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Abstract: The cardiac Mg2+-sensitive, TRPM6, and TRPM7-like channels remain undefined, especially
with the uncertainty regarding TRPM6 expression in cardiomyocytes. Additionally, their contribution
to the cardiac action potential (AP) profile is unclear. Immunofluorescence assays showed the
expression of the TRPM6 and TRPM7 proteins in isolated pig atrial and ventricular cardiomyocytes, of
which the expression was modulated by incubation in extracellular divalent cation-free conditions. In
patch clamp studies of cells dialyzed with solutions containing zero intracellular Mg2+ concentration
([Mg2+]i) to activate the Mg2+-sensitive channels, raising extracellular [Mg2+] ([Mg2+]o) from the
0.9-mM baseline to 7.2 mM prolonged the AP duration (APD). In contrast, no such effect was
observed in cells dialyzed with physiological [Mg2+]i. Under voltage clamp, in cells dialyzed with
zero [Mg2+]i, depolarizing ramps induced an outward-rectifying current, which was suppressed
by raising [Mg2+]o and was absent in cells dialyzed with physiological [Mg2+]i. In cells dialyzed
with physiological [Mg2+]i, raising [Mg2+]o decreased the L-type Ca2+ current and the total delayed-
rectifier current but had no effect on the APD. These results suggest a co-expression of the TRPM6
and TRPM7 proteins in cardiomyocytes, which are therefore the molecular candidates for the native
cardiac Mg2+-sensitive channels, and also suggest that the cardiac Mg2+-sensitive current shortens
the APD, with potential implications in arrhythmogenesis.
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1. Introduction

The cardiac cation channels involved in electrical activity and ion homeostasis include
well-known ion-selective channels, as well as ion nonselective channels. Apart from the
Na+- and K+-permeable pacemaker or funny (If) channels [1], not many nonselective cardiac
cation channels have been fully characterized; hence, their molecular identities remain
uncertain. During the past two decades, there has been a growing interest in transient
receptor potential (TRP) proteins as molecular candidates for native cation nonselective
channels, including those found in the heart [2]. TRP channels are a large superfamily of
proteins expressed in several tissues where they are involved in diverse signaling processes
and in disease [3]. Among the various TRP channels expressed in the cardiovascular system,
canonical (e.g., TRPC1 and C3–C7), melastatin (e.g., TRPM4 and M7), vanilloid (e.g., TRPV1
and V2), and polycystin (e.g., TRPP1/2) channels are present in the heart and are implicated
in the physiological functions and in cardiac abnormalities such as arrhythmogenesis and
heart failure [4,5]. The role of cardiac TRP channels has been explored in fibroblasts and
in pacemaker cells (see reference [3]) but much less in cardiomyocytes. The few TRPs

Int. J. Mol. Sci. 2021, 22, 8744. https://doi.org/10.3390/ijms22168744 https://www.mdpi.com/journal/ijms

https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0003-3968-6161
https://doi.org/10.3390/ijms22168744
https://doi.org/10.3390/ijms22168744
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijms22168744
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms22168744?type=check_update&version=1


Int. J. Mol. Sci. 2021, 22, 8744 2 of 15

that have been electrophysiologically explored in cardiac myocytes include TRPC1 [6],
TRPC3/6/7 [7,8], TRPV4 [9], TRPM4 [10], TRPM7 [11,12], and TRPP1/2 [13].

We have previously characterized cardiac Mg2+-sensitive channels [14,15] with bio-
physical properties similar to those of the heterologous TRPM6 and TRPM7 channels, both
of which are involved in the homeostasis of Mg2+ and other divalent cations [16–20]. Like
the heterologously expressed TRPM6 and TRPM7 channels, the cardiomyocyte TRPM6-
and TRPM7-like channels are typically activated by low intracellular Mg2+ concentra-
tion ([Mg2+]i) conditions and conduct small inward currents carried by divalent cations
and large outward currents carried by monovalent cations. These cardiomyocyte Mg2+-
sensitive channels have been detected in various species, including humans, rats, pigs,
guinea pigs, and mice. However, the nature of the proteins underlying the cardiac TRPM6-
and TRPM7-like currents and the functional consequences of their cation fluxes have
remained unclear.

Whereas TRPM7 protein expression has been systematically detected in cardiac tissues
or cells, until recently, information regarding the TRPM6 channel protein expression in
the heart has remained scant and has concerned only the right atrium [21]. However, very
recent data on human atrial/ventricular cardiomyocytes and tissues has highlighted the
co-expression of TRPM6 and TRPM7 in cardiomyocytes from all chamber walls of the
human heart [22]. As far as function is concerned, we have previously shown the cardiac
Mg2+-sensitive channels to be permeable to Ca2+ and Mg2+ [15] and proposed that, at the
resting membrane potential, the inward flow of divalent cations into cells through the
channels could have an effect on the intracellular concentrations of the divalent cations (see
reference [23]). On the other hand, the contribution of the TRPM6- and TRPM7-like currents
to the cardiomyocyte electrical activity is unknown. The possibility that monovalent cation
effluxes through Mg2+-sensitive channels at positive potentials could contribute to action
potentials has not been tested.

Here, we investigated the expression profile of TRPM6 and TRPM7 proteins in pig
cardiac myocytes, as well as the role of the Mg2+-sensitive, TRPM6-, and TRPM7-like
currents on the cardiac action potential.

