
for i = 1:sizepop

pop(i,:) = 5 * rands(1,numsum);
V(i,:) = 1 * rands(1,numsum);

fitness(i) = fun(pop(i,:),inputnum,hiddennum,outputnum,net,inputn,outputn);
[bestfitness bestindex] = min(fitness);

zbest = pop(bestindex,:);
gbest = pop;

fitnessgbest = fitness;
fitnesszbest = bestfitness;

for i = 1:maxgen
V(j,:) = w * V(j,:) + c1 * rand * (gbest(j,:) − pop(j,:)) + c2 * rand * (zbest − pop(j,:));

V(j,find(V(j,:) > Vmax)) = Vmax;
V(j,find(V(j,:) < Vmin)) = Vmin;
pop(j,:) = pop(j,:) + 0.2 * V(j,:);

pop(j,find(pop(j,:) > popmax)) = popmax;
pop(j,find(pop(j,:) < popmin)) = popmin;

pos = unidrnd(numsum);
if rand > 0.95

pop(j,pos) = 5 * rands(1,1);
fitness(j) = fun(pop(j,:),inputnum,hiddennum,outputnum,net,inputn,outputn);

for j = 1:sizepop
if fitness(j) < fitnessgbest(j)

gbest(j,:) = pop(j,:);
fitnessgbest(j) = fitness(j);
if fitness(j) < fitnesszbest

zbest = pop(j,:);
fitnesszbest = fitness(j);
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Table A3. ANN models for applications in various electrochemical processes.

Type of Process Input Variable Output Variable Types of the
ANN Model R2 References

electrocoagulation

Current density, electrolysis
time, initial pH and dye

concentration, conductivity,
retention time of sludge and
distance between electrodes

Color removal
efficiency BP–ANN 0.974 Daneshvar

et al. [16]

electro-oxidation

Intensity of current, reaction
time, pH, nature of

electrolyte, concentration of
electrolyte

Degradation rate of
oxytetracycline BP–ANN 0.99 Belkacem et

al. [19]

electrochemically
activated persulfate

Electrolysis time, applied
current, persulfate, pH

Sulfamethoxazoleremoval
efficicency BP–ANN 0.9398 Zhang et al.

[10]

electrocoagulation-
flotation

Initial HA concentration,
initial pH, electrical

conductivity, current density,
number of pulses

Humica acid BP–ANN 0.966 Hasani et al.
[34]
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