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Genomic selection through single-step genomic best linear 
unbiased prediction improves the accuracy of evaluation in 
Hanwoo cattle

Mi Na Park1, Mahboob Alam1,*, Sidong Kim1, Byoungho Park2, Seung Hwan Lee3, and Sung Soo Lee4

Objective: Genomic selection (GS) is becoming popular in animals’ genetic development. 
We, therefore, investigated the single-step genomic best linear unbiased prediction (ssGBLUP) 
as tool for GS, and compared its efficacy with the traditional pedigree BLUP (pedBLUP) 
method.
Methods: A total of 9,952 males born between 1997 and 2018 under Hanwoo proven-bull 
selection program was studied. We analyzed body weight at 12 months and carcass weight 
(kg), backfat thickness, eye muscle area, and marbling score traits. About 7,387 bulls were 
genotyped using Illumina 50K BeadChip Arrays. Multiple-trait animal model analyses 
were performed using BLUPF90 software programs. Breeding value accuracy was calculated 
using two methods: i) Pearson’s correlation of genomic estimated breeding value (GEBV) 
with EBV of all animals (rM1) and ii) correlation using inverse of coefficient matrix from 
the mixed-model equations (rM2). Then, we compared these accuracies by overall popula-
tion, info-type (PHEN, phenotyped-only; GEN, genotyped-only; and PH+GEN, pheno-
typed and genotyped), and bull-types (YBULL, young male calves; CBULL, young can-
didate bulls; and PBULL, proven bulls).
Results: The rM1 estimates in the study were between 0.90 and 0.96 among five traits. The 
rM1 estimates varied slightly by population and info-type, but noticeably by bull-type for 
traits. Generally average rM2 estimates were much smaller than rM1 (pedBLUP, 0.40 to0.44; 
ssGBLUP, 0.41 to 0.45) at population level. However, rM2 from both BLUP models varied 
noticeably across info-types and bull-types. The ssGBLUP estimates of rM2 in PHEN, GEN, 
and PH+ GEN ranged between 0.51 and 0.63, 0.66 and 0.70, and 0.68 and 0.73, respectively. 
In YBULL, CBULL, and PBULL, the rM2 estimates ranged between 0.54 and 0.57, 0.55 and 
0.62, and 0.70 and 0.74, respectively. The pedBLUP based rM2 estimates were also relatively 
lower than ssGBLUP estimates. At the population level, we found an increase in accuracy by 
2.0% to 4.5% among traits. Traits in PHEN were least influenced by ssGBLUP (0% to 2.0%), 
whereas the highest positive changes were in GEN (8.1% to 10.7%). PH+GEN also showed 
6.5% to 8.5% increase in accuracy by ssGBLUP. However, the highest improvements were 
found in bull-types (YBULL, 21% to 35.7%; CBULL, 3.3% to 9.3%; PBULL, 2.8% to 6.1%).
Conclusion: A noticeable improvement by ssGBLUP was observed in this study. Findings 
of differential responses to ssGBLUP by various bulls could assist in better selection decision 
making as well. We, therefore, suggest that ssGBLUP could be used for GS in Hanwoo proven-
bull evaluation program.
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INTRODUCTION 

In 1980s, the Hanwoo performance test (PT) and progeny test (PGT) programs were adopted 
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in the Korean National Evaluation System to assist Hanwoo 
proven bull selection program. Over time newer breeding 
tools were utilized for Hanwoo evaluations so that more de-
sirable improvements in phenotypes could be achieved. With 
more phenotypes being available by 2009, the decade-long 
older traditional pedigree-based best linear unbiased predic-
tion (pedBLUP) evaluation, i.e. single trait animal model, was 
replaced by the more robust multiple-trait animal model, un-
der the similar pedBLUP architecture. At that time, the main 
aim of such model adoption was to exploit the existing cor-
relations among traits more efficiently, and thus obtain a better 
breeding value (BV) profile on animals under such evaluation 
schemes. Of note, even after the adoption of such advanced 
and complex models in PT and PGT, there remained other 
limiting factors with pedBLUP evaluation, such as greater 
demands for high-quality pedigrees, and the dependence on 
the number of phenotypes available– especially more records 
from those of the close relatives. The PGT program, which 
performs sire performances through the evaluation of its own 
progenies, is generally known to be an expensive animal im-
provement scheme due to the higher generation intervals, and 
its prerequisites for more information from relatives such as 
progenies, in order to ensure an adequate evaluation accuracy 
of sires. In PGT, through pedBLUP, an earlier selection of 
animals was not only difficult but also often required proge-
nies to be sacrificed in the evaluation of most economic traits. 
Nonetheless, the lack of perfect evaluation accuracy was also 
an issue with PGT. Yet, animal breeders were limited to choose 
such expensive breeding tools as possible better alternatives 
(e.g. genotype-based technologies) were not feasible enough 
to be implemented economically. 
 Fortunately, over the past decades, the advancement in ani-
mal genotyping technologies has made it competitive and 
more cost-effective. Nowadays, the development in statistical 
approaches related to genotype-based analyses also made it 
possible to resolve many of above limitations with pedBLUP. 
With genotypes, animal BVs can also be estimated easily and 
more reliably. Note that selection based on animal’s genomic 
information, also known as genomic selection (GS [1], has 
already been implemented in many countries. The higher ac-
curacies with GS were reported by many recent studies [2,3]. 
With genotypic information on progeny and parents, and 
through genomic BLUP (GBLUP), the earlier selection of 
animals is made possible, and therefore can greatly reduce 
the generation interval and cost of production. 
 To illustrate briefly, it is worth noting that GS essentially 
allows the prediction of animal’s genomic estimated breeding 
value (GEBV) through a genomic relationship matrix (GRM), 
which is based on the genotype information of the animals 
and using a GBLUP method. For GBLUPs, two widely-used 
methods are also available, e.g. a multi-step and a single-step 
method [4]. The single-step GBLUP (ssGBLUP) method is 

