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Background:Hepatocellular carcinoma (HCC), which has high rates of recurrence

and metastasis and is the main reason and the most common tumor for cancer

mortality worldwide, has an unfavorable prognosis. N7-methylguanosine (m7G)

modification can affect the formation and development of tumors by affecting

gene expression and other biological processes. In addition,many previous studies

have confirmed the unique function of long noncoding RNAs (lncRNAs) in tumor

progression; however, studies exploring the functions of m7G-related lncRNAs in

HCC patients has been limited.

Methods: Relevant RNA expression information was acquired from The Cancer

Genome Atlas (TCGA, https://portal.gdc.cancer.gov), and m7G-related

lncRNAs were identified via gene coexpression analysis. Afterward, univariate

Cox regression, least absolute shrinkage and selection operator (LASSO)

regression, and multivariate regression analyses were implemented to

construct an ideal risk model whose validity was verified using Kaplan–Meier

survival, principal component, receiver operating characteristic (ROC) curve,

and nomogram analyses. In addition, the potential functions of lncRNAs in the

novel signature were explored through Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) analyses and gene set
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enrichment analysis (GSEA). At last, in both risk groups and subtypes classified

based on the expression of the risk-related lncRNAs, we analyzed the immune

characteristics and drug sensitivity of patients.

Results: After rigorous screening processes, we built amodel based on 11m7G-

related lncRNAs for predicting patient overall survival (OS). The results

suggested that the survival status of patients with high-risk scores was lower

than that of patients with low-risk scores, and a high-risk score was related to

malignant clinical features. Cox regression analysis showed that the m7G risk

score was an independent prognostic parameter. Moreover, immune cell

infiltration and immunotherapy sensitivity differed between the risk groups.

Conclusion: The m7G risk score model constructed based on 11 m7G-related

lncRNAs can effectively assess the OS of HCC patients and may offer support for

making individualized treatment and immunotherapy decisions for HCC patients.

KEYWORDS

immune responses, hepatocellular carcinoma, N7-methylguanosine, lncRNA,
prognosis

1 Introduction

Primary hepatic carcinoma, the sixth most common

malignant neoplasm and the third most common cause of

cancer mortality worldwide, includes hepatocellular carcinoma

(HCC) (which accounts for 75%–85% of cases) and other kinds

of hepatic cancer (Sung et al., 2021).

HCC is notoriously characterized by poor prognosis with

locoregional treatments such as resection, percutaneous ablation,

transarterial chemoembolization (TACE), and

radioembolization (European Association for the Study of the

Liver, 2018). Owing to the steady and broad resistance of HCC to

cytotoxic chemotherapy, immunotherapy has recently been

recommended as an option for HCC cases expressing various

tumor-associated antigens. However, no studies have shown

efficacy (Prieto et al., 2015). Systemic therapy has been the

default therapy for years, but the current first-line drug,

sorafenib, a multi-tyrosine kinase inhibitor, does not

substantially prolong the overall survival (OS) of patients with

advanced- or moderate-stage HCC (Llovet et al., 2015).

The immune system has a considerable influence on tumor

progression. The liver contains a variety of stromal cells and

various immunoinhibitory substances that enable it to function

as a tolerogenic immune organ to avoid adverse reactions to

chronic pathogen exposure (Pardee and Butterfield, 2012).

Immune checkpoints and their ligands are expressed on the

surface of various effector lymphocytes (Heinrich et al., 2018;

Inarrairaegui et al., 2018).

In recent years, gene signatures have been developed and

found to have predictive value (Jiao and Wang, 2016). Almost

60,000 human genes can be transcribed by the genome, with

approximately 20,000 being protein-coding genes and the rest

being noncoding genes, including approximately 16,000 long

noncoding RNAs (lncRNAs) (Rinn and Chang, 2012). Research

attention has shifted toward lncRNAs because they have shown

promising characteristics, such as being important in regulating

biological events involving cell proliferation and apoptosis

(Gonzalez et al., 2015; Ransohoff et al., 2018; Simion et al.,

2019). LncRNAs recognize proteins, operate as molecular

sponges to disrupt microRNA interactions, change the

epigenome, and affect gene expression by binding to gene

promoters (Fu, 2014; Huang, 2018). A series of studies have

probed the prognostic capacity of signatures based on lncRNAs

in HCC, and the results of such studies will be beneficial for

clarifying relevant molecular mechanisms. For example, nine

lncRNAs related to ferroptosis-mediated programmed cell death

and clinical information have been proven to predict patient

prognosis in HCC (Xu Z. et al., 2021). In addition, a lncRNA

signature (APBB1-1, FBXO42-1, JAKMIP2-1, and MMADHC-

5) related to the regulation of proliferation and lipid metabolism

could effectively predict prognosis in HCC patients (Shi et al.,

2021).