2. Results
2.1. Expression of TRPM6 and TRPM7 in Cardiac Myocytes

To show the presence of TRPM6 and TRPM7 proteins, we used the immunostaining
of atrial and ventricular cardiomyocytes, performed after 2 h of cell isolation. Figure 1A–D
shows confocal images of pig cardiomyocytes co-stained for the nucleus (blue), for ei-
ther TRPM7 or TRPM6 protein (green), and for the F-actin-cytoskeleton (red), whereas
Figure 1E shows a negative control (cardiomyocyte incubated in conditions similar to those
of Figure 1A–D but with no primary antibody added in the incubation medium). All the
cardiomyocytes displayed staining with antibodies for TRPM6 and TRPM7. Figure 1F
shows the quantification of the immunodetected fluorescence of TRPM7 (left panel) and
TRPM6 (right panel) in the four cardiac chamber walls: left atrium (LA), right atrium (RA),
left ventricle (LV), and right ventricle (RV). Of note was the multinucleated nature of the
cells, as previously noted for pig cardiomyocytes [24].

We found that the measured level of expression of the TRPM6 and TRPM7 proteins
was influenced by the cell incubation conditions, such as the presence and absence of
extracellular divalent cations. The immunofluorescence level of both channel proteins in
the cardiomyocytes from all the cardiac chamber walls was significantly higher following
cell incubation in divalent cation-containing (DV) extracellular conditions vs. incubation in
divalent cation-free (DVF) conditions (see Table 1). In addition, the expression was also
increased when incubating cells for a longer period before cell fixation and exposure
to the primary antibodies. Figure 2 shows that the mean fluorescence levels for the
immunodetected TRPM6 and TRPM7 were significantly increased in LV cardiomyocytes
kept for 12 h in solutions with (Figure 2A,B) or without (Figure 2C,D) divalent cations.
TRPM7 increased from 0.087 ± 0.0013 a.u. to 0.133 ± 0.0011 a.u., n = 3–23, p < 0.001 in the
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DV solutions and from 0.065 ± 0.0009 a.u. to 0.112 ± 0.0006 a.u., n = 4–25, p < 0.001 in the
DVF solutions. Under the same experimental conditions, the TRPM6 immunofluorescence
increased from 0.029 ± 0.0015 a.u. to 0.050 ± 0.0012 a.u., n = 3–24, p < 0.001 and from
0.020 ± 0.0006 a.u. to 0.040 ± 0.0009 a.u., n = 7–21, p < 0.001 in the DV and DVF solutions,
respectively. Qualitatively similar changes could be detected in the cardiomyocytes from
the other cardiac chamber walls when incubated for 12 h (not illustrated).
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Figure 1. Immunofluorescence images suggesting the presence of TRPM6 and TRPM7 proteins in 
pig cardiomyocytes from different cardiac chamber walls. (A–D) Immunofluorescence of TRPM7 
(left) and TRPM6 (right) in the left atrium (LA), right atrium (RA), left ventricle (LV), and right 
ventricle (RV) cardiomyocytes when using Alexa Fluor 488 for the TRPM7 and TRPM6 proteins 
(stained in green), Alexa Fluor 546 for the F-actin cytoskeleton (stained in red), and Hoechst 33342 
for the nuclei (stained in blue). Scale bars indicate 20 µm. (E) Example of a negative control, where 
the primary antibody for TRPM6 and/or TRPM7 is not added, but the cardiomyocyte was subjected 
to Hoechst 33342 and Alexa Fluor 546. Under such conditions, only immunofluorescence of the nu-
clei (stained in blue) and F actin cytoskeleton (stained in red) is detected. Note: same cardiomyocyte 
in the left and right (merged image) panels (F) Quantification of the staining intensity of the immu-
nodetected fluorescence of TRPM7 and TRPM6 in the four cardiac chamber walls: LA, RA, LV, and 
RV. The mean data is provided in arbitrary units (a.u.) (see Table 1). A blinded study design (with 
the origin or treatment of cells unknown to the investigator) was used for the detection of immuno-
fluorescence during the various experimental conditions. 

  

Figure 1. Immunofluorescence images suggesting the presence of TRPM6 and TRPM7 proteins in pig
cardiomyocytes from different cardiac chamber walls. (A–D) Immunofluorescence of TRPM7 (left)
and TRPM6 (right) in the left atrium (LA), right atrium (RA), left ventricle (LV), and right ventricle
(RV) cardiomyocytes when using Alexa Fluor 488 for the TRPM7 and TRPM6 proteins (stained in
green), Alexa Fluor 546 for the F-actin cytoskeleton (stained in red), and Hoechst 33342 for the nuclei
(stained in blue). Scale bars indicate 20 µm. (E) Example of a negative control, where the primary
antibody for TRPM6 and/or TRPM7 is not added, but the cardiomyocyte was subjected to Hoechst
33342 and Alexa Fluor 546. Under such conditions, only immunofluorescence of the nuclei (stained
in blue) and F actin cytoskeleton (stained in red) is detected. Note: same cardiomyocyte in the left
and right (merged image) panels (F) Quantification of the staining intensity of the immunodetected
fluorescence of TRPM7 and TRPM6 in the four cardiac chamber walls: LA, RA, LV, and RV. The mean
data is provided in arbitrary units (a.u.) (see Table 1). A blinded study design (with the origin or
treatment of cells unknown to the investigator) was used for the detection of immunofluorescence
during the various experimental conditions.
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Table 1. Immunofluorescence signals of the TRPM7 and TRPM6 proteins in pig hearts.

