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Abstract

Hypoxia represents one of the major causes of biodiversity and ecosystem functioning loss for coastal waters. Since
eutrophication-induced hypoxic events are becoming increasingly frequent and intense, understanding the response of
ecosystems to hypoxia is of primary importance to understand and predict the stability of ecosystem functioning. Such
ecological stability may greatly depend on the recovery patterns of communities and the return time of the system
properties associated to these patterns. Here, we have examined how the reassembly of a benthic community contributed
to the recovery of ecosystem functioning following experimentally-induced hypoxia in a tidal flat. We demonstrate that
organism-sediment interactions that depend on organism size and relate to mobility traits and sediment reworking
capacities are generally more important than recovering species richness to set the return time of the measured sediment
processes and properties. Specifically, increasing macrofauna bioturbation potential during community reassembly
significantly contributed to the recovery of sediment processes and properties such as denitrification, bedload sediment
transport, primary production and deep pore water ammonium concentration. Such bioturbation potential was due to the
replacement of the small-sized organisms that recolonised at early stages by large-sized bioturbating organisms, which had
a disproportionately stronger influence on sediment. This study suggests that the complete recovery of organism-sediment
interactions is a necessary condition for ecosystem functioning recovery, and that such process requires long periods after
disturbance due to the slow growth of juveniles into adult stages involved in these interactions. Consequently, repeated
episodes of disturbance at intervals smaller than the time needed for the system to fully recover organism-sediment
interactions may greatly impair the resilience of ecosystem functioning.
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Introduction

To date most ecosystems are profoundly affected by multiple

human activities that alter the systems’ diversity, functioning and

delivered services, e.g. [1,2]. These activities range from single and

recurring disturbances to continuous stress of which the con-

sequences for ecosystem resilience (i.e. movement within and

between stability domains) may depend on the magnitude of

induced change and the diversity-stability relationships that occur

during recovery [3]. In order to assess ecosystem resilience, it is

useful to measure community dynamics from disturbance-recovery

experiments, as recovery reveals the processes determining the

response of ecological systems to changes in disturbance regime

[4]. Ecological theory indicates that increased levels of biodiversity

often result in increased ecosystem functioning [5,6], which may

insure stability against environmental change via compensatory

processes and species performance-enhancing effects [7,8]. None-

theless, the magnitude and direction of the biodiversity-ecosystem

function relationship was also shown to be idiosyncratic and

depending on the disturbance context [9–12]. Moreover, often

one or few particular species have a disproportionate influence on

ecosystem properties [13,14], depending on its functional traits

[15–18]. Additionally, changes in species interactions and

population dynamics during the recovery process are likely to

affect the performances of particular ecosystem functions. Conse-

quently, ecosystem resilience may depend on the time needed to

restore ecosystem functioning by post-disturbance reassembling of

those species with particular functional traits that have distinct

effects on ecosystem processes.

Depleted oxygen conditions are becoming increasingly common

in coastal areas and represent an important problem for the

present coastal benthic environments [19,20]. Hypoxia occurs
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naturally in some bottom waters due to limited circulation (e.g.

fjords), riverine inputs of organic matter in coastal embayments

(e.g. estuaries), or up-welling of subsurface oxygen depleted waters

(e.g. shelf systems) [21]. In addition, there is strong evidence for

a global increase in the frequency, extent, and intensity of hypoxic

events owing to predicted future increases in eutrophication and

water-column stratification resulting from sea water temperature

rise [19]. For example, nutrient enrichment results in an enhanced

occurrence of algal blooms which are known to cause hypoxic

conditions in sheltered coastal habitats, such as tidal flats, through

decompositional processes and a reduced exchange of oxygen with

the water column [22,23]. Consequences of hypoxia are multiple,

including changes in organisms’ behavior and physiology, a loss in

biodiversity and altered ecosystem functioning [24–27]. However,

it is unclear how hypoxic events will affect ecosystem resilience

because knowledge on synergistic recovery mechanisms and their

time scales is lacking, e.g. how recovering benthic diversity

interacts with the stock of reduced compounds that accumulate

during oxygen depletion [27–29].