Furthermore, RNA modification greatly influences the

regulation of gene expression (He, 2010), and many RNA

modifications have been linked to vital biological pathways,

particularly in cancer cells (Aas et al., 2003; Shimada et al.,

2008; Shimada et al., 2009).

However, research on the posttranscriptional modification of

lncRNAs is lacking. In eukaryotes, N7-methylguanosine (m7G),

a frequent posttranscriptional alteration of mRNA and lncRNA,

is needed for efficient gene expression and cell properties (Juhling

et al., 2009; Tomikawa, 2018). Although increasing evidence

suggests that m7G modification is linked to the onset and

course of various illnesses, the RNA m7G methylation profile

in HCC has yet to be revealed.

Given the potential of immunotherapy and the toned to

rapidly identify novel and reliable screening methods that can

enhance the diagnosis of and prediction of therapeutic benefit in
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HCC, here, a prospective prognostic model based on m7G-

related lncRNAs was established. This model might help

predict which patients will benefit from immunotherapy.

2 Materials and methods

2.1 Data acquisition and manipulation

LncRNA expression information from 424 samples,

including tumor and normal liver tissues, was retrieved from

The Cancer Genome Atlas (TCGA) up to 1 February 2022. The

clinical characteristics of patients with an overall survival time

exceeding 30 days and sufficient clinical information were also

retrieved, and the clinical information of samples is provided in

Supplementary Table S1. m7G genes were retrieved from the

Molecular Signatures Database (MSigDB, http://www.gsea-

msigdb.org) and previous literature (Subramanian et al., 2005;

Liberzon et al., 2015), and the gene set can be found in

Supplementary Table S2. All the data were transformed into

FPKM values to simplify downstream analysis. In addition,

because all the data are publicly available, ethics approval and

consent were deemed unnecessary.

2.2 Identification of N7-
methylguanosine–related long
noncoding RNAs

Pearson correlation was employed to evaluate the association

between m7G-related genes and lncRNAs. Those lncRNAs that

met the criteria (|Pearson R| > 0.4 and p < 0.001) were identified

as m7G-associated lncRNAs (Supplementary Table S3). The

samples were then randomly divided into two groups: 70% of

the total samples were allocated to the training dataset, whereas

30% were allocated to the testing dataset.

2.3 Model construction

Univariate Cox regression analysis was implemented to

recognize m7G-related lncRNAs associated with the OS of

HCC patients in the training set. The remaining was selected

further using the least absolute shrinkage and selection operator

(LASSO)-penalized Cox regression analysis, which aims to

strengthen the predictive value and applicability of the

prognostic model, as well as alternative methods and

normalization were used. This approach has been widely used

to minimize overfitting and identify the best features in high-

dimensional data with low correlation and substantial predicted

value. As a result, this strategy can efficiently identify the best

predictive factors and provide prognostic indicators for

predicting clinical outcomes.

At last, we further utilized multivariate Cox regression

analysis to build an m7G-associated lncRNA risk model for

predicting OS. The following mathematical equation was

utilized to compute the m-7G risk score:

risk score � ∑n

i�1Coef(i) p lncRNAexpr(i)

where n, coef(i), and expr(i) represent the number, homologous

coefficient, and FPKM value of a given risk-related lncRNA,

respectively.

The results of univariate Cox analysis, LASSO penalized Cox

regression analysis, and multivariate Cox analysis are shown in

Supplementary Table S4.

2.4 Independent dataset validation

Univariate Cox regression and multivariate Cox regression

analyses were applied to validate the utility of the selected

lncRNAs in the entire dataset, and relative clinical

information was obtained from TCGA. A p-value of 0.05 was

used to identify relevant independent predictive variables.

2.5 Nomogram construction and
performance analysis

To improve the model’s accuracy, we used the R package

“rms” to create a nomogram model based on the stage and risk

score with independency and used this model to calculate risk

scores.

2.6 Kaplan–Meier survival analysis

Kaplan–Meier (K-M) analysis was performed using a log-

rank test to investigate the predictive value of the m7G-lncRNA

signature in HCC patients separated into distinct groups. Result

with a p-value < 0.05 were considered significant.

2.7 Principal component analysis

Principal component analysis (PCA) was implemented to

validate further the accuracy of the m7G-related lncRNA model

in grouping samples based on differences in gene expression

profiles.

2.8 Functional enrichment analysis

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) enrichment analyses were adopted using the R

Frontiers in Genetics frontiersin.org03

Dai et al. 10.3389/fgene.2022.930446

http://www.gsea-msigdb.org
http://www.gsea-msigdb.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.930446


package “cluster Profiler” to determine potential differentially

enriched biological functions and pathways between the two risk

groups. Gene set enrichment analysis (GSEA) investigated

underlying functions associated with the obtained

differentially expressed genes. Genes with normalized

p-value < 0.05 and FDR < 0.25 were included in the enriched

gene set.

2.9 Nonnegative matrix factorization

Unsupervised consensus clustering analysis using the R

package “Consensus Cluster Plus” was used to identify

molecular subgroups based on the risk-related lncRNA

expression.