Heart
Chamber

TRPM7 Signal (a.u.) TRPM6 Signal (a.u.)

DV DVF DV DVF

LA 0.067 ± 0.0006
n = 37

0.053 ± 0.0009 #
n = 13

0.023 ± 0.0013
n = 18

0.016 ± 0.0014 #
n = 20

RA 0.079 ± 0.0009
n = 21

0.059 ± 0.0010 #
n = 5

0.029 ± 0.0008
n = 32

0.018 ± 0.0011 #
n = 4

LV 0.087 ± 0.0013
n = 23

0.065 ± 0.0009 #
n = 25

0.029 ± 0.0015
n = 24

0.020 ± 0.0006 #
n = 21

RV 0.098 ± 0.0013
n = 12

0.076 ± 0.0016 #
n = 5

0.032 ± 0.0012
n = 14

0.025 ± 0.0020 #
n = 3

TRPM7 and TRPM6—transient receptor potential melastatin type 7 and 6 channels, LA—left atrium, RA—right
atrium, LV—left ventricle, RV—right ventricle, DV—extracellular divalent cations, DVF—extracellular divalent
cation-free, n—number of cells, a.u.—arbitrary unit, and #—p < 0.001 for DV vs. DVF.
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Figure 2. Comparison of the expression of TRPM6 and TRPM7 in left ventricular cardiomyocytes
incubated for 2 h vs. 12 h in extracellular solutions with (A,B) and without (C,D) divalent cations
(DV and DVF, respectively). (A,C) The cardiomyocytes were fixed after 2 h (filled columns) or 12 h
(unfilled columns) of cell isolation: Alexa Fluor 488 for the TRPM7 and TRPM6 proteins (stained in
green), Alexa Fluor 546 for the F-actin cytoskeleton (stained in red), and Hoechst 33342 for the nuclei
(stained in blue). Scale bars indicate 20 µm. (B,D) Quantification of the intensity of the fluorescence
expressed in arbitrary units (a.u.). # p < 0.001 expression after 12 h vs. 2 h of cardiomyocyte incubation.

2.2. Impact of Mg2+-Sensitive Currents on the Action Potential

To examine the role of Mg2+-sensitive currents on the electrical activity of cardiac
myocytes, we recorded the total currents using a whole-cell voltage clamp, as well as the
resting and action potentials using the current clamp. The cells were internally dialyzed
and extracellularly perfused with solutions known to activate or inhibit the currents.
The cells were internally dialyzed with either physiological levels of free intracellular
[Mg2+] ([Mg2+]i = 0.8 mM) or with the Mg2+-free solution ([Mg2+]i ≈ 0 mM). The latter
condition is known to cause a progressive activation of Mg2+-sensitive channels with
time by removing the inhibition exerted by intracellular Mg2+ [15]. The cells were also
extracellularly perfused with either physiological levels of [Mg2+] ([Mg2+]o = 0.9 mM)
or with high Mg2+ ([Mg2+]o = 7.2 mM). High [Mg2+]o is known to cause a complete
suppression of any activated Mg2+-sensitive current [15].
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Figure 3 shows the whole-cell currents and action potentials measured in the cells
dialyzed with either 0.8-mM [Mg2+]i (Figure 3A,C,E) or with 0-mM [Mg2+]i (Figure 3B,D,F).
In these two groups of cells, there was no difference in the resting membrane potentials,
which were also not changed by raising [Mg2+]o from 0.9 mM to 7.2 mM (for 0.8 mM
[Mg2+]i, the resting membrane potential: −79.9 ± 2.6 mV in the control vs. −81.0 ± 2.1 mV
in high [Mg2+]o; for 0 mM [Mg2+]i: −78.4 ± 2.8 mV in the control vs. −77.4 ± 3.7 mV in
high [Mg2+]o, p = 0.308, ANOVA; n = 10).
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Figure 3. Effect of Mg2+-sensitive current activation on the action potential. (A,B) Whole-cell currents
obtained by voltage ramps in cells dialyzed with 0.8-mM [Mg2+]i (A) or 0-mM [Mg2+]i (B) and
superfused with extracellular solutions containing 0.9-mM [Mg2+]o or 7.2-mM [Mg2+]o. Insets: the
[Mg2+]o-sensitive currents calculated as the differences between currents in the presence of 0.9-mM
[Mg2+]o and those in 7.2-mM [Mg2+]o. Notice the outward-rectifying [Mg2+]o-sensitive current in
the cell dialyzed with 0-mM [Mg2+]i. (C–F) The action potentials in the same cells as above, and
the summary data of the action potential durations (APD) from all the cells dialyzed with 0.8-mM
[Mg2+] (C,E) or 0-mM [Mg2+] (D,F) and the effect of raising the [Mg2+]o from 0.9 mM (black) to
7.2 mM (red). The APD was measured at 30%, 50%, and 90% repolarization (APD30, APD50, and
APD90, respectively). Notice the lengthening of the APD by high [Mg2+]o in the cells dialyzed with
low intracellular [Mg2+]. Pacing frequency: 1 Hz. * p < 0.05 for 7.2-mM vs. 0.9-mM [Mg2+]o. n = 9 for
the cells dialyzed with 0.8-mM [Mg2+]i; n = 10 for the cells dialyzed with 0-mM [Mg2+]i.
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Figure 3A,B illustrates the membrane currents recorded under a voltage clamp during
a descending ramp, following a preceding depolarizing ramp meant to inactivate the
voltage-dependent Na+- and Ca2+ currents (see Methods). The experiments were per-
formed at 36 ◦C using K+-containing intra- and extracellular solutions. In cells dialyzed
with physiological levels of [Mg2+]i (0.8 mM; Figure 3A), the current–voltage relationship
was characterized by a large inward current, consistent with the presence of the inward
rectifier K+ current (IK1) at potentials negative to −75 mV, and the current–voltage relation-
ship was relatively flat at more positive potentials. Raising [Mg2+]o to 7.2 mM did not affect
the current–voltage relationship, indicating that the high [Mg2+]o did not affect the IK1 and
that no other Mg2+-sensitive current was present (Figure 3A, inset). In the cells dialyzed
with Mg2+-free solution (0 mM [Mg2+]i; Figure 3B), the current-voltage relationship was
characterized by the presence of IK1 but also showed an outward rectifying current at
positive potentials. The outward rectifying component was suppressed by raising [Mg2+]o
to 7.2 mM, indicating the presence of a Mg2+-sensitive current. This [Mg2+]o-sensitive
current, calculated as the difference in the current–voltage relationships between the two
conditions with different [Mg2+]o, displays outward-rectifying properties similar to those
of the TRPM6 and TRPM7 currents (Figure 3B, inset).