Macrofaunal organisms affect sediment functioning in coastal

benthic soft-sediment systems through bio-irrigation and bioturba-

tion activities [30–33]. These activities mainly depend on size,

mobility, and species’ sediment reworking traits which are often

associated with feeding activities [18], and are known to alter

sediment properties and structure, thereby creating spatial

heterogeneity which may facilitate or inhibit other species and

hence affect diversity (i.e. ecosystem engineering, [34]). Fore

example, these organism-sediment interactions greatly modify

sediment biogeochemistry and affect microbial organisms [35–36]

that are the primary remineralizers of organic matter and the main

drivers of biogeochemical processes in coastal sediments [37,38].

In order to assess benthic community responses to hypoxia, the

present study aims at understanding the dynamics of the

relationship between reassembling macrobenthos communities

and sediment properties determining ecosystem functioning

following hypoxia. We therefore evaluate the relation between

the time scale of returning community traits (i.e. diversity,

abundance, biomass, bioturbation potential sensu Solan et al.

[18]) and the return rates of several ecosystem processes following

experimentally-induced hypoxia in a coastal tidal flat. Macro-

faunal recovery typically involves successional dynamics which are

strongly determined by the temporal and spatial scale of

disturbance [39] with slowest return rates (i.e. years-decades) in

the largest disturbed areas with limited ecological connectivity

[40]. In contrast, return rates of microbial communities are fast,

ranging from hours to a few months, depending on the type of

disturbance [41–43]. However, if indirect sediment modifications

by macrofaunal bioturbation and bio-irrigation activities are

important, we expected that the return rate of typically

microbial-mediated ecosystem processes would differ from the

‘microbial’ time scale and rather follow the macrofaunal return

rate instead.

Materials and Methods

Site Description and Experimental Design
The experiment was conducted at an intertidal mudflat

(Paulinapolder, 51u 219 2499 N, 3u 429 5199 E) located within the

polyhaline part of the Westerschelde estuary, SW the Netherlands.

Permission for the field work was issued by the Provincie Zeeland,

the Netherlands (Directie Ruimte, Milieu en Water). The study

site has a semi-diurnal tidal regime with a mean tidal range of

3.9 m and a yearly average salinity of 24. Experimental patches

were randomly installed at a distance of at least 5 m from each

other within a 50650 m area at the middle, homogeneous, part of

the flat (tidal elevation=+17.9 cm MSL, median particle

size = 74.5 mm, mud content = 42%, sediment water con-

tent = 62%, sediment total organic matter = 3.9%). Five patches

of sediment (16 m2) were covered with a polyethylene (1 mm) and

tarpaulin (140 g. m-2) sheet [44,45] for 40 days which mimicked

the effects of algal mats covering the substratum, i.e. reduced

exchange of oxygen with the water column and reduced light

penetration. Our manipulation significantly depleted pore water

oxygen and ammonium conditions, without affecting other

sediment properties like water and mud content and the bulk

availability of organic matter (One-way analysis of variance

between undisturbed and disturbed sediments at opening of the

plots on March 30th, 2005: p.0.05; Table S1). Oxygen

penetration was very shallow, ranging between 0 and 1000 mm,

with dissolved oxygen pore water concentration ,2 mg.L-1, i.e.

hypoxia (Figure S1). In addition, five patches were left undisturbed

and used as controls to compare the recovery status of the

disturbed sediments over the course of the experiment.

Three hypoxic patches were used to track the post-hypoxia

variation in ecosystem properties and reassembling of the

macrofauna community into detail, i.e. weekly during the first

two weeks and subsequently biweekly until 25 weeks after hypoxia

at the end of September 2005. In addition, the macrofauna

community composition was determined in September 2006 (i.e.