2.10 Immunologic function analysis

The XCELL (Aran et al., 2017), TIMER (Li et al., 2017),

QUANTISEQ (Hao et al., 2021), MCP-counter (Becht et al.,

2016), EPIC (Racle and Gfeller, 2020), CIBERSORT−ABS (Xu Q.

et al., 2021), and CIBERSORT (Chen et al., 2018) algorithms were

used to assess the levels of various tumor-infiltrating immune

cells: endothelial cells, hematopoietic stem cells, common

myeloid progenitors, macrophages, activated mast cells,

monocytes, central memory CD4+ T cells, neutrophils,

memory B cells, cancer-associated fibroblasts, plasma B cells,

M0macrophages, M1macrophages, activated natural killer (NK)

cells, nonregulatory CD4+ T cells, activated memory CD4+

T cells, and so on.

2.11 Differentially expressed gene analysis

Differentially expressed genes (DEGs) were identified using

the R package “limma” (|log2FC| > 1 and FDR < 0.05).

2.12 Drug sensitivity prediction

Using the R package “pRRophetic,” the drug response of

HCC patients was predicted. A p-value < 0.01 was employed to

predict potential treatments for patients in different risk groups.

2.13 Statistical analysis

The Chi-square test was conducted to identify differences

between groups in various datasets, and the Wilcoxon test was

used to compare two groups. In addition, the log-rank test was

employed to perform the K-M survival analysis. Results with a

p-value < 0.05 were considered significant.

3 Result

3.1 Identification of N7-
methylguanosine–related long
noncoding RNAs

A flowchart of the whole research, including the construction

of the model and further studies, is depicted in Figure 1A. First,

we obtained publicly available HCC patient datasets, including

data for 14,041 lncRNAs and 29 m7G genes from TCGA. m7G-

associated lncRNAs were characterized as lncRNAs significantly

associated with one of the 29 m7G genes.

3.2 Construction and validation of a risk
model based on N7-
methylguanosine–related long
noncoding RNAs

3.2.1 Model construction
In total, 276 prognosis-related m7G-related lncRNAs were

recognized using univariate Cox regression analysis. These

lncRNAs were further evaluated using LASSO penalized Cox

regression analysis, resulting in 17 lncRNAs (Figures 1B, C).

Multivariate Cox regression analysis was ultimately performed to

identify prognosis-related differential lncRNAs, and 11 m7G-

related lncRNAs were utilized to construct the m7G-related

lncRNA risk model (Figure 1D). Figure 1E shows the

correlations of these m7G-related lncRNAs with m7G gene in

the TCGA dataset. Hence, a novel prognostic model based on

m7G-related lncRNAs was successfully developed to forecast the

OS of HCC patients.

Afterward, we attempted to verify this model in the complete

dataset and carried out a bioinformatics analysis.

3.2.2 Model validation
The risk scores of the training set and testing set were

calculated, and then the patients were divided into high- and

low-risk groups according to the cutoff value of the risk score in

the training set, and the median value of the risk score in the

training set is identified as the cutoff value. The distributions of

the signature risk score, survival status, and expression of

relevant lncRNAs in the training set (Figures 2A–C) and the

validation set (Figures 2E–G) are depicted in Figure 2. As the risk

score increased, the number of deaths among HCC patients

increased. Afterward, K-M survival analysis was performed with

the training set (Figure 2D) and testing set (Figure 2H), and the

results showed that OS was better in the low-risk group in both

datasets. In addition, the subgroup K-M survival analysis of

patients grouped by different clinical characteristics showed

consistent results (Figure 3).

The differences between the two risk groups in total gene

expression profiles, the expression of the 29 m7G genes, and the
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expression of the m7G-related lncRNAs and 11 m7G-related risk

lncRNAs in our study were each confirmed using PCA (Figures

4A–D). Figures 4A–C shows random clustering of the risk

groups. In comparison, the findings from our model revealed

that the two groups had distinct distributions (Figure 4D). These

findings imply that the prognostic signature can differentiate

patients into two risk grades.

The accuracy of this model was assessed in both datasets

using receiver operating characteristic (ROC) curve analysis. The

acreage under the curve (AUC) values of the training set and

FIGURE 1
Construction of the model based on N7-methylguanosine (m7G)-related long noncoding RNAs (lncRNAs) in hepatocellular carcinoma (HCC).
(A) Workflow of the study. (B) Prognostic lncRNAs in HCC were selected based on regression coefficient analysis. (C) Least absolute shrinkage and
selection operator (LASSO) Cox regression with 10-fold cross-validation was used to determine the optimal factors for the HCC cohort. (D)
Multivariate Cox regression analysis was used to identify prognostic m7G-related lncRNAs to construct an m7G-related lncRNA risk model. (E)
Correlations between the expression of the differentially expressed lncRNAs and m7G genes in HCC.
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validation set for 1-, 3-, and 5-year OS were 0.742, 0.806, and

0.810, respectively (Figure 5A), and 0.767, 0.704, and 0.779,

respectively (Figure 5B), indicating that the lncRNA signature

could precisely predict the prognosis of HCC patients. Based on

the entire set, the AUC of the risk score was comparable to that of

other clinical parameters for predicting 1- (C), 3- (D), and 5-year

(E) OS, indicating that the 11-m7G-related-lncRNA-based

model for predicting HCC prognosis was comparably reliable.