more sophisticated, yet easier to implement than the multi-
step method. The ssGBLUP also allows the estimation of BVs 
for all animals at the same time. 
 We observed that there has been a great momentum for 
the large scale implementation of GBLUP and GS in various 
livestock species in the recent years [5,6]. This is thought to 
be due to the relative advantages of GBLUP regarding more 
accurate estimation of an animal’s genetic merit as compared 
to the parent-average based traditional method. Note that 
most applications of GS as observed are in dairy cattle, whereas 
in beef cattle this is still an emerging technology [7]. However, 
the National Genetic Evaluation (NGE) system of Hanwoo 
cattle has recently integrated a multi-step GBLUP based GS 
approach in a limited scale, alongside the pedBLUP, with a 
consideration that it would optimize breeding decisions and 
selection of young candidate bulls with much greater accu-
racy than before. However, the impact of a multi-step GBLUP 
based GS approach could be limited due to its technical limi-
tations, together with the shortcomings of Hanwoo population. 
A practical implementation of ssGBLUP could be an appro-
priate choice to solve some of those challenges. Until now, 
most of the ssGBLUP reports and its comparison to pedBLUP 
was conducted in relatively smaller samples of Hanwoo cattle. 
In this study, we investigated the impact of ssGBLUP using a 
much larger Hanwoo population to obtain a more robust 
comparison of above methods. In this study, we also com-
pared the improvements of evaluation accuracy in specific 
bull-types of Hanwoo so that it could assist in selection deci-
sion making process.

MATERIALS AND METHODS 

Animal phenotype
In this study, yearling weight and carcass trait measures were 
recorded on the males of Hanwoo cattle that were raised un-
der Korean National Improvement System. A total of 9,952 
bulls, born between 1997 to 2018 under proven-bull selec-
tion program, were recorded for phenotypes. Phenotyped 
bulls were considered to be in one of three categories such as 
those of young male calves (YBULL, ~6 mo of age), young 
candidate bulls (CBULL, selected from a pool of YBULL) and, 
progeny tested bull (PBULL). All CBULL bulls were recorded 
for yearling weight at 12 months of age (WT12) for PT pro-
gram. Carcass traits studied in this study were carcass weight 
(CWT), backfat thickness (BFT), eye muscle area (EMA) and 
marbling score (MS). Details on recorded animals are pre-
sented in Table 1. Animal procurements for PT and PGT 
programs were described in detail by an earlier study [8]. Note 
that the animals that we studied here were between 25 and 
74 (PT) and, between 36 and 63 (PGT) batches, where batch 
numbers were indicative of the year and season of birth of 
bulls [8].
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Genotypic data, quality control, and genotype 
imputation
Genotypic data on 7,387 Hanwoo males were generated in 
two batches using a high-density Illumina BovineSNP50K 
BeadChip (Illumina, Inc., San Diego, CA, USA) array as per 
the standard protocol. Then, two genotype datasets were 
combined into one based on common autosomal SNPs (n 
= 52,825), followed by a population-based genotype impu-
tation step using FImpute 2.0 software package [9]. That 
imputed dataset was further constrained for several com-
monly applied genotype quality control options through 
PREGSF90 software package [10]. The criteria for SNP ex-
clusions were animals with parentage errors (genotype-based), 
presence of monomorphic allele, a less than 5% minor allele 
frequency, and a less than 90% genotype call-rate. An animal 
was also completely removed from the genotype dataset if 
its genotype missing rate exceeded 10%; after which 39,308 
SNP markers and 7,374 animals were available for further 
analysis.

Animal pedigree
A pedigree on studied animals was collected from Korea 
Animal Improvement Association (KAIA). The pedigree, 
related to animals with phenotypes and genotypes, included 
67,802 animals and extended up to the maximum of 14 an-
cestral generations. A total of 19,260 animals were found as 
inbred in the dataset. This pedigree also included 1,393 sires, 
46,202 dams, and 516 full-sib family groups (with an average 
family size of 2.1). Note that about 95% of the inbred ani-
mals showed lower inbreeding rates (0% to 5%). Although 
the highest inbreeding coefficient in the study was 0.31, the 
average coefficients in the whole population and within the 
inbred animals were 0.004 and 0.015, respectively. We also 
calculated the average relatedness of all animals using the 
pedigree data. Mainly, two software packages, i.e. PEDIG 
[11] and CFC 1.0 [12] were used in this step; of which the 
former was used for preparing the pedigree data, and the 
later was used in determining pedigree structure, inbreeding 

coefficients and average pedigree-relatedness of the animals.

Estimation of EBV by pedBLUP
A conventional BLUP method [13] based multiple trait ani-
mal model analysis was performed to obtain EBV estimates 
of traits; which was also the model practiced in NGE system 
until very recently. The dataset for animal model fit included 
36,225 records of all five traits. Animal’s batch number (B), 
birth location (L), test station (T), and slaughter date (S) were 
combined into two composite fixed effects, i.e. BLT and BTS. 
The fixed effect of BLT was fitted with WT12, whereas BTS 
with carcass traits only. The fixed covariate of age at slaughter 
was also fitted with carcass traits. As for fitting random effects, 
the additive genetic effect of the animal was the only ran-
dom genetic component in the model. We, then, estimated 
animal BVs and standard errors of prediction (SEP) using 
BLUPf90 software package [14]. The mixed model equation 
used for pedBLUP using matrix notations was y = Xb + Zu 
+ e, where y is the vector of traits, b is the vector of fixed 
effects and covariates, u is the vector of random effects (ad-
ditive genetic), e is the vector of random residual effect, and 
X and Z are the respective design matrices relating observa-
tions to the fixed and random effects b and u. The variance 
structure of u and e were assumed as var 
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genetic (co)variance matrix between traits, the pedigree re-
lationship matrix, the residual (co)variance matrix between 
traits and the identity matrix, respectively.