78 weeks) as well. The analysed ecosystem properties were

sediment bed level height (laser altimetry, n = 6.patch21), sediment

oxygen pore water concentration and penetration (Unisense OX

25 microelectrode, n = 2.patch21), ammonium pore water con-

centration (SANplus segmented flow analyser, SKALAR,

n=2.patch21), total organic matter (loss on ignition at 500uC
for 2 hours, n = 2.patch21) from the upper 10 cm of sediment, and

chlorophyll a (Chl a) concentration (n= 2.patch21). Chlorophyll

a samples were collected with 3.6 cm inner diameter (i.d.) corers

and stored in the dark on dry ice and subsequent at –80uC in the

laboratory awaiting further analyses. Chlorophyll a concentrations

were determined by HPLC analysis of the supernatant, extracted

from the lyophilised sediment by adding 10 ml 90% acetone. The

two other hypoxic patches were sampled one, 10 and 22 weeks

after re-oxygenation to determine the recovery of rates of organic

matter mineralization, sediment oxygen consumption, and de-

nitrification. These three times reflect the major shifts in

macrofauna diversity, community composition and dominant

functional traits during post-hypoxia succession (see results).

Furthermore, samples collected during these three occasions

indicated that the temporal variation in macrofaunal communities

did not differ among the five hypoxic patches.

In order to avoid disturbance in the plots due to repetitive

sampling, samples were collected from a bridge, and sampling

holes were filled with closed PVC tubes, pushed flush with the

sediment surface. Furthermore, to minimise possible edge effects,

sampling only occurred in the inner 363 m.

Benthic Macrofauna Community
Macrofauna samples were randomly collected from each

replicate patch during low tide with a corer (i.d. 12.5 cm) to

a depth of 40 cm, fixed with a neutralized 8% formalin solution

and subsequently washed over a 500 mm sieve. All individuals

were sorted, counted, identified and grouped according to their

feeding, motility and sediment reworking traits (Table S2). Bivalve

biomass were obtained by determination of the ash free dry weight

(4 h combustion at 450uC of dried individuals) and the biomass of

other species was calculated by multiplying the organisms’ blotted
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wet weight with a species-specific ISO certified wet weight-ash free

dry weight conversion factor [46].

Measures of Ecosystem Processes
Nutrient flux rates. In order to determine nutrient flux

rates, triplicate plexiglas cores of sediment (i.d. 10 cm) were

randomly withdrawn without disturbing the sediment surface. The

cores were pre-incubated for 48 hours in the dark at field

temperature in a climate room within one hour after sampling.

Preceding incubation, water was carefully added to the cores

without creating suspension of the sediment (water constituted two

thirds of the core) and cores were placed uncapped and submerged

in an open tank containing aerated water from the Westerschelde

estuary. Teflon coated magnets, rotated by a central magnet, were

placed approximately 5 cm above the sediment surface to stir the

water in order to avoid oxygen depletion at the sediment-water

interface. All equipment used for the incubations was pre-

incubated in Westerschelde water to avoid introduction of new

surfaces for O2, N2 and Argon adsorption and desorption [47].

Sediment oxygen consumption and organic matter mineralization

(i.e. dissolved inorganic carbon (DIC) release rates) were calculated

as the difference in concentration between the start and end of

incubation which lasted for 6–10 h, depending on the decrease of

oxygen in the overlying water. Dissolved oxygen was determined

using Winkler titration [48], samples for DIC were analyzed

within 24 h by flow injection [49]. Samples for N2 and Argon

concentrations were collected at 1.5–2 h time intervals during

incubation and preserved in 20 ml HgCl2. Denitrification rates (i.e.

N2 gas production rates) were determined within one week using

membrane inlet mass spectrometry, normalized by those of Argon

and calculated by linear regression, corrected for the refill water

[50].

Bio-irrigation, primary production and bed load

sediment transport. The bio-irrigation of the sediments was

indirectly inferred from vertical sediment ammonium pore water

profiles [51]. Therefore, two 6.2 cm i.d. corers, containing about

15 cm of sediment, were extracted from each patch without

disturbing the sediment surface. Corers were sliced upon arrival in

the laboratory and frozen at220uC awaiting analysis. Recovery of

deep irrigation of the sediment (5–10 cm) was assessed 0, 1, 6, 14

and 25 weeks after hypoxia. Bedload sediment transport rates

(erosion, accretion) were calculated as the difference in bed level

height between sampling occasions. The microalgal biomass,

measured as Chl a concentration in the first 0.3 cm, was used as

a proxy for benthic primary production [52].