The risk score distributions based on patient tumor/node/

metastasis stage, stage, and grade are displayed in Figures

5F–J, and the results reveal that this model is helpful in

patients with moderate- or advanced-stage disease.

Univariate Cox regression analysis and multivariate Cox

regression analysis were utilized to assess whether the score

calculated based on the 11 m7G related lncRNA-based risk

model could function as an independent prognostic indicator

for HCC patients. In the univariate Cox regression analysis, the

risk score (hazard ratio: 1.134, 95% confidence interval:

1.103–1.165, p < 0.001) and T stage (hazard ratio: 1.808, 95%

confidence interval: 1.463–2.234, p < 0.001) were independent

predictors of HCC prognosis (Figure 6A). These results

demonstrated that not only the lncRNA-based risk score

(hazard ratio: 1.124, 95% confidence interval: 1.092–1.156, p <
0.001) but also T stage (hazard ratio: 1.658, 95% confidence

interval: 1.329–2.068, p < 0.001) could independently predict

patient OS in HCC (Figure 6B), which indicated that the other

clinical variables did not affect the model.

The concordance index (CI) evaluates the predictive

capability of independent factors based on the probability of

the predicted outcome agreeing with the actual outcome. The CI

of the risk score seemed to be higher than those of other clinical

parameters, implying that the risk score may better predict the

outcome of HCC patients (Figure 6C). To investigate the

independence of the risk score as a risk factor, a nomogram

FIGURE 2
Distributions of the signature risk score, survival status, and expression of relevant long noncoding RNAs (lncRNAs) in the training set (A–C) and
the validation set (E–G). Kaplan–Meier survival analysis was used for the training set (D) and testing set (H) analysis.
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based on the independent prognostic parameters stage and m7G

risk score was constructed to forecast patient 1-, 3-, and 5-year

OS (Figure 6D). The 1-, 3-, and 5-year calibration plots showed

good concordance of the nomogram-predicted and actual patient

OS values, suggesting that the nomogram can aid planning of

short-term follow-up visits for individual treatments (Figures

6E–G). Moreover, the risk score demonstrated the most robust

predictive competence among all the clinical variables, consistent

with the multivariate Cox regression analysis. The novel m7G-

associated lncRNA score was a reliable and independent factor

for predicting HCC patient prognosis.

3.2.3 Prediction of immunotherapy benefit
To determine whether the m7G-related prognostic lncRNAs

are related to the immune response, Spearman’s correlation

analysis was employed to determine the correlation between

the risk score and diverse immune functions and infiltrating

immune cell levels in the two groups.

We investigated the levels of 22 infiltrating immune cells

(Figure 7A). The abundances of antigen-presenting cells (APCs),

immature dendritic cells (IDCs), macrophages, plasmacytoid

dendritic cells (PDCs), and Th2 cells were lower in the low-

risk group, while the NK cell abundance was high.

FIGURE 3
Kaplan-Meier (K-M) survival analysis to determine whether patient overall survival (OS) was correlated with clinical factors, including age (A,B),
sex (C,D), grade(E,F), T stage (G,H), and stage (I,J).
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The relationships between the risk score and various immune

functions are depicted in Figure 7B. The score targeting type II

interferons (IFN-II) in the low-risk group was significantly higher

than that in the high-risk group, while the score with APC

costimulation and MHC class I showed an inverse correlation

with the risk score. The demonstration for various immune cell

infiltration associated with the risk score is in Figure 7D.

The association of the risk score with immune cell infiltration

was then evaluated using the XCELL, TIMER, QUANTISEQ,

MCPCOUNTER, EPIC, CIBERSORT−ABS, and CIBERSORT

algorithms (Figure 7C and Supplementary Table S5). The

immune cell infiltration score was shown to be inversely

correlated with the abundances of endothelial cells, NK cells,

the microenvironment score, and the stroma score (Figure 7D),

and the levels of CD4+ T cells Th2, M0 macrophages, common

lymphoid progenitors, and regulatory T cells (Tregs) showed a

surprising positive relationship with the risk score (Figure 7E)

(R > 0.1, all p < 0.05). Immune cell subtype infiltration may have

a significant impact on prognosis.