Estimation of genomic estimated breeding value by 
ssGBLUP
The estimation of GEBV was performed by ssGBLUP method 
through fitting factors as described for pedBLUP analysis. 
However, instead of an A–1, the ssGBLUP used an H–1 [4] 
matrix, which is an inverse matrix derived from the rela-
tionship matrices based on pedigree and genotype datasets. 
Thus, the mixed model equation for ssGBLUP was 

Table 1. Details on animal subsets and distribution of bulls in the data

Subset Phenotype1) YBULL2) CBULL2) PBULL2) Total (N)

PH+GEN WT12 only 0 504 348 2,211
 (Genotyped and phenotyped) WT12 and CT 0 0 0 3,656
PHEN WT12 only 0 108 1 8,331
 (Phenotyped-only) CT only 0 0 0 1,837

WT12 and CT 0 0 0 1,381
GEN - 758 34 208 1,417
 (Genotyped-only)
Others - 0 255 106 48,879

1) WT12, weight at 12 mo, CT, carcass traits (carcass weight, eye-muscle area, backfat thickness, and marbling score).
2) YBULL, young bull-calves (~6 mo of age); CBULL, young candidate bulls or calves (6 to 12 mo of age); PBULL, proven bulls (~48+mo).
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RESULTS 

Descriptive statistics on phenotypes
Descriptive statistics on five phenotypic traits according to 
info-type such as PH+GEN (both phenotyped and geno-
typed), and PHEN (phenotyped only) are presented in Table 
2 and 3, respectively. The observed average yearling weight or 
WT12 within PHEN category was slightly higher than those 
of the PH+GEN category of animals. The PHEN group also 
showed more spread (i.e. standard deviation) alongside the 
higher variation in their phenotypic data. The same animal 
subset conversely showed relatively higher averages and lower 
variations for all carcass traits than those of PH+GEN, espe-
cially in their BF and MS traits. It is found that phenotypic 
measures in the present study were either in general agree-
ment with a few earlier reports on Hanwoo cattle [17,18] or 
differed slightly being higher than others [19,20]. We also 
observed some noticeable differences in sample sizes among 
studies and that might explain some of the estimation varia-
tions with our study and other reports. We used a larger 
sample size as compared to other reports on Hanwoo cattle. 
The time of reporting is also worth mentioning in the sense 
that there had been tremendous efforts regarding planned 
breeding and selection appraisals in Hanwoo cattle to enhance 
performances over the past few decades, and thus, resulting 
in positive gains in many economic traits. Therefore, some 
higher phenotypic measures in important economic traits as 

in this study might not be quite unexpected either.

Genetic parameter estimates
Heritability (h2) and correlation estimates for five traits are 
given in Table 4. The h2 estimates of WT12 and CWT were 
0.26 and 0.35, respectively. Moderate to higher h2 estimates 
were observed in EMA (0.44), BFT (0.46), and MS (0.56) traits 
as well. Genetic (rg) and phenotypic correlations (rp) of WT12 
were the highest with CWT (rg: 0.70 and rp: 0.71). CWT was 
moderately correlated with EMA (rg: 0.55). The rg between 
EMA and BFT was negative, i.e. –0.24. The MS-rg was low 
and positive with CWT and EMA, but low and negative with 
WT12 and BFT. However, all rp estimates were positive ex-
cept for the rg between BFT and MS traits.

Accuracy of evaluation by animal population
The accuracy estimates of single-step genomic evaluations 
using two earlier described approaches (rM1 and rM2), using 
the population dataset, are shown in Table 5. The rM1 esti-
mates (the correlation between individual’s GEBV and EBV) 
were generally higher among traits and showed less vari-
ability, i.e. 0.90 to 0.96. This rM1 of MS was the lowest among 
all five traits, whereas the highest for WT12 and EMA. The 
rM2 estimates (derived from the coefficient matrix of MME), 
in contrast, had a higher variability range (0 to 0.95), which 
also showed noticeably lower averages (0.40 to 0.45) in all 
traits. Those averages among five traits and between two eval-
uation methods (ssGBLUP and pedBLUP) were generally 
not the same but close and demonstrated a slight improve-
ment of 2% to 4.5% by ssGBLUP over pedBLUP. For traits 
under concern, MS had the lowest average rM2 estimates, 
which was also the highest improvement by ssGBLUP ac-
cording to whole population. Both BFT and EMA realized 
over 3% increment in BV accuracy by ssGBLUP, and WT12 
had the lowest improvement by 2%. The overall performance 
of ssGBLUP at the population level, therefore, to be consid-
ered as some improvement over the pedBLUP evaluation.

Accuracy of evaluation by animal’s info-type
The accuracy by animal info-type categories, i.e. PHEN, GEN 

Table 2. Descriptive statistics on phenotypes in genotyped and phenotyped 
(PH+GEN) data subset

Trait N Mean SD Min Max CV (%)

WT12 (kg) 5,867 350.53 54.12 144 561.5 15.4
CWT (kg) 3,656 371.63 42.07 160 562 11.3
EMA (cm2) 3,656 81.65 8.82 41 130 10.8
BFT (mm) 3,656 9.71 3.82 1 35 39.3
MS (1-9) 3,656 3.58 1.62 1 9 45.3

SD, standard deviation; Min, minimum value; Max, maximum value; CV, coefficient 
of variation; WT12, weight at 12 mo; CWT, carcass weight; EMA, eye-muscle area; 
BFT, backfat thickness; MS, marbling score.

Table 4. Heritability (diagonal), genetic correlation (above diagonal), and 
phenotypic correlation (below diagonal) among traits in the study

Trait WT12 CWT EMA BFT MS

WT12 0.26 0.70 0.33 0.01 –0.14
CWT 0.71 0.35 0.55 0.10 0.17
EMA 0.34 0.54 0.44 –0.24 0.30
BFT 0.17 0.26 0.01 0.46 –0.04
MS 0.01 0.09 0.22 0.06 0.56

WT12, weight at 12 mo; CWT, carcass weight; EMA, eye-muscle area; BFT, backfat 
thickness; MS, marbling score.