After recording membrane currents under a voltage clamp, we switched to the current
clamp mode to record the action potentials in the same cells. Pig cardiomyocytes offer an
experimental advantage when studying factors that affect the action potential, since chan-
nels carrying the transient outward K+ current (Ito) are not expressed in this species [25,26].
Under the control conditions, with 0.9 mM [Mg2+]o, the action potentials were gener-
ally shorter in cells dialyzed with Mg2+-free internal solution (compare Figure 3C,E vs.
Figure 3D,F). In the cells dialyzed with physiological [Mg2+]i, raising [Mg2+]o to 7.2 mM
did not change the action potential durations during the stimulation at 1 Hz (APD; APD30:
145.5 ± 14.5 ms vs. 136.5 ± 15.1 ms, APD50: 216.6 ± 19.6 ms vs. 196.6 ± 21 ms, and APD90:
238 ± 48 ms vs. 231 ± 46 ms in high [Mg2+]o vs. in the control; p > 0.05, paired t-test; n = 9;
Figure 3E). In contrast, in cells dialyzed with Mg2+-free internal solution, raising [Mg2+]o
to 7.2 mM, caused a marked prolongation of the APD (APD30: from 100.4 ± 14.8 ms
to 143.6 ± 19.9 ms, APD50: from 145.6 ± 16.1 ms to 189.8 ± 22.4 ms, and APD90: from
178.9 ± 14.2 ms to 225.2 ± 21.3 ms; p < 0.05, paired t-test; n = 10; Figure 3F). Taken together,
these results show that the cardiac action potential is modulated by an outward-rectifying
current activated by dialysis with zero [Mg2+]i and suppressed by high [Mg2+]o. Further-
more, given that this current was absent in the cells dialyzed with 0.8 mM [Mg2+]i, it is
likely due to TRPM7 or/and TRPM6.

2.3. Effects of High Extracellular [Mg2+] on ICa-L and IK

Considering that the changes in the action potential produced by high [Mg2+]o mainly
affected the plateau and repolarization phases, we also examined the effect of [Mg2+]o
on other currents that play a role during these phases, such as the L-type Ca2+ current
(ICa-L) and the delayed rectifier K+ current (IK). The analysis was done in cells dialyzed
with 0.8-mM [Mg2+]i to inhibit the Mg2+-sensitive currents. For the measurements of IK,
K+-containing intracellular and extracellular solutions were used, and nifedipine (25 µM)
was included in the external solution, whereas, for the measurements of ICa-L, K+ was
replaced by Cs+ in the external and pipette solutions, and 10-mM BAPTA was used in the
pipette solution instead of EGTA. Figure 4A shows the bidirectional effect of the [Mg2+]o
alteration on ICa-L. Where lowering the [Mg2+]o by 10-fold to 0.09 mM reversibly increased
the amplitude of ICa-L continuously monitored at 0 mV (ICa-L measured at the peak level:
from −5.4 ± 0.43 pA/pF to −6.5 ± 0.41 pA/pF; p < 0.05, paired t-test; n = 8; Figure 4B),
raising the [Mg2+]o to 7.2 mM reversibly decreased the amplitude of ICa-L (peak ICa-L: from
−4.8 ± 0. 39pA/pF to −2.2 ± 0.17 pA/pF; p < 0.001, paired t-test; n = 13; Figure 4B; see
reference [27]). As expected, the IK blockers E4031 and HMR1556 had no effect on the ICa-L
(Figure 4A). When wanting to test the consequence of an eventual modulation of the ICa-L
by extracellular Mg2+, we kept E4031 constantly from the beginning of the experiment. The
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ICa-L–voltage relationships (see Figure 4A, inset) indicate that the [Mg2+]o changes shifted
the activation curve of ICa-L (to more negative potentials upon lowering the [Mg2+]o and to
more positive potentials upon raising [Mg2+]o; see reference [27]).
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Figure 4. Effect of changing the external [Mg2+] on the L-type Ca2+ currents (ICa-L). (A) Time diary
of the amplitude of the L-type Ca2+ currents obtained by using depolarizing steps for various poten-
tials in a cell dialyzed with 0.8-mM [Mg2+] and superfused with extracellular solutions containing
0.09-mM, 0.9-mM, or 7.2-mM [Mg2+]. Notice the increase vs. suppression of the ICa-L amplitude by
low vs. high [Mg2+]o and the lack of effect of the IK inhibitors (E4031/HMR1556). Bottom inset: The
current–voltage relations obtained by the depolarizing steps to the potentials ranging from −50 mV
to +50 mV in the same cell. (B) Summary data of the peak ICa-L amplitude and the effects of lowering
and raising the [Mg2+]o. * p < 0.05 vs. 0.9-mM [Mg2+]o (n = 8–13).