Data Analysis and Statistics
Temporal changes in ecosystem properties and processes in

recovering and undisturbed sediments were assessed with Re-

peated Measures Analysis of Variance of transformed data, in

which both Treatment (i.e. recovering vs. undisturbed sediments)

and Time (i.e. weeks after hypoxia) were used as fixed factors.

Proportional data were arcsine-squareroot transformed whereas

a logarithmic (loge) transformation was applied to all other data.

The homogeneity of the variance-covariance structure was

analyzed using the Mauchley test of sphericity (Table S3), and

Bartlett’s and Cochran’s tests were used to verify homogeneity of

variances. If sphericity was not met, adjusted F-tests were applied

based on the Greenhouse-Geisser corrections in order to interpret

the significance of the within subject (i.e. repeated measure) effect.

Replicated samples of variables per plot were pooled to avoid

pseudoreplication. In order to evaluate recovery status of

ecosystem processes and properties, planned contrasts between

recovering and undisturbed sediments were performed at one, 10

and 22 weeks post-hypoxia, which encompass the time prior

(April), during (June) and after (September) the natural re-

cruitment period at our study site. These sampling occasions were

thus deliberately chosen a priori since we anticipated that the

structure and functional traits of the recolonizing community

would differ among these three occasions. In this respect, we

applied paired t-tests with separate error terms based on the two

levels being compared, as is recommended for planned compar-

isons of repeated measures of properties over time in the same

plots [53]. Since subsurface pore water ammonium concentrations

(5–10 cm) were not available at 10 and 22 weeks post-hypoxia,

recovery status for this property corresponding to the timing

during and after the natural recruitment period was assessed

respectively 14 and 25 weeks after hypoxia.

In order to understand how recovering macrofaunal assem-

blages contribute to post-disturbance ecosystem functioning, the

role of species richness, community total biomass and abundance,

and community-wide impact on sediment mixing (i.e. bioturba-

tion) in explaining variation in ecosystem processes (i.e. de-

nitrification, oxygen consumption, organic matter mineralization,

bed load sediment transport, primary production, and bio-

irrigation) among recovery stages was inferred using Distance

based Linear Models (DistLM, [54]). The community potential to

bioturbate (BPc) was calculated according to Solan et al. [18]

taking into account the population biomass of each species based

on the macrofauna samples and the species’ impact on sediment

bioturbation through its specific mobility and sediment reworking

traits (Table S2). The most reliable predictor for the variation in

each ecosystem process in recovering and undisturbed sediments

was inferred by applying the Akaike’s information criterion (AIC,

[55]).

Results

Macrofauna Community Recovery
Repeated measures analysis of variance revealed that macro-

faunal diversity, total abundance, biomass and functional group

composition significantly differed over time between recovering

and undisturbed sediments (Table 1). Specifically, surface deposit

feeding species that only modify the surface sediment layer

abundantly colonized the disturbed sediments and dominated the

community during the first 14 weeks following hypoxia. After-

wards, dominance shifted to head-down feeders and regenerators

that actively transport sediment from depth to the surface, and to

biodiffusors that randomly transport sediment particles over short

distances (Figure 1). In contrast, deposit feeding and biodiffusing

species always dominated the undisturbed community, indicating

that the changes observed after hypoxia reflected successional

dynamics imputable to recolonisation after disturbance (Figure 1).

All species had successfully colonized the sediment and both

species number and total abundance were restored after 22 weeks

(species richness: t=3.18, d.f. = 2, p = 0.086; total abundance:

t=0.34, d.f. = 2, p = 0.767). However, the recovering communities

had significantly lower biomass (t=6.37, d.f. = 2, p=0.024) and

less effects on sediment mixing (t=6.36, d.f. = 2, p= 0.024) after

22 weeks of recovery as compared to the undisturbed communities

(Figure 1).

Recovery of Ecosystem Processes
Repeated measures analysis of variance indicated that de-

nitrification, Chl a concentration, deep porewater ammonium

concentration, and bed level height significantly differed over time

between recovering and undisturbed sediments (Table 1). Oxygen

consumption rates and removal rates of bioavailable nitrogen from

Hypoxia, Bioturbation and Recovery of Functioning
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the sediment as a consequence of denitrification were, respectively,

only 42–56% and 29–52% of the rates recorded in the

undisturbed sediments throughout the experiment (Figure 2b,c).