Table 3. Descriptive statistics on phenotypes in phenotyped-only (PHEN) data 
subset

Trait N Mean SD Min Max CV (%)

WT12 (kg) 9,712 355.94 41.22 176 565.5 11.6
CWT (kg) 1,381 355.99 39.25 158 488 11.0
EMA (cm2) 1,379 79.62 8.74 42 121 11.0
BFT (mm) 1,381 9.57 3.97 2 28 41.5
MS (1-9) 1,381 3.19 1.63 1 9 51.1

SD, standard deviation; Min, minimum value; Max, maximum value; CV, coefficient 
of variation; WT12, weight at 12 mo; CWT, carcass weight; EMA, eye-muscle area; 
BFT, backfat thickness; MS, marbling score.
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and PH+GEN, are presented in Table 6 and Figure 1. In this 
study, rM1 estimates based on three info-types ranged between 
0.89-0.99 among five traits, where PHEN showed the higher 
estimates (0.96 to 0.99), followed by PH+GEN (0.91 to 0.93) 
and GEN (0.89 to 0.92) group estimates. Although these es-
timates (rM1) were somewhat similar among three info-types, 
there was some noticeable differences in rM2 estimates among 
these animal categories, irrespective of ssGBLUP or pedBLUP 
estimates. The average rM2 within info-types were also signifi-
cantly lower than the average rM1 estimates across all methods 
of evaluation. Unlike rM1 estimates, the rM2 estimates indicat-
ed relatively higher accuracy in PH+GEN bulls, bulls that 
provided both genotypic and phenotypic information to the 

models of interest. It is also clear that the accuracy ranges in 
PH+GEN bulls were narrower, and all estimates were rela-
tively higher (Figure 1). To illustrate the fact, MS-rM2 estimates 
in PH+GEN group were found as the narrowest (0.43 to 0.92), 
which also indicated about relatively larger lower and upper 
bounds of estimate as compared to those of either PHEN 
(0.23 to 0.82) or GEN (0.32 to 0.93) estimates; which also 
concurred with other traits. Both evaluation models showed 
similar patterns in this manner. As far as the improvement by 
ssGBLUP was concerned, the rM2 estimates indicated some 
none-to-little positive changes (0% to 2%) among the BV 
estimates of all studied traits. This indicated that PHEN bulls, 
even if they were included and evaluated under ssGBLUP, 

Table 6. Comparison of accuracy estimates for traits using info-type in Hanwoo cattle

Info-type1) Trait2) rM1
3)

rM2
3)

ssGBLUP4) pedBLUP4)
% Accuracy 

increaseMean±SD Range Mean±SD Range

PHEN WT12 0.99 0.63 ± 0.02 0.45-0.80 0.63 ± 0.02 0.45 - 0.80 0
 CWT 0.98 0.57 ± 0.05 0.41-0.79 0.56 ± 0.05 0.39 - 0.79 1.8
 EMA 0.98 0.52 ± 0.08 0.30-0.80 0.52 ± 0.09 0.26 - 0.80 0
 BFT 0.96 0.51 ± 0.09 0.26-0.80 0.50 ± 0.10 0.20 - 0.81 2.0
 MS 0.96 0.51 ± 0.11 0.23-0.82 0.51 ± 0.11 0.13 - 0.83 0
GEN WT12 0.89 0.66 ± 0.07 0.30-0.95 0.61 ± 0.09 0 - 0.96 8.1
 CWT 0.91 0.66 ± 0.08 0.32-0.93 0.60 ± 0.11 0 - 0.93 9.0
 EMA 0.92 0.67 ± 0.10 0.34-0.93 0.61 ± 0.15 0 - 0.93 10.2
 BFT 0.9 0.67 ± 0.11 0.34-0.93 0.61 ± 0.16 0 - 0.93 10.7
 MS 0.92 0.70 ± 0.11 0.32-0.93 0.63 ± 0.17 0 - 0.93 10.7
PH+GEN WT12 0.91 0.68 ± 0.05 0.50-0.95 0.63 ± 0.06 0.38 - 0.95 6.5
 CWT 0.92 0.68 ± 0.06 0.47-0.92 0.63 ± 0.08 0.33 - 0.92 7.2
 EMA 0.93 0.69 ± 0.09 0.43-0.92 0.64 ± 0.13 0.29 - 0.91 8.0
 BFT 0.91 0.69 ± 0.10 0.40-0.92 0.64 ± 0.15 0.25 - 0.91 8.5
 MS 0.93 0.73 ± 0.10 0.43-0.92 0.67 ± 0.16 0.27 - 0.92 8.0

1) PHEN, phenotyped-only bull; GEN, genotyped-only bull; PH+GEN, phenotyped and genotyped bull.
2) WT12, weight at 12 mo; CWT, carcass weight; EMA, eye-muscle area; BFT, backfat thickness; MS, marbling score.
3) rM1, Pearson’s correlation between estimated breeding value (EBV) and genomic EBV (GEBV) of individuals; rM2, correlation estimates using the inverse of the coefficient 
matrix from the mixed-model equations (details in Materials and Methods).
4) ssGBLUP, single-step genomic best linear unbiased prediction; pedBLUP, pedigree-based best linear unbiased prediction; SD, standard deviation.