Figure 5 shows that raising [Mg2+]o also decreased the magnitude of the total IK
(Figure 5A at +30 mV to +50 mV p < 0.05 for 7.2-mM [Mg2+]o vs. the control, paired t-test;
n = 4) and only mildly shifted the activation curve to the right (voltage at the half-maximal
current V0.5: from ≈−6 mV to ≈−2 mV; n = 4; Figure 5B).
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Since high [Mg2+]o did not change the APD in cells dialyzed with 0.8-mM [Mg2+]i (see
Figure 3C,E), it is possible that there are two opposing and counterbalancing effects of high
[Mg2+]o on the ICa-L and IK. To test for this possibility, we applied high [Mg2+]o on cells in
which the IK was partly blocked to offset such a balance. We initially performed preliminary
tests to determine the optimum concentrations of the IK inhibitors (i.e., HMR1556 for the
slow IK component IKs and E 4031 for the rapid component IKr) effective in producing a
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partial block of IK without excessively prolonging the APD (not illustrated). Figure 6A
shows the typical changes in action potentials in a perforated cell, whereas the summary
data from four cell are presented in Figure 6B. Under the control conditions with 0.9-mM
[Mg2+]o, the addition of small concentrations of IK inhibitors (100-nM HMR1556 and
500-nM E4031) lengthened the APD, as expected from a decrease of the repolarizing
K+ current (at a pacing rate of 1 Hz, APD30: from 134.6 ± 28.5 ms to 177.8 ± 19.9 ms,
APD50: from 192.9 ± 20.9 ms to 267.4 ± 24.1 ms, and APD90: from 242.4 ± 17.5 ms to
358.0 ± 18.3 ms; * p < 0.05, except for the APD30, for which p > 0.05, paired t-test; n = 4).
Consistent with a decreased relative contribution of IK, raising the [Mg2+]o to 7.2 mM in the
presence of the IK blockers decreased the APD (to 163.9 ± 20.9 ms, to 246.0 ± 21.1 ms, and
to 323.5.0 ± 15.5 ms for APD30, APD50, and APD90, respectively), indicating a predominant
effect of ICa-L suppression by high [Mg2+]o under these conditions. Qualitatively similar
results were obtained in three other cells dialyzed with 0.8-mM [Mg2+]i under the ruptured
cell membrane conditions (not illustrated). These results suggest that the lack of effect of
raising [Mg2+]o on the APD in cells dialyzed with 0.8-mM [Mg2+]i reflects a balance in the
effects of the decreases of both ICa-L and IK on repolarization.

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 8 of 16 
 

 

 
Figure 5. Effect of an increase of extracellular [Mg2+] on the total IK. (A) The current–voltage 
relationship of the fully activated IK and the effect of raising the [Mg2+]o. Notice the suppression of 
IK by high [Mg2+]o. * p < 0.05 (n = 4). (B) Activation curves of IK calculated from the tail currents (n = 
4). 

Since high [Mg2+]o did not change the APD in cells dialyzed with 0.8-mM [Mg2+]i (see 
Figure 3C,E), it is possible that there are two opposing and counterbalancing effects of 
high [Mg2+]o on the ICa-L and IK. To test for this possibility, we applied high [Mg2+]o on cells 
in which the IK was partly blocked to offset such a balance. We initially performed 
preliminary tests to determine the optimum concentrations of the IK inhibitors (i.e., 
HMR1556 for the slow IK component IKs and E 4031 for the rapid component IKr) effective 
in producing a partial block of IK without excessively prolonging the APD (not illustrated). 
Figure 6A shows the typical changes in action potentials in a perforated cell, whereas the 
summary data from four cell are presented in Figure 6B. Under the control conditions 
with 0.9-mM [Mg2+]o, the addition of small concentrations of IK inhibitors (100-nM 
HMR1556 and 500-nM E4031) lengthened the APD, as expected from a decrease of the 
repolarizing K+ current (at a pacing rate of 1 Hz, APD30: from 134.6 ± 28.5 ms to 177.8 ± 19.9 
ms, APD50: from 192.9 ± 20.9 ms to 267.4 ± 24.1 ms, and APD90: from 242.4 ± 17.5 ms to 
358.0 ± 18.3 ms; * p < 0.05, except for the APD30, for which p > 0.05, paired t-test; n = 4). 
Consistent with a decreased relative contribution of IK, raising the [Mg2+]o to 7.2 mM in the 
presence of the IK blockers decreased the APD (to 163.9 ± 20.9 ms, to 246.0 ± 21.1 ms, and 
to 323.5.0 ± 15.5 ms for APD30, APD50, and APD90, respectively), indicating a predominant 
effect of ICa-L suppression by high [Mg2+]o under these conditions. Qualitatively similar 
results were obtained in three other cells dialyzed with 0.8-mM [Mg2+]i under the ruptured 
cell membrane conditions (not illustrated). These results suggest that the lack of effect of 
raising [Mg2+]o on the APD in cells dialyzed with 0.8-mM [Mg2+]i reflects a balance in the 
effects of the decreases of both ICa-L and IK on repolarization. 