Deep ammonium pore water concentrations in the sediment were

enhanced in the disturbed sediments whereas dissolved inorganic

carbon release rates from the sediment did not differ among

recovering and undisturbed sediments at all times (Table 1,

Figure 2a,g). Planned contrasts indicate that deep pore water

ammonium concentrations and denitrification rates were still

significantly reduced in recovering sediments after the natural

recruitment period in September (pore water ammonium 5–

10 cm: t=19.98, d.f. = 2, p= 0.003; denitrification: t=131.05,

d.f. = 2, p= 0.005). Chlorophyll a concentration was significantly

higher after 10 weeks in the recovering sediments (t=4.57, d.f. = 2,

p=0.045) but differed no longer from the undisturbed sediment

after 22 weeks in September (t=2.79, d.f. = 2, p=0.108)

(Figure 2h). Using surface sediment Chl a concentrations and

the regression equation provided for the Westerschelde estuary

[56], average primary production is estimated to be 1.42 g

C.m22.day21 during the first 12 weeks of recovery which is 78%

higher than in the undisturbed sediments during the same period.

Further, a net sediment bed erosion of 0.360.05 SD mm.day21

took place in the undisturbed sediments from week 4 onwards until

week 25, while the bed level remained more or less stable in the

recovering sediments during that period (Figure 2i).

Biodiversity – Ecosystem Process Relationships
Distance based linear models demonstrated that the variation in

ecosystem processes in the recovering and undisturbed sediments

was significantly explained by the macrofauna community for four

out of the six processes that were measured and assessed:

denitrification, primary production, deep bio-irrigation and bed

load sediment transport (Table 2). Akaike’s information criterion

identified BPc to be the best predictor of the variability in

denitrification, bed level height, Chl a concentration, and deep

porewater ammonium concentration. In contrast, higher AIC

values show that species richness and community total abundance

were in general of minor importance in explaining process

variability among recovery stages as compared to community

total biomass and BPc (Table 2, Figure S2). Species richness only

significantly explained the variation in bed level height and deep

porewater ammonium concentration in the recovering and

Figure 1. Temporal variation in macrofauna community properties in recovering and undisturbed sediments. Top panel; trophic
group composition, abundance and species richness. Bottom panel; sediment reworking trait group composition, biomass and community
bioturbation potential. Error bars represent 695% confidence intervals.
doi:10.1371/journal.pone.0049795.g001

Table 1. Results of Repeated Measures Analysis of Variance on ecosystem properties and processes during the experiment.

Ecosystem property or process Treatment Time Treatment6Time

d.f. MS F P d.f. MS F p d.f. MS F p

Species richness 1 1.029 556.60 ,0.001 14 0.150 48.40 ,0.001 14 0.130 41.97 ,0.001

Total abundance 1 7.678 156.21 ,0.001 14 2.382 123.31 ,0.001 14 2.192 113.47 ,0.001

Total biomass 1 23.820 1502.66 ,0.001 14 0.323 7.21 ,0.001 14 0.412 9.22 ,0.001

Community bioturbation potential 1 10.442 4867.18 ,0.001 14 0.339 30.71 ,0.001 14 0.358 32.46 ,0.001

Proportional biomass surficial modifiers 1 2.411 250.78 0.001 14 0.257 23.13 ,0.001 14 0.341 30.72 ,0.001

Proportional biomass head-down feeders 1 0.652 161.61 ,0.001 14 0.016 1.33 0.221 14 0.028 2.26 0.016

Proportional biomass biodiffusors 1 20.059 1047.82 ,0.001 14 0.094 5.28 ,0.001 14 0.073 4.09 ,0.001

Proportional biomass regenerators 1 0.020 0.83 0.415 14 0.059 4.51 ,0.001 14 0.043 3.32 0.001

Proportional abundance surface deposit feeders 1 1.219 308.18 ,0.001 14 0.258 20.81 ,0.001 14 0.129 10.41 ,0.001

Proportional abundance subsurface deposit feeders 1 3.584 616.97 ,0.001 14 0.138 7.41 ,0.001 14 0.099 5.32 ,0.001

Proportional abundance suspension feeders 1 0.254 179.07 ,0.001 14 0.020 11.02 ,0.001 14 0.004 1.95 0.040

Proportional abundance omnivores 1 0.066 19.39 0.012 14 0.037 5.76 ,0.001 14 0.011 1.75 0.070

Proportional abundance predators and scavengers 1 0.001 0.08 0.789 14 0.016 2.08 0.027 14 0.010 1.34 0.214

Chlorophyll a content 1 0.485 19.60 0.011 13 0.172 17.77 ,0.001 13 0.073 7.57 ,0.001

% Total organic matter 1 0.002 0.26 0.637 13 0.001 1.25 0.275 13 0.001 1.66 0.099

Pore water ammonium 0–1 cm 1 2.867 7.93 0.048 13 0.320 1.80 0.069 13 0.338 1.90 0.052

Pore water ammonium 5–10 cm 1 3.015 41.73 0.003 4 0.158 14.06 ,0.001 4 0.040 3.55 0.030

Bed level height 1 0.039 22.37 0.009 11 0.002 11.27 ,0.001 11 0.002 13.56 ,0.001

Oxygen penetration depth 1 0.014 0.15 0.722 12 0.084 1.05 0.420 12 0.112 1.41 0.192

Denitrification 1 0.284 50.37 0.019 2 0.019 10.51 0.026 2 0.020 10.99 0.024

Total oxygen consumption 1 0.153 3.10 0.220 2 0.057 3.88 0.116 2 0.003 0.17 0.847

Re-oxidation of reduced compounds 1 0.001 0.08 0.801 2 0.016 1.47 0.333 2 0.002 0.20 0.830

Organic matter mineralisation* 1 0.051 1.05 0.413 2 0.098 4.35 0.172 2 0.018 0.80 0.466

*denotes adapted significance levels deduced from Greenhouse-Geisser corrections when sphericity assumption for repeated measures was not met. Data of bed level
height were occasionally lacking for week 0 and week 12 and data of oxygen penetration depth for week 4.
doi:10.1371/journal.pone.0049795.t001
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undisturbed sediments, though clearly to a lesser extent than BPc.

Especially a high proportion of the variation in subsurface

processes, i.e. deep irrigation (78%) and denitrification (96%)

was explained by BPc.

Discussion

Engineering Macrofauna
Although our deliberately created hypoxic conditions were

caused artificially, the patterns of species recolonisation and

community assembly followed those observed for similar environ-

ments where hypoxia occurred naturally (for more details see [57–

61]). Following re-oxygenation, the macrofaunal community

increased in species richness and functional diversity along with

increasing organism-sediment interactions by bioturbating large

animals, as observed for large-scale organically-enriched sediments

[62,63]. Moreover, hypoxia did not change sediment metabolism;

i.e. sediment organic matter and mineralization rates did not differ

significantly among recovering and undisturbed sediments

throughout the experiment (Table 1; Fig. 2a,d). Hence, we are

convinced that our findings are not biased by our method of

inducing hypoxia, nor by the effects of sediment metabolism on

macrofauna and, consequently, enables us to properly investigate

the relation between macrofaunal reassembling diversity and

functional traits (i.e. bioturbation) and the recovery of ecosystem

processes.

Four out of the six ecosystem processes that were measured and

assessed were related to the variability in macrofaunal community

characteristics: denitrification, bio-irrigation, primary production

and bed load sediment transport. Both denitrification rates and

deep pore water ammonium concentrations were not recovered

after six months of recovery when all species had recolonised the

disturbed sediments. The variability in denitrification and deep

pore water ammonium concentrations, as a proxy for deep bio-

irrigation, was mainly explained by the changes in bioturbation

potential, while species richness and total abundance were in

Figure 2. Variation in ecosystem processes and properties among recovery stages and in undisturbed sediments. (a) organic matter
mineralization (DIC), (b) total sediment oxygen consumption, (c) denitrification, (d) percentage of total organic matter, (e) oxygen penetration, (f)
pore water ammonium concentration in surface sediment, (g) ammonium pore concentration in deep sediments, (h) chlorophyll a concentration, and
(i) sediment bed level height. Error bars represent 695% confidence intervals.
doi:10.1371/journal.pone.0049795.g002

Table 2. Influence of macrofauna species richness, abundance, biomass, and bioturbation on the variability in ecosystem
processes and properties in recovering and undisturbed sediments.

Ecosystem process Macrofauna property SS F p R2 AIC

Denitrification* Community bioturbation potential 147.06 105.41 0.0068 0.96344 3.57

Total biomass 146.05 88.619 0.004 0.95681 4.56

Total abundance 69.353 33.306 0.0416 0.45434 19.78

Species richness 34.69 11.764 0.3734 0.22726 21.87

Sediment oxygen consumption{ Community bioturbation potential 4277 99.403 0.0526 0.71306 37.954

Total abundance 2872.7 36.766 0.0754 0.47894 41.533

Total biomass 2734.7 33.519 0.1554 0.45593 41.793

Species richness 66.055 4.45E+02 0.8908 1.10E+02 45.378

Organic matter mineralisation{ Total abundance 2990.9 1.019 0.4394 0.20303 49.474

Community bioturbation potential 2851.2 0.95998 0.3424 0.19354 49.545

Total biomass 1759.1 0.54242 0.4804 0.11941 50.073

Species richness 1069.8 0.31324 0.7154 7.26E+02 50.384

Primary production** Total biomass 12485 55.427 0.0254 0.17572 218.08

Community bioturbation potential 12259 54.213 0.0262 0.17254 218.19

Species richness 1230.4 0.4582 0.5252 1.73E+02 223

Total abundance 843.23 0.31228 0.5804 1.19E+02 223.16

Deep bio-irrigation{{ Community bioturbation potential 7.98E+12 28.256 0.0004 0.77934 173.33

Species richness 5.96E+12 11.128 0.025 0.58178 179.73

Total biomass 5.91E+12 10.939 0.0122 0.57759 179.83

Total abundance 9.88E+11 0.85438 0.3822 9.65E+02 187.43

Bed load sediment transport{{ Community bioturbation potential 16.908 96.715 0.0062 0.30537 15.318

Species richness 14.012 74.539 0.0094 0.25307 17.06

Total biomass 12.423 63.639 0.0198 0.22437 17.965

Total abundance 4.59E-03 1.82E+01 0.9658 8.29E-01 24.061

All distance based models were performed with 4999 random permutations. SS, explained sum of squares of the model; F, pseudo-F statistic; p, significance level; R2, the
proportion of variance in the model which is explained by the predictor; AIC, Akaike’s information criterion. The best model for each process according to AIC is shown
on top. Total model sum of squares: *152.64, {5998, {14732, **71049, {{1.024 109, {{55.369; unexplained sum of squares of the model = SStotal – SSmodel. For details on the
process measurements and assessments: see Methods.
doi:10.1371/journal.pone.0049795.t002
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general of minor importance in statistically explaining these

process variabilities. Several studies have shown that bioturbation

activity increases denitrification, e.g. [64,65]. At an early stage of

recovery, the lack of irrigation and particle mixing to deep

sediment layers due to the absence of large bioturbating animals

very likely impaired the development of aerobic zones and redox

interfaces needed for coupled nitrification-denitrification which

may explain the slow recovery of fixed nitrogen removal from the

sediment. Furthermore, the rapid recovery of oxygen penetration

depth and surface pore-water ammonium concentrations

(Figure 2e,f) due to molecular oxygen diffusion into the upper

surface layer, in comparison with the slow recovery of pore water

ammonium concentrations at depth, suggest that the recovery of

benthic oxygen consumption was mainly hampered by the limited

re-oxydation of reduced compounds that have accumulated at

depth. Moreover, the low respiratory coefficient (ratio between O2

consumption and dissolved inorganic carbon (DIC) release) in

early recovering sediments (,0.4, and respectively 45 and 38%

lower in comparison with the undisturbed sediments after one and

10 weeks of recovery) further illustrates a limited re-oxydation of

reduced compounds at early stages of recovery [66,67]. In

addition, the variability in primary production and bed load

transport was also best explained by the community bioturbation

potential, though to a lesser extent as for subsurface processes, i.e.

denitrification and bio-irrigation. The observed resistance to

sediment erosion and enhanced primary production in early

recovering sediments likely relates to the absence of intense

bioturbation. Intense bioturbation, as did occur in the undisturbed

sediments, increases bottom roughness and enhances erosion of

the sediment and attached benthic microalgae [68,69]. This

inhibits the positive feedback interactions between growth of

benthic microalgae (i.e. primary production) and sediment stability

[70].

Successional States and Ecosystem Resilience
Multiple human pressures have resulted in a significant and

rapid decline in biodiversity on a global scale [71,72], which has

stimulated the research of the relationship between diversity and

ecosystem functioning over the past 15 years. Species diversity

seems particularly instrumental to ecosystem functioning in more

diverse systems [73,74] where environmental factors become less

important in modifying ecosystem processes [73,75]. In this study,

macrofauna species richness was relatively low and organism-

sediment interactions (i.e. bioturbation) were particularly impor-

tant in mediating return rates of several ecosystem processes. For

example, the return rates of mainly microbial-mediated processes

such as denitrification and oxygen consumption relate to the slow

return rate of macrofaunal bioturbation of the sediment, despite

the limited effect of hypoxia on bacterial activities (assessed as DIC

rates, Figure 2a). Large organisms that create environmental

heterogeneity in deep layers through bioturbation –and bio-

irrigation activities [32] are typically present during late recovery

stages. This study indicates that these organisms influence

ecosystem processes disproportionately more than their juvenile

and highly abundant, smaller life-stages during early recovery

stages or community-wide species richness. Similarly, Bolam et al.

[14] found that particularly the abundance of the active and

largest species at their study site, Nepthys hombergii, drove the

relation between the benthos community and oxygen consumption

in a field experiment where benthos diversity and biomass was

manipulated.

Hypoxia occurs on different time and spatial scales, ranging

from large areas with persistent oxygen deficiency (e.g. oceanic

oxygen minimum zones) to small-scale, localized single events, but

recurring episodic, periodic or seasonal events are a common

feature [76]. Due to the slow growth of species with strong effects

on sediment particle reworking, macrofaunal bioturbation only

restored in September 2006; i.e. after two growing seasons

(Figure 1). Consequently, the slow re-instalment of such organ-

ism-sediment interactions is very likely to impair the resilience of

systems that are prone to seasonal or recurring hypoxic events

because such iterative events do not allow complete recovery of the

functionally important large, strong bioturbating and bio-irrigating

species before hypoxia reoccurs. The different return rates of

hypoxic events and ecosystem engineering activities may therefore

lock the system in a state where only small opportunistic species

persist that have rather limited effects on biogeochemical cycling

(reviewed in [25]), in particular re-oxidation of anoxic sediments

and consumption of organic matter. Such conditions likely invoke

oxygen depletion through enhanced respiratory demands and such

legacy effects have been suggested to contribute to increased

hypoxia in Chesapeake Bay, the Gulf of Mexico and the Baltic Sea

[77–79]. Our results indicate that this degraded state will only be

reversed if the re-supply of oxygen rich water lasts long enough to

re-establish large-sized macrofaunal organisms with strong engi-

neering effects on the reduced sediment.
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Figure S1 Top panel: Oxygen penetration in the un-
disturbed sediments and the disturbed sediments at
opening of the plots on March 30th, 2005. Bottom panel:

Temporal variation of pore water oxygen concentration at

500 mm depth in the recovering and undisturbed sediments. Error

bars represent one standard error.
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Figure S2 Scatterplots showing relationships between
species richness, total abundance, total biomass and
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ing and undisturbed sediments at the study site
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(surface deposit feeder (SDF), subsurface deposit feeder (SSDF),

suspension feeder (SF), omnivores (O), predators/scavengers (P),
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