Table 5. Comparison of accuracy estimates for traits using whole population in Hanwoo cattle

Trait rM1
1)

rM2
1)

ssGBLUP2) pedBLUP2)

% Accuracy increase
Mean±SD Range Mean±SD Range

WT123) 0.96 0.45 ± 0.19 0 - 0.95 0.44 ± 0.19 0 - 0.96 2.0
CWT3) 0.95 0.44 ± 0.19 0 - 0.93 0.43 ± 0.18 0 - 0.93 2.5
EMA3) 0.96 0.44 ± 0.19 0 - 0.93 0.42 ± 0.19 0 - 0.93 3.1
BFT3) 0.94 0.43 ± 0.19 0 - 0.93 0.42 ± 0.19 0 - 0.93 3.3
MS3) 0.90 0.41 ± 0.20 0 - 0.93 0.40 ± 0.20 0 - 0.93 4.5

1) rM1, Pearson’s correlation between estimated breeding value (EBV) and genomic EBV (GEBV) of individuals; rM2, correlation estimates using the inverse of the coefficient 
matrix from the mixed-model equations (details in Materials and Methods).
2) ssGBLUP, single-step genomic best linear unbiased prediction; pedBLUP, pedigree-based best linear unbiased prediction; SD, standard deviation.
3) WT12, weight at 12 mo; CWT, carcass weight; EMA, eye-muscle area; BFT, backfat thickness; MS, marbling score.
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were unable to capture much of the benefits from the single-
step method. This further emphasized the importance of type 
of information in the dataset. In this regard, we found sub-
stantial improvements in accuracy within GEN and PH+GEN 
bulls. Both these later bull categories (with genotype informa-
tion) obtained GEBVs which were seemingly more reliable 

by 8.1%-10.7% and 6.5%-8.5%, respectively, to their pedigree 
based EBVs. Regarding trait BV responses to ssGBLUP eval-
uation, the GEBV estimates of BFT, MS, and EMA showed 
more reliability improvements than was obtained by WT12 
(Table 6). It is also to note that the difference in rM2 between 
evaluation methods was comparatively higher with GEN 

Figure 1. Accuracy of genomic estimated breeding value (GEBV) for five Hanwoo traits by different types of data subsets. EBV, estimated breeding value; PHEN, 
phenotyped-only; GEN, genotyped-only; PH+GEN, phenotyped and genotyped; WT12, weight at 12 months; CWT, carcass weight; EMA, eye-muscle area; BFT, backfat 
thickness; MS, marbling score; PG, bulls from progeny test; PT, bulls from performance test; NT, bulls not tested.
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than other two bull groups. This might be because GEN group 
evaluations become more accurate when genotype informa-
tion is used instead of evaluating no phenotypic information 
at least from those bulls, which are also mostly young can-
didates in the population. Thus, based on bull’s info-type, it 
could be stated that while animals with both phenotype and 
genotype information obtain the highest accuracies, whereas 
phenotype-only animals gain the lowest among all, the most 
significant outcomes are to be attributed to those bulls that 
are yet young (i.e. no phenotypes) but have genotypes. Ad-
ditionally, Figure 1 also shows how bulls, included under 
different programs (i.e. mainly in PT and PGT) and under 
info-type categories in the study, could vary distinctly by 
distribution of estimates among them. PGT bull accuracies 
in GEN and PH+GEN mostly appeared in small clusters both 
at the lower and higher end of estimates. However, PT bulls 
showed less clusters and estimates were spread at wider ranges. 
The relatively lesser spread of estimates outside the 1:1 re-
gression line fewer in PHEN category for PT and PGT also 
reflected their similarities across traits. Another important 
finding (Figure 1) was related to those of PGT bulls with 
low accuracies. This could indicate that those bulls, even 
though progeny-tested, could perform poorly and affect 
the improvement if selection is based on them.

Accuracy of evaluation by bull-type
Table 7 illustrates the accuracy by three bull types (YBULL, 
CBULL, and PBULL) as categorized in this study. For all traits, 

the rM1 estimates of evaluation ranged between 0.70-0.96 
among bull-types, where CBULL and PBULL estimates were 
much higher than that of YBULL. The rM1 estimates in YBULL 
were between 0.70 and 0.75, and in other two categories those 
were between 0.89 and 0.96. Comparing rM1 to rM2, the former 
was much larger than the later, like the pattern observed 
earlier among info-types. The only distinction, however, 
was that unlike the narrower range obtained within info-
types, rM1 range in three bull-types was much broader, i.e. 
0.70 to 0.96. Regarding BV estimation methods, the rM2 es-
timates also differed among bulls-types. As observed, PBULL 
range of mean accuracy (rM2) was 0.70 to 0.74 and the highest 
in the study. GEBV accuracy of other two bull-types were 
somewhat similar though which were 0.55 to 0.62 in YBULL, 
and 0.54 to 0.57 in CBULL. The pedBLUP-based mean ac-
curacies were also lower than those based on ssGBLUP in 
all traits. Due to the very similar patterns in ssGBLUP and 
pedBLUP accuracies across bull-types, it was obvious that 
the improvements by ssGBLUP over pedBLUP would differ 
across bull-types as well. We, therefore, observed substantial 
differences in improvements across bull-types. Interestingly, 
YBULL which gained a lowest accuracy in ssGBLUP for all 
traits also showed the most positive improvements in accuracy 
by +21.3% to +35.7%. Accuracy improvement in CBULL 
remained moderate between +3.3% and +12.2% across traits. 
PBULL, in contrast, that obtained the highest rM2 by ssGBLUP 
also showed the lowest positive changes in accuracy (2.8% 
to 6.1%) with respect to pedBLUP. It was also clearly observed 

Table 7. Comparison of accuracy estimates1 for traits using bull-type in Hanwoo cattle

Bull-type3) Trait4) rM1

rM2
1)

ssGBLUP2) pedBLUP2)

% Accuracy increase
Mean±SD Range Mean±SD Range

YBULL WT12 0.71 0.57 ± 0.02 0.48-0.65 0.47 ± 0.03 0.42-0.55 21.3
CWT 0.70 0.55 ± 0.02 0.46-0.64 0.43 ± 0.03 0.35-0.49 27.9
EMA 0.73 0.55 ± 0.03 0.45-0.65 0.41 ± 0.04 0.29-0.48 34.1
BFT 0.75 0.54 ± 0.03 0.44-0.65 0.41 ± 0.04 0.27-0.48 31.7
MS 0.71 0.57 ± 0.03 0.46-0.66 0.42 ± 0.04 0.28-0.49 35.7

CBULL WT12 0.96 0.62 ± 0.18 0-0.89 0.60 ± 0.17 0-0.88 3.3
CWT 0.96 0.60 ± 0.17 0-0.87 0.57 ± 0.16 0-0.86 5.3
EMA 0.95 0.59 ± 0.17 0-0.87 0.55 ± 0.17 0-0.85 7.3
BFT 0.91 0.59 ± 0.17 0-0.87 0.54 ± 0.18 0-0.85 9.3
MS 0.91 0.55 ± 0.21 0-0.88 0.49 ± 0.20 0-0.87 12.2

PBULL WT12 0.96 0.74 ± 0.18 0-0.95 0.72 ± 0.19 0-0.96 2.8
CWT 0.96 0.73 ± 0.16 0-0.93 0.71 ± 0.17 0-0.93 2.8
EMA 0.95 0.73 ± 0.16 0-0.93 0.70 ± 0.17 0-0.93 4.3
BFT 0.93 0.73 ± 0.16 0-0.93 0.70 ± 0.17 0-0.93 4.3
MS 0.89 0.70 ± 0.19 0-0.93 0.66 ± 0.22 0-0.93 6.1

1) rM1, Pearson’s correlation between estimated breeding value (EBV) and genomic EBV (GEBV) of individuals; rM2, correlation estimates using the inverse of the coefficient 
matrix from the mixed-model equations (details in Materials and Methods). 
2) ssGBLUP, single-step genomic best linear unbiased prediction; pedBLUP, pedigree-based best linear unbiased prediction; SD, standard deviation.
3) BULL, young bull-calves; CBULL, young candidate bulls (and calves); PBULL, proven bulls. 
4) WT12, weight at 12 mo; CWT, carcass weight; EMA, eye-muscle area; BFT, backfat thickness; MS, marbling score. 
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that improvements in accuracy by traits was different among 
bull-types. Among traits, MS showed most positive improve-
ments by 6.1% to 35.7% by ssGBLUP, followed by 4.3% to 
34.1% in EMA and 4.3% to 31.7% in BFT. Improvements 
in CWT and WT12 by ssGBLUP were also noticeably higher 
(Table 7). More insights into bulls that were included in the 
programs also showed similar patterns as for info-types. How-
ever, the clusters of YBULL estimates might indicate that 
benefits of ssGBLUP was also limited to those animals (also 
mostly NT or non-tested type). Because their evaluations 
were only based on the genotypes for which variations in 
the population were supposed to be smaller as Hanwoo is a 
closed breed. With CBULL or PBULL groups, such estimates 
were widespread and interesting as well, especially in the 
PBULL, because those bulls added more information through 
phenotypes and genotypes. The advantages of ssGBLUP 
became clearer through their distribution on graphs for most 
traits, where plotted low to medium range values were mostly 
offset from the 1:1 regression line. This further emphasized 
the expected benefits of ssGBLUP for those animals in terms 
of higher accuracy. Interestingly, even though we have ob-
served relatively smaller overall improvements in PBULL by 
ssGBLUP (Table 7) earlier, particularly the NT bulls among 
them did show significant improvement (Figure 2) under 
the same evaluation for all traits. Note that NT bulls in prac-
tice may or may not directly contribute to the improvement 
programs as they could be either young or older parents, 
but their inclusion in ssGBLUP model with an improved 
accuracy might lead to better overall evaluations of others. 
 Figure 3 further plots the GEBV accuracy according to 
the existing average relationships among bull-types. We cal-
culated the relationship for each animal using the respective 
coefficients related to individual from the NRM. In YBULL, 
the relatedness and rM2 was not correlated and rather unex-
citing. With CBULL, PBULL and the rest, we observed very 
low accuracy when relatedness was none or little, i.e. 0 to 0.01, 
whereas it obtained medium to high rM2 at relatedness of 0.02 
and onwards, overall. Further subdivision of each bull-type 
into genotyped and non-genotyped animals showed some 
interesting outcomes. Most lower estimates of rM2 were mostly 
associated with non-genotyped bulls rather than genotyped 
ones. Especially, genotyped animals had medium to high and 
mostly consistent rM2 estimates across relatedness levels. Al-
though, this tends to be little spread with PBULL, but others 
followed somewhat similar trends. Estimates across traits by 
relatedness also tend to be somewhat robust among bull-types. 
These rM2 outcomes clearly explained that genotyped bulls, 
irrespective of bull-types, were better evaluated by ssGBLUP, 
which could be simply because genotype information maxi-
mized the animal contributions through GRM more accurately 
where pedigree only was unable to capture. Also note that 
ssGBLUP is designed to weight genotyped animal contribu-

tions more appropriately through model parameters. In 
ssGBLUP model, non-genotyped animals that mainly relied 
upon pedigree relationships to capture variations in pheno-
types eventually assessed GEBVs with lesser accuracies– hence 
the wider range of estimates.

DISCUSSION 

Genetic parameters
For genetic parameters estimates, this study coincided with 
Shin et al [18], who reported very similar results in Hanwoo 
cattle, i.e. CW (0.36), EMA (0.44), BF (0.48), and MS9 (0.58) 
using pedigree BLUP dataset. Little disagreements were ob-
served from Choi et al [21] with their slightly lower pooled 
h2 in yearling weight (0.25), carcass weight (0.29), longissimus 
muscle area (0.38), and backfat thickness (0.45), but a slightly 
higher in MS (0.62), which could be due to their relatively 
larger datasets. We also found subtle differences with Park et 
al [20] with their slightly higher h2 for yearling weight (0.30), 
backfat (0.50) and MS9 (0.63) or with slightly lower h2 for 
carcass weight (0.30), but with a similar EMA (0.42). The h2 
of CWT in Hanwoo from earlier reports [21-26] was also 
somewhat consistent with our results. Moderate BFT h2 in 
this study was deemed consistent with Hwang et al [23] Lee 
and Kim [27]. Such subtle to greater disagreements were 
likely as sample sizes and model differences were somewhat 
obvious among studies. For example, Choi et al [28] showed 
h2 for IMF as 0.55 and 0.69, using GRM and NRM, respec-
tively. They reported that residual variances increased by 
GRM based method, whereas BV variance increased by NRM 
based method. That could be equally applicable for correla-
tion estimates. Overall, there were no great differences among 
estimates across studies.

Differences in BV accuracy by evaluation models, 
info-type, bull-type, and relatedness
In this study, we analyzed five important beef traits in Hanwoo 
cattle and compared the evaluation accuracy of these traits 
with respect to pedBLUP and ssGBLUP. Our aim in this study 
was to analyze the impact of both pedigree and genomic in-
formation driven prediction methods on the BV estimation 
among several bull categories, which were raised under the 
proven bull selection program. As it has been stated earlier, 
since the implementation of GS in Korea for Hanwoo proven 
bull selection is very recent, the practical impact on different 
animal groups is yet to be understood properly. Also note 
that GS has been widely applied in dairy cattle and proved to 
be successful. For beef cattle evaluation, however, this has 
not been tested extensively so far, and there are very limited 
resources to compare. This indicates that it would be equally 
challenging to verify outcomes in the light of beef cattle, given 
that GS under implementation can also differ significantly 
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among breeds and as per breeding objectives. 
 With various model accuracies, in general, the present 
study revealed a noticeable increase in the BV accuracy by 
ssGBLUP when compared to pedBLUP evaluation. Differ-
ent animal groups as well as traits also reported differently 
in this manner. Our report observed the improvement by 
genomic model to be as high as 35% for MS in YBULL. Some 

earlier reports on Hanwoo cattle also concurred with the 
present study. A recent ssGBLUP study in Hanwoo cattle 
by Shin et al [18] presented greater agreements in various 
traits estimates which utilized a smaller reference population 
of 348 cows and 3,820 steers. According to their report, the 
accuracy increased by ssGBLUP over pedigree-BLUP for 
specific traits such as CWT, BFT, EMA, and MS were 22.9%, 

Figure 2. Accuracy of genomic estimated breeding value (GEBV) for five Hanwoo traits by different type of bulls. EBV, estimated breeding value; YBULL, young male calf; 
CBULL, young candidate bull; PBULL, proven bull; WT12, weight at 12 mo; CWT, carcass weight; EMA, eye-muscle area; BFT, backfat thickness; MS, marbling score; PT, bulls 
for performance test; NT, bulls not tested.



1554  www.ajas.info

Park et al (2020) Asian-Australas J Anim Sci 33:1544-1557

12.28%, 11.14%, and 8.69%, respectively. Although our esti-
mates were not in complete agreement with respective traits 
[18], it did coincided greatly in that genomic evaluation by 
ssGBLUP as an effective method to enhance BV accuracies 
noticeably over the traditional ones. Further support with 
our study was asserted by Choi et al [28] who reported an 
improvement by at least 1.5 times more GEBV accuracy for 
intramuscular-fat predictions by multi-step GBLUP methods 
(using different GRMs) with respect to the traditional ap-
proach. Another report on GBLUP for EMA, BFT, and MS 

traits in the same breed by Lee et al [29] also stated accuracy 
increments by +0.16 to +0.19 points, whereas Lee et al [19] 
in another study provided evidence of the positive impact 
due to addition of SNP data to the model, and appeared to 
be in general agreements with our results. Our report also 
showed a non-linear relationship between GEBV and EBV 
(Figures 1, 2), with which Badke et al [30] also concurred. 
The lower correlations between pedigree and genomic models 
(0.28 to 0.45) shown by Choi et al [28] was also an agreement 
with the present report. Being two models less correlated 

Figure 3. Accuracy of genomic estimated breeding value (GEBV) by pedigree relatedness in different types of bulls for five Hanwoo traits. YBULL, young bull calf; CBULL, 
young candidate bull; PBULL, proven bull; OTHER, other bull; WT12, weight at 12 months; CWT, carcass weight; EMA, eye-muscle area; BFT, backfat thickness, MS, marbling 
score.
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to each other also means that accuracies for an individual 
using ssGBLUP is less likely to be similar with pedBLUP and 
less likely to be plotted on the 1:1 regression line as shown 
in Figure 1 and 2. Overall, the present study and the collected 
evidences from earlier Hanwoo reports basically supported 
that any advanced methods using genotypic data such as 
single-step methods or any other techniques related to GS 
are generally superior to traditional methods, and therefore, 
it can benefit in the Hanwoo cattle improvement substantially.
 In this study, we also reported the differences in the animal 
evaluations based on certain classification such as info-type 
or bull-type. Evidently, some distinct responses from ani-
mals’ accuracies due to info-types were clearly noticeable 
with ssGBLUP and not so much with pedBLUP. Not only 
that, the average accuracy for most info-types were uplifted 
by ssGBLUP, the baseline estimates also improved, and there-
fore, it decreased the spread between the lowest and highest 
estimates. For instance, we showed the lowest estimate in 
PH+GEN with ssGBLUP was higher by +0.15 points than 
pedBLUP, so as by +0.34 in GEN. Further investigation of 
the results (Table 6, Figure 1) revealed that bulls that were 
poorly predicted by pedBLUP, i.e. low to medium rM2, had 
also been mostly benefited by ssGBLUP. Our results on bull-
type comparisons were also equally appealing and displayed 
similar patterns as with info-types. We found that the most 
benefited bull-type was YBULL with an accuracy improve-
ment between 21.3% to 35.7% by ssGBLUP among the five 
traits. The responses in CBULL and PBULL were some-
what lower (2.8% to 12.2%) among traits but not negligible. 
Especially the lower improvement rates for PBULL was 
neither unexpected, as even with a pedBLUP proven bulls 
would capture most of the heritable genetic variances due 
to their large progeny pools in the dataset. Therefore, any 
improvement by ssGBLUP to PBULL, even if it is small, would 
be considered as significant. When both info-type and bull-
types were investigated together, it was not surprising to find 
that most YBULL and CBULL were also GEN or PH+GEN 
bulls. With this it became more obvious that the higher GEBV 
accuracies in such genotyped young or candidate bulls were 
desired, as the inclusion of genotype information to the model 
(through GRM) could predict animal BVs with increased 
accuracy [1,28,30]. Results for PH+GEN on five traits were 
promising too. However, for PHEN bulls, we consistently 
obtained lower estimates and that could be related to the 
fewer PHEN samples in the data. Because an access to large 
quantities of phenotypic information is important to attain 
desirable gains in animal evaluation accuracy [31].
 With animal relatedness, we noticed some relationships 
between relatedness and rM2 estimates. This might indicate that 
those of closely related animals were benefited by ssGBLUP. 
In this regard, some earlier reports agreeably showed evidences 
for the positive association between closely related animals 

and their higher GEBV accuracies [30,32]. Nonetheless, there 
were multiple reports as well which claimed that even un-
related [32] or distant relatives [30] could obtain higher 
evaluation accuracies. As a precondition, however, Badke et 
al [30] emphasized a sufficient genetic diversity in the ref-
erence population for such accuracy increases in unrelated 
animals. From all these reports, it could be summarized that 
rather than using animal relatedness to increase accuracy, 
it would be worth considering the data quality instead that 
would provide greater genetic variability and desired selec-
tion responses through GS.

Importance of ssGBLUP based GS in Hanwoo 
evaluation
We already mentioned that adoption of GS is very recent 
in Hanwoo cattle development. Currently, GS is performed 
at a limited scale in the Hanwoo Proven Bull Selection Pro-
gram. To better illustrate, we can summarize the proven-bull 
selection program into four subsequent phases such as i) 
production of young bull-calves by design mating of PBULL 
and adult cows from various designated farms; ii) selection 
and procurement of some of those young bull-calves as young 
candidate bulls and performance testing; iii) production of 
progeny from (by design mating) using performance-tested 
young bulls and adult cows from designated farms, and iv) 
selection of those performance-tested young bulls as proven 
bulls via progeny testing. GS is performed between phase 1 
and 2, when young (candidate) bulls are to be procured from 
a pool of young calves (generally under the age of 6 mo). Pre-
viously, a pedigree index, assisted by an appearance inspection 
process, was the main tool for young (candidate) bulls’ selec-
tion. Now, through GS, as soon as the genotype of all those 
young males are known, their GEBVs are calculated through 
summation of total SNP effects. Note that these SNP markers 
effects are rather based on their parents NGE which were 
performed earlier through a multi-step GBLUP method. Also, 
the direct genetic value (DGV) or GEBV is used instead of 
an EBV to calculate performance index of animals in various 
phases of bull selection. However, the selection of the young 
males is a very important step as they will become the proven 
bulls for the next generations. Therefore, the selection of 
the candidate (bull) pool is now more reliable and accurate 
than before due to GS in young males. It is also possible to 
avoid all additional testing steps (e.g., appearance or per-
formance) and select animals much earlier in their lifetime; 
thereby, reducing generation intervals as well as the cost of 
animal productions.
 Although the current GS is an upgrade to the earlier meth-
ods, the real benefits from GS deemed rather limited. Firstly, 
the recent practice of GS in Hanwoo is limited by scale. To 
reap the full benefit from GS, it could be used in Hanwoo 
preselection processes, such as PT and PGT phases. This 
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might increase the genetic gains in major selection traits at 
a much-desired extent, especially in MS. Secondly, the multi-
step GBLUP based GS approach itself poses some technical 
limitation. This is because the Hanwoo reference population 
that is used in this purpose is very small (if compared with 
other cattle breeds). For a multi-step GBLUP, a larger reference 
population for bull evaluation is essential [33]. Nonetheless, 
this method is only limited to the evaluation of animals having 
both genotypes and phenotypes. As a result, many animals 
that have only phenotypes cannot contribute in the estima-
tion of SNP effect and, thereby, in DGV estimation of Hanwoo 
cattle. A more realistic approach would be to use a method, 
such as ssGBLUP, which allows all the animals in the popula-
tion to participate in the evaluation process. Subsequently, 
additional bulls in the evaluation would help ensuring much 
higher accuracies. Furthermore, the evaluation through ss-
GBLUP on genotyped-only animals has other additional 
advantages. With a multi-step or 2-step GBLUP model, any 
genotyped young bull can no longer influence the evaluation 
of other animals later if it is culled after evaluation. Through 
ssGBLUP, these culled (genotyped) bulls can participate in 
the subsequent evaluations, and further influence the eval-
uation of other animals. So, our believe is that an adoption 
of a much simpler ssGBLUP-based GS would be more prac-
tical, especially when the multi-step methods efficiencies 
could be limited due to various preconditions that deemed 
difficult to fulfill in Hanwoo population.

CONCLUSION

The ssGBLUP is generally appreciated because of its unified 
framework for more accurate genomic evaluations of animals. 
To date, its application in many species also produced better 
results. Our results were largely in agreement with these pre-
vious studies as well, where ssGBLUP performed noticeably 
better than pedBLUP. Increase in accuracy through ssGBLUP 
was also substantial in most of bull sub-groups, especially 
to those without phenotypes. As young bulls are the next 
generation of parents, future selection decisions based on 
ssGBLUP is deemed promising as baseline accuracies were 
significantly improved in this study. Differences in traits 
improvement regarding ssGBLUP were also indicated in 
our outcomes. We also provided evidence how the currently 
implemented multi-step GBLUP based GS in Hanwoo might 
face challenges. We believe that this study provided strong 
evidence for the success of ssGBLUP in Hanwoo national 
evaluation as a tool for GS.
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