 

Figure 6. Effect of a partial IK block and high [Mg2+]o on the action potential. (A) APs recorded at
36 ◦C using K+-containing intra- and extracellular solutions under perforated patch conditions and
initially superfused with control extracellular solutions containing 0.9-mM [Mg2+]. A combination of
HMR1556 (100 nM) and E4031 (500 nM) was then added in 0.9-mM [Mg2+]o before applying 7.2-mM
[Mg2+]o together with the drugs. (B) Summary data of the AP duration (APD) at 30%, 50%, and
90% repolarization (APD30, APD50, and APD90, respectively) measured under the control conditions
(unshaded column) in the presence of the IK inhibitors (grey column) and in the presence of the IK

inhibitors but with the [Mg2+]o raised to 7.2 mM (red column). * p < 0.05 for the presence vs. absence
of the IK inhibitors (in 0.9-mM [Mg2+]o). # p < 0.05 for 7.2-mM vs 0.9-mM [Mg2+]o in the presence
of the IK inhibitors (n = 4). Notice the shortening of the APD50 and APD90 by high [Mg2+]o in the
presence of the IK blockers.

3. Discussion

The results from the present study suggest the presence of TRPM6 and TRPM7 proteins
in cardiac myocytes, given that immunofluorescent activity was detected in cells treated
with the anti-TRPM6 or anti-TRPM7 antibody, but in contrast, no such activity was detected
in the negative controls. Furthermore, the results showed that the cardiac myocyte action
potential duration (APD) was shortened in the presence of a current likely due TRPM6 or
TRPM7 in that it was activated by dialysis with low [Mg2+]i, was absent in cells dialyzed
with 0.8-mM [Mg2+]i and was suppressed by high [Mg2+]o. Thus, the results are consistent
with our previous proposal that the Mg2+-sensitive channels in the heart are likely due to
TRPM6 and/or TRPM7 proteins [15] and with a possible role of the cardiac Mg2+-sensitive
channels in modulating the electrical activity.
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3.1. Molecular Candidate for Mg2+-Sensitive Channels

Many TRP proteins form nonselective cation channels and are, therefore, the molecu-
lar candidates for similar native channels [28]. In determining the involvement of TRPs
expressed in the heart, the inhibition by Mg2+

i is a key distinguishing feature. For the
TRPC4/C5 channels, Mg2+

i causes a voltage-dependent partial block of the outward cur-
rents and results in a doubly rectifying current–voltage relationship [29,30]. Such a Mg2+

i
effect on the TRPC4/C5 channels is different from the voltage-independent slow inhibition
seen in the Mg2+-sensitive channels [15,31]. Rather, the Mg2+

i inhibition and the biophysi-
cal characteristics of the cardiac channels [15] resemble those of the TRPM6 and TRPM7
channels [16,19]. Our detection of TRPM6 and TRPM7 proteins by immunofluorescence
suggests that the channels are expressed in both the atrial and ventricular chambers. It
appears that the TRPM6 and TRPM7 channel proteins were present in both the surface
membrane and intracellularly. However, where exactly the proteins are located intracellu-
larly could not be determined in the present study. Nonetheless, a novelty of the present
findings is that TRPM6 was immunodetected in pig myocytes (but see Limitations of
our Study below), whereas TRPM6 expression has been reported to be lacking in other
studies of cardiac tissues [32]. As such, the present results suggest that TRPM6 and TRPM7
proteins are the most likely constituents of the Mg2+-sensitive cardiac channels.

There are, however, slight differences in the divalent cation permeability profiles
between the cardiac Mg2+-sensitive channels [15] and overexpressed TRPM7 channels [16].
It is possible that, even though the core structure of the channel may be the same, different
channel subunits or regulatory units may occur in the native cells. Furthermore, the
TRPM7 channel activity has been shown to be altered by heteromultimeric interactions
with TRPM6 [33]. Nevertheless, in order to ascertain the cardiac channel identity, further
studies are still required to correlate the activity of the TRPM6 and TRPM7 proteins detected
in myocytes with the Mg2+-sensitive current.

3.2. Modulation of Cardiac Electrical Activity

The possible contribution of the Mg2+-sensitive current to cardiac electrical activity
is unknown. Like in other cells, nonselective cation channels contribute to the resting
membrane potential in the heart [34]. These may include Mg2+-sensitive channels. Given
the small Mg2+-sensitive inward current and the large IK1 at a negative potential in the
heart, the Mg2+-sensitive channels would not be expected to contribute significantly to
the background non-K+ permeability in resting cardiomyocytes. This is consistent with
our findings here, showing no effect of raising the extracellular Mg2+ concentration on the
resting membrane potential. However, in other tissues such as vascular smooth muscle, the
contribution of nonselective cation channels, some of which resemble TRPM6 and TRPM7,
could be more important [35,36].