3.2.4 Gene enrichment and alteration analysis
based on the risk score

A volcano plot was generated to show the significantly altered

genes between groups with different risk scores. Significant DEGs

were selected based on the criteria of |log2FC| > 1 and FDR < 0.05

(Supplementary Table S6). Significantly upregulated,

downregulated, and nondifferentially expressed lncRNAs are

represented by red, blue, and black, respectively (Figure 8A).

GO enrichment analysis and KEGG pathway analysis were

adopted to investigate the mechanisms linking the risk signature

with the differences seen between the risk groups. The results

suggested that DEGs were primarily enriched in cell metabolic

and immune function terms, including the GO terms organelle

fission, nuclear division, and chromosome segregation (Figure 8B

and Supplementary Table S7) and the KEGG pathway terms cell

cycle, and cytokine–cytokine receptor interaction (Figure 8C and

Supplementary Table S8).

Then, GSEA of the KEGG results showed apparent enrichment

of the terms bladder cancer, ubiquitin-mediated proteolysis, cell

cycle, DNA replication, and mTOR signaling pathway in the high-

risk group (Figure 8D and Supplementary Table S9). In addition,

GSEA based on HALLMARK pathways suggested that tumor

hallmarks, such as E2F targets, MTORC1 signaling, MYC targets

V1, NOTCH signaling, the P53 pathway, Pl3K/AKT/mTOR

signaling, TGF BETA signaling, and WNT/BETA CATENIN

signaling, were significantly enriched in the high-risk group

(Figure 8E and Supplementary Table S10).

Moreover, we also evaluated differential gene mutations

between the two risk groups in the entire set (Figures 9A, B).

The results revealed that TP53 had the highest alteration rate,

with a mutation rate of 41% in the high-risk group and 16% in the

low-risk group.

FIGURE 4
Principal component analysis (PCA) confirms the discriminatory ability of (A) total gene expression profiles, (B) 29 N7-methylguanosine (m7G)
genes, (C) m7G-related long noncoding RNAs (lncRNAs), and (D) 11 m7G-related risk lncRNAs.
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The relationship between patient OS and tumor mutational

burden (TMB) was analyzed, as depicted in Figure 9C, and the

same analysis within risk groups is shown in Figure 9D. We

found that samples with high TMB and high-risk had worse

prognoses, and the risk score played the predominant role in

deciding the outcome with increasing time.

3.2.5 Identification of candidate drugs based on
risk score

Using the m7G-related lncRNA model, we evaluated the

expression of immune checkpoints and activity levels in the

whole case. There were considerable differences in

immunological checkpoint expression between the two risk

FIGURE 5
Analysis of the N7-methylguanosine (m7G) risk model and other clinical characteristics. Receiver operating characteristic (ROC) curve analysis
was performed, and the acreage under the curve (AUC) for 1-, 3-, and 5-year overall survival (OS) was calculated in the training dataset (A) and in the
testing dataset (B) to verify the accuracy of the long noncoding RNAs (lncRNA) signature. The AUC values based on the entire set of the risk score
combined with other clinicopathological factors for predicting 1- (C), 3- (D), and 5-year (E) OS demonstrated the reliability of the risk model.
Risk score distribution was based on patients’ tumor/node/metastasis (TNM) stage (F–H), stage (I), and grade (J).
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groups. The expression of TNFSF4, TNFSF18, NRP1, CD27,

LGALS9, HAVCR2, LAIR1, IDO1, TIGIT, CD200R1, VTCN1,

TNFRSF8, HHLA2, CD86, TNFRSF14, CTLA4, CD48, CD276,

TNFRSF4, PDCD1, TNFRSF9, TNFRSF18, ICOS, LAG3, CD70,

CD44, CD80, TNFSF15, and TNFSF9 was higher, while that of

IDO2 was considerably lower in the low-risk group (Figure 10A).

The tumor immune dysfunction and exclusion (TIDE)

score (http://tide.dfci.harvard.edu) was calculated with each

risk score group to analyze further the correlation between the

risk score and immunotherapy sensitivity. The TIDE score can

be used to predict a patient’s response to immunotherapy

(Brinkman and van Steensel, 2019). The results showed that

the TIDE score of the high-risk group was obviously lower

than that of the low-risk group, suggesting that patients in the

high-risk group may be more responsive to immunotherapy

(Figure 10B).

We also analyzed the DEGs to identify potential treatments

for HCC patients in the two risk groups. To accomplish this,

343 DEGs were entered into the CMAP database, and 56 drugs

with distinct mechanisms of action were identified for further

analysis. Patients in the low-risk group showed higher sensitivity

to sorafenib, which is the current first-line systemic drug used in

HCC patients (Figure 10C).

Additional medications predicted to be related to the m7G-

related lncRNA signature and with a differential predicted

appearance in response, which were manifested separately in

the low-risk group (Figure 10D) and high-risk group

(Figure 10E) should be investigated as potential therapeutics.

FIGURE 6
Analysis of the independent predictive ability of the risk score and other factors. (A,B) Univariate and multivariate Cox regression analyses were
used to determine whether the risk score was an independent factor predicting survival in hepatocellular carcinoma (HCC). (C) Concordance index
(CI) values were calculated to assess the independent predictive utility of the factors. (D) A nomogram including the independent prognostic factors
stage and risk score was generated to predict the 1-, 3-, and 5-year overall survival (OS). The 1- (E), 2- (F), and 3-year (G) calibration plots are
shown.
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3.2.6 Consensus clustering of N7-
methylguanosine–related long noncoding RNAs
and analysis based on subtype

The molecular subtypes of HCC were explored using the NMF

algorithm based on the expression of m7G-related lncRNAs. NMF

clustering analysis was performed, and among k values of 2–9, 2 was

shown to provide the best clustering reliability based on the

cophenetic correlation coefficient. A total of 343 samples were

separated into two clusters with clear boundaries in the matrix

heatmap, which suggested robust clustering of the samples based on

the lncRNA signature (Figure 11A). Information on the sample

cluster is provided in Supplementary Table S11.

In addition, the PCA and t-distributed stochastic neighbor

embedding (t-SNE) analysis confirmed that the two clusters

could be distinguished (Figures 11B, C). The K-M curve

analysis revealed a substantial survival difference between the

groups when k = 2, with Cluster 1 having a better survival than

Cluster 2 (p < 0.001) (Figure 11D).

We also detected the expression of multiple immune

checkpoints in each subtype (Figure 11E) and immune cell

FIGURE 7
Analysis of immune function. (A) Abundances of 22 types of infiltrating immune cells. (B) Relationship between immune scores and a series of
immune functions. (C) The relationship between the risk score and immune cell infiltration in hepatocellular carcinoma (HCC)was assessed using the
XCELL, TIMER, QUANTISEQ, MCPCOUNTER, EPIC, CIBERSORT−ABS, and CIBERSORT algorithms. (D) Infiltrating immune cells negatively correlated
with risk score (endothelial cell, natural killer (NK) cell, microenvironment score, stroma score). (E) Infiltrating immune cells positively correlated
with risk score (T cells CD4+ Th2, macrophages M0, common lymphoid progenitor, T cell regulatory).
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infiltration in the two clusters generated with the above algorithm

(Figure 11F). The expression of TNFSF4, TNFSF18, NRP1, CD27,

BTLA, LGALS9, HAVCR2, CD244, ICOSLG, LAIR1, IDO1,

TIGIT, CD200R1, VTCN1, TNFRSF8, TNFRSF25, BTNL2,

HHLA2, CD40LG, CD28, CD86, TNFRSF14, CTLA4, CD48,

PDCD1LG2, CD276, TNFRSF4, PDCD1, TNFRSF9, TNFRSF18,

CD200, ICOS, LAG3, CD70, CD44, CD80, CD160, TNFSF15,

TNFSF9, CD274, and TNFSF9 was higher in Cluster 2,

although IDO2 expression was significantly lower, somewhat

consistent with the previous analyses. In addition, infiltration of

various immune cells showed differences in the two clusters.

4 Discussion

HCC is the sixth most common malignancy and has a poor

prognosis worldwide; HCC prognosis can be distinctly improved

by early detection and treatment (Yarchoan et al., 2019).

FIGURE 8
Enrichment analyses of the potential functions of the differentially expressed genes (DEGs). (A) Volcano plots showing the relationships of the
significant differentially expressed long noncoding RNAs (lncRNAs) with upregulated, downregulated, and nondifferentially expressed genes
represented by red, blue, and black, respectively. Underlying pathways and functions of the signature lncRNAs were predicted with Gene Ontology
(GO) enrichment analysis (B) and Kyoto Encyclopedia of Genes andGenomes (KEGG) pathway analysis (C). Gene set enrichment analysis (GSEA)
of the KEGG pathway terms (D) and HALLMARK pathway analysis (E) further revealed the possible roles of lncRNAs in the signature in the tumor.
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Identification of robust andmeaningful biomarkers may improve

prognosis. In addition, immunotherapy has dramatically

improved patients’ quality of life with HCC, and many studies

have shown objective results in patients receiving immune

checkpoint inhibitors (Donisi et al., 2020).

Determining lncRNA-related modification mechanisms has

become a common goal of current research (Wang et al., 2011;

Rinn and Chang, 2012; Yang et al., 2014), and biological

functions of lncRNAs (Esteller, 2011), such as binding with

proteins, acting as protein sponges (Memczak et al., 2013), or

serving as scaffolds that contribute to disease progression, have

been revealed. Recent research has identified abnormal lncRNA

expression as a diagnostic and prognostic biomarker in

malignancies (Poursheikhani et al., 2020; Li et al., 2021; Wang

H. et al., 2021).

In addition, in previous studies, many studies have

investigated the ability of posttranscriptional regulation-

associated genes to predict patient prognosis in various

diseases, especially in malignancies, including breast cancer

(Du et al., 2020), HCC (Li et al., 2020), and gastric cancer

(Liu et al., 2021). LncRNA m7G modification is also

important in gene regulation because it is necessary for

expression (Juhling et al., 2009; Tomikawa, 2018). However,

researchers have rarely explored the lncRNA m7G

modifications as biomarkers of prognosis and immunotherapy

response.

Here, data from 343 patients with OS time of more than

30 days were retrieved from TCGA to identify m7G-related

prognostic lncRNAs.

As a result, an 11-m7G-related-lncRNA signature was

generated, and the risk score calculated based on this

signature was strongly associated with patient OS; the

following lncRNAs were included in the risk signature:

AC026412.3, AC034229.4, AC091057.3, AC099066.2,

AL049840.5, AL096678.1, AL158163.1, DUXAP8,

GABPB1−AS1, LINC01224, and MKLN1−AS. Multivariate Cox

FIGURE 9
Analysis of gene alterations and their effects based on entire set. Differential genemutations between the high- (A) and low-risk (B) groups were
determined based on the long noncoding RNA (lncRNA) signature. (C) Patient overall survival (OS) is based on tumor mutational burden (TMB). (D)
Patient OS over time based on TMB and risk score.
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regression analysis was utilized to construct an ideal risk model.

The high expression of AC091057.3, AL158163.1, and

MKLN1−AS was found to be beneficial to patient OS, with

negative correlation coefficients, and the remaining lncRNAs

in the signature may promote cancer progression, having positive

correlation coefficients. Some of the lncRNAs have already been

confirmed to be significantly related to patient prognosis. Gu

et al. (2021) found that suppression of LINC01224 inhibited CRC

cell proliferation, migration, and invasion while increasing

apoptosis via the LINC01224/miR-485-5p axis. Qi et al. (2019)

discovered that an elevated level of lncRNA GABPB1-AS1 could

inhibit GABPB1 transcription, resulting in the dysregulation of

the gene encoding the peroxiredoxin-5 (PRDX5) peroxidase and

the suppression of cellular antioxidant capacity, implying that

increased GABPB1-AS1 levels may be linked to improved

prognosis in HCC patients. In addition, Wang B. et al. (2021)

found that DUXAP8 promotes the Akt/mTOR signaling

pathway, increasing tumor formation. However, the role of

lncRNAs related to m7G modifications has been scarcely

explored.

The identified lncRNAs were used to group patients into two

risk groups by calculating a risk score, which was proven to be a

competent, credible, and independent factor for assessing

patient OS.

FIGURE 10
Identification of candidate drugs based on the N7-methylguanosine (m7G) risk score. (A) Immune checkpoint expression in the whole dataset.
(B) Tumor immune dysfunction and exclusion (TIDE) analysis based on the risk score. (C) Analysis of sorafenib sensitivity based on the risk score. (D)
Drugs with low IC50 values in the low-risk group. (E) Drugs with low IC50 values in the high-risk group.
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Given the importance of immunotherapy, the association

between the risk score and immune cell infiltration was

evaluated. Factors such as stromal cell abundance and

enrichment of processes such as tumorigenesis and endothelial

cell participation in the formation of new blood vessels and

tumor microenvironment (TME) factor promotion of tumor

aggressiveness have been shown to be relevant (Hida et al.,

2004). The immune cell infiltration analysis showed intriguing

FIGURE 11
Consensus clustering of prognostic N7-methylguanosine (m7G)-related long noncoding RNAs (lncRNAs) and corresponding analysis. (A)
Consensusmatrix heatmapwith 343 samples divided into Cluster 1 and Cluster 2. Principal component analysis (PCA) (B) and t-distributed stochastic
neighbor embedding (t-SNE) analysis (C) were used to confirm the distinction between Cluster 1 and Cluster 2. (D) The Kaplan–Meier (K-M) curve
analysis revealed the association between overall survival (OS) and risk score subtype. (E)Differential immune checkpoint gene expression in the
two clusters. (F) Immune cell infiltration in the two clusters was assessed using the XCELL, TIMER, QUANTISEQ, MCPCOUNTER, EPIC,
CIBERSORT−ABS, and CIBERSORT algorithms.
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results, with increased abundances of APCs, IDCs, macrophages,

PDCs, and Th2 cells in the high-risk group and increased NK

cells in the low-risk group, which may lead to the occurrence of

an immunosuppressive TME. According to previous studies,

Th2 cells cause immunosuppression that leads to tumor

development (Mantovani et al., 2008). Another report

indicated that the accumulation of M0 macrophages in the

TME of HCC is a poor prognostic factor (Cai et al., 2022). In

addition, APCs can benefit drug delivery to cancer cells and may

minimize damage to healthy cells, serving as more applicable

therapeutic agents with improved pharmacokinetic

characteristics (Hafeez et al., 2020). In addition, the

relationship between immunological scores and other immune

functions was examined, and the low-risk group seemed to have a

considerably higher IFN-II score. IFNs are essential components

of the immune response to infections and cancers and influential

promoters of the antitumor response (Dunn et al., 2006).

Co-inhibitory substances expressed by effector cells prevent the

overactivation of immune checkpoints from delaying tumor

development (Llovet et al., 2018; Cariani and Missale, 2019; Lee

et al., 2020). Immune checkpoint inhibitors, including those targeting

PD-1,PD-L1,PD-L2, andCTLA4, are considered the primary therapy

for many malignant tumors (Donisi et al., 2020). In our study, there

was a significantly higher level ofCTLA4 and LAG3 expression in the

high-risk group, and these markers are known to induce

immunosuppression. Tregs have a constitutive expression of

CTLA-4, which inhibits the immune response. CTLA-4 competes

with CD28 for binding with CD80/CD86, thus decreasing activated

T cells. At present, strategies to block immune checkpoints to prevent

immune evasion, decrease Treg activity, and reactivate functions

concerning antitumor immunotherapy are of interest (Inarrairaegui

et al., 2018; Cariani and Missale, 2019). Further research of the other

immune checkpoint-targeting agents with vast differences in

predicted efficacy between the two groups may provide potential

information for immunotherapy in HCC.

The GO and KEGG results indicate that the DEGs were

primarily enriched in organelle fission, nuclear division,

chromosomal segregation, cell cycle, and cytokine–cytokine

receptor contact. Organelle fission, a type of cell

transformation associated with organelle biology, plays an

essential role in tumorigenesis because it is needed for

adaptability to cellular and environmental changes and cancer

therapies (Osteryoung, 2001). Repeat mistakes in chromosome

segregation during mitosis cause chromosomal instability, a

hallmark of cancer (Bakhoum et al., 2018). The

cytokine–cytokine receptor interaction pathway preferentially

induces inflammatory adaptive innate immunity, cell

proliferation, cell differentiation, cellular damage, angiogenesis,

and growth and restoration activities that attempt to restore

equilibrium (Schreiber and Walter, 2010; Spangler et al., 2015).

Furthermore, the GSEA results depicted high enrichment of

pathways and hallmarks related to tumor progressions in the

high-risk group, such as cell cycle, bladder cancer, DNA

replication, ubiquitin-mediated proteolysis, MTOR signaling

pathway, TGF BETA signaling, E2F targets,

MTORC1 signaling, P53 pathway, MYC targets V1, NOTCH

signaling, Pl3K/AKT/mTOR signaling and WNT/BETA

CATENIN signaling. These findings suggest that m7G

lncRNA methylation plays an underlying regulatory role in

HCC development. For example, proteolysis mediated by

relevant cyclin chaperones and kinase inhibitors promotes the

sequential activation of cyclin-dependent kinases. In recent years,

studies have shown that dysregulation of the cell cycle induced by

inefficient proteolytic control leads to uncontrolled cell

proliferation and, consequently, the occurrence of tumors

(Weinberg, 1995). E2F targets (E2Fs) are genes that encode a

family of transcription factors related to the tumor progression in

various cancers (Sozzani et al., 2006; Santos et al., 2014;

Rennhack and Andrechek, 2015). In addition, mTOR

signaling dysregulation has been linked to multiple human

diseases, including obesity, diabetes, cancer, and neurological

diseases (Cornu et al., 2013). At last, we analyzed the rates of gene

alteration between the two risk groups, and TP53, one of the five

most generally mutated genes in human malignancies today

(Stratton, 2011), showed the highest mutation rate.

Furthermore, the drug sensitivity analysis results showed that

patients in the low-risk group were likely to have a different

response to sorafenib, which has been the primary treatment for a

decade, than those in the high-risk group.

We also separated the HCC patients into Cluster 1 and

Cluster 2 using NMF clustering analysis. Most of the results

were in line with those for the previously defined risk groups,

suggesting the effectiveness and reliability of the risk score model

for aiding individual treatment decisions in HCC.

In summary, our predictive model based on 11 m7G-related

lncRNAs showed high clinical applicability and would cost

substantially less than sequencing. The model also performed well

in predicting the survival of HCC patients. Regardless, the study has

several limitations. First, themodelwas constructed usingTCGAdata,

and a patient cohort was not used. In addition, in vivo and in vitro

tests are needed to confirm the findings. Moreover, the clinical

guidelines for using this prognostic model need to be identified.

In conclusion, we used various methods to investigate the

expression levels and prognostic value of m7G-related lncRNAs.

We created an 11-lncRNA model with stand-alone prognostic

utility in HCC. This is the first study to develop an m7G-related

lncRNA risk model for HCC.

5 Conclusion

All the findings suggest that the developed m7G-related

lncRNA signature can effectively assess patient OS and patient

sensitivity to immunotherapy and other drugs, whichmay aid the
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discovery of novel immunotherapies and targeted therapies for

HCC patients.
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