Cation nonselective channels may also contribute to shaping the cardiac action po-
tential. In atrial cells, a stretch-activated cation nonselective channel has been shown to
contribute to both the resting and action potentials [37]. Since the net ion current is small
during the plateau phase of the action potential, changes in the large monovalent cation
effluxes through Mg2+-sensitive channels at positive potentials may have significant effects
on the action potential. Consistent with such an expectation, our present results showed
that the activation of the cardiac Mg2+-sensitive channels shortened the APD. It is unlikely
that the APD shortening is due to a larger outward IK1 following the removal of the Mg2+

i
block in low [Mg2+]i conditions, since endogenous polyamines would still continue to
provide a sufficient block of the outward IK1 [38] and since high Mg2+

o suppressed the
outward current while having no effect on the inward currents. Our results suggest that
there is practically no contribution of TRPM6 and TRPM7 currents to the AP when [Mg2+]i
is at the physiological levels. This result is consistent with a lack of changed currents
through mutant TRPM7 channels expressed in cultured cardiomyocytes on the action
potentials measured in such cells [39].
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3.3. Clinical Implications

A key question concerns the conditions under which the Mg2+-sensitive channels
may contribute to cardiac electrical activity. Under the physiological conditions (free
[Mg2+]i 0.8 mM; IC50 ≈ 0.25 mM; [15,31]), the channels are expected to be substantially
inhibited by Mg2+

i. However, the Mg2+-sensitive current may contribute to APD if the
sensitivity to [Mg2+]i is decreased by regulatory processes or channel mutations or if
[Mg2+]i is decreased to low levels by disease conditions such as chronic hypomagnesaemia.
Indeed, the TRPM7 and related native channels show constitutive activity, some of it
in cells where the intracellular ion composition (including [Mg2+]i) remains relatively
unperturbed [16,18,40], suggesting the presence of other regulatory processes. In cardiac
cells, besides [Mg2+]i, the Mg2+-sensitive channels are also regulated by factors such as the
pH change and membrane phospholipid metabolism [14,15,41], but it is still not known
whether such regulatory processes can induce the constitutive activity of the channels.
In the present study, we show that the expression of the TRPM6 and TRPM7 channels
is modulated by incubation in divalent cation-free extracellular conditions. Thus, the
contributions of the Mg2+-sensitive current to the AP may vary depending on the status of
the extracellular divalent cation homeostasis.

Earlier studies demonstrated TRPM7 activation by free oxygen radicals during pro-
longed neuronal ischemia [42]. To date, the functional role of TRPM7 and especially that of
TRPM6 are less clearly understood in heart cardiomyocytes compared to vascular smooth
muscle cells [43], neurons, or other cell types [44,45]. The molecular and electrophysio-
logical characterizations of TRPM7 in the heart have focused predominantly on cardiac
fibroblasts. TRPM7 activation in human atrial fibroblasts leads to fibrogenesis and atrial
fibrillation [46]. Additionally, the variability of the TRPM7 current density in human right
atrial cardiomyocytes is related to the clinical history, being higher in disease conditions
such as atrial fibrillation [47,48] and in ischemic heart disease [48]. Very recently, we also
demonstrated the presence and co-expression of both TRPM6 and TRPM7 in cardiomy-
ocytes from the four chamber walls of the human heart [22] and also showed that ischemic
heart disease may increase their expression, suggesting that chanzymes are involved in the
pathophysiology of the disease.

3.4. Limitations of the Study

Given the current uncertainty about the detection of TRPM6 in cardiac cells, it is
important to examine how convincing the evidence is for the presence of TRPM6 in
our study.

The present study relied on immunostaining to detect the presence of TRPM7 and
TRPM6. Previous studies have demonstrated limitations of antibody staining methods to
determine the expression of TRP channels (e.g., see [49]). The specificity of the commercial
antibodies used in our study was not directly tested, e.g., using blocking peptides or
using cells lines in which the TRPM7 and TRPM6 genes were knocked out, silenced
or overexpressed.

Our results, using swine cardiomyocytes, are in concordance to human TRPM6 and
TRPM7 immunodetected fluorescence distribution, which also suggested both ion channel
expression in the walls of all cardiac chambers [22]. In that study RT-PCR confirmed the
presence of mRNA for both TRPM7 and TRPM6, hence supporting the immunostaining
data, but the interpretation of RT-PCR also has limitations due to possible contamination
by non-cardiomyocyte cells. We used on pig myocytes the same antibodies as in that study.
Although these antibodies are recognized to work on human proteins, a key limitation
of the present study is that there is no previous evidence of their specificity in pig cells
and there are no readily available pig-specific TRPM6 antibodies in the market. Given
that there is a great amount of antibody recognition between human- and pig epitopes
in cardiac tissue [50], we used the same TRPM6 antibody (designed for human, mouse,
and rat), which being polyclonal, would also be able to bind to epitopes in other species.
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Although TRPM6 was detected in pig cardiomyocytes but not in negative controls, the
specificity of the antibody in pig still requires verification in future studies.

An important limitation of the electrophysiological study is that there are, as yet,
no known specific pharmacological blockers available for Mg2+-sensitive- and related
channels. Presently, we used the block by Mg2+

o as an extracellular tool to isolate the
Mg2+-sensitive current. There was therefore a possible confounding issue in that Mg2+

o
could also suppress ICa-L and IK. In other studies, the Mg2+

o effect on IK was more
prominent on tail currents during repolarization [51], and increasing Mg2+

o caused either
a lengthening or a shortening of APD, depending on the level of Mg2+

o [52]. However,
in the present study, the Mg2+

o effects on action potentials that were due to ICa-L and IK
seemed to balance each other out sufficiently for their effects to be isolated from those on
the Mg2+-sensitive current.

3.5. Conclusion

In conclusion, our results show the presence of TRPM7 and, to a certain extent,
suggest that of TRPM6 proteins in pig cardiomyocytes, making these proteins the molecular
candidates for cardiac Mg2+-sensitive channels. The activation of the Mg2+-sensitive
channels shortened the cardiomyocyte APD. Although the pathophysiological conditions
in which the channels are activated remain unclear, the effect of the Mg2+-sensitive current
on the APD may be important in understanding the therapeutic processes in which Mg2+ is
empirically used to treat arrhythmias, as well as in linking the changes in Mg2+ homeostasis
to other cardiac disease conditions.

4. Materials and Methods

We used isolated, single cardiomyocytes of a pig heart. This study was carried out
in compliance with the Guide for the Care and Use of Laboratory Animals (NIH). All
experiments were performed according to the European Community guiding principles
and approved by the State Food and Veterinary Service of the Republic of Lithuania (No.
G2-68, 21 June 2017) and by the Belgian laboratory license No. LA-1210253.

4.1. Cell Isolation

The methods used for the dissociation of pig cells have been described before [15,25].
In short, for electrophysiology studies, a piece of the left ventricular wall was excised,
and its supplying artery was cannulated and perfused at 37 ◦C and at constant pressure
for 30 min with an oxygenated Ca2+-free Tyrode solution, followed by a 20- to 25-min
perfusion with a Ca2+-free Tyrode solution containing 0.1-mg mL−1 protease (type XIV,
Sigma-Aldrich, St. Louis, MO, USA) and 1.4-mg mL−1 collagenase (type A, Boehringer-
Mannheim, Mannheim, Germany). After a 15-min washing perfusion with a 0.18-mM Ca2+

Tyrode solution, the tissue was removed from the perfusion and was cut into small pieces.
The cells were dispersed by gentle mechanical agitation. [Ca2+]o was raised in a stepwise
manner, and the cells were stored at room temperature (21–22 ◦C). Ca2+-tolerant rod-shaped
ventricular myocytes with clear striations were selected for the electrophysiological studies.

For the immunofluorescence studies, the cardiomyocytes were isolated from a small
tissue specimen as previously described [53]. In short, each tissue specimen (LA, RA,
LV, and RV) was fine-cut in an oxygenated nominally Ca2+-free Tyrode solution (see the
composition below) supplemented with 3-mg/mL 2,3-butanedione monoxime, which
was washed out 2 to 3 times before the enzyme application. The cardiac tissue chunks
were transferred to a beaker with nominally Ca2+-free Tyrode solution supplemented
with 1-mg/mL bovine serum albumin (BSA), 1-mg/mL collagenase (215 U/mg, type 2;
Worthington Biochemical Corporation, Lakewood, NJ, USA), and 0.5-mg/mL protease
(7–14 U/mg, type XXIV; Sigma-Aldrich, St. Louis, MO, USA) and continuously bubbled
with 100% O2. After 30 min of shaking in a water bath at 37 ◦C, the solution with both
enzymes was replaced by fresh solution containing only collagenase (1 mg/mL) and
shaken until cardiomyocytes appeared in the aliquots obtained from the mixture. When
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the yield appeared to be optimal, the leftovers of the tissue chunks were resuspended in
nominally Ca2+-free Tyrode and gently subjected to trituration by suction with a pipette.
The cell suspension was filtered, centrifuged, and washed 2 to 3 times either with normal
(divalent cation-containing) or with divalent cation-free Tyrode solution and stored at
room temperature.

4.2. Electrophysiology

Whole-cell currents were recorded under a voltage clamp, and the action potentials
were recorded under a current clamp at 36 ◦C within 4 h after cell isolation. The membrane
currents of interest were measured using 2-s descending voltage ramps from +80 mV to
−120 mV applied every 10 s after a 600-ms pre-step at 0 mV from a holding potential of
−80 mV, designed to inactivate the voltage-dependent Na+ and L-type Ca2+ currents. For
measuring the L-type Ca2+ currents (ICa-L), 400-ms depolarizations to various potentials
were given after a 400-ms pre-step at −40 mV, designed to inactivate the voltage-dependent
Na+ current. The total delayed rectifier K+ currents IK were measured using voltage steps
from a holding potential of −40 mV to various positive potentials, and the tail currents
were then measured upon reverting to −50 mV. The action potentials were measured by
stimulating with a 2-ms rectangular pulse at a frequency of 1 Hz. The action potential
duration (APD) was measured at 30% (APD30), 50% (APD50), and 90% (APD90) repolariza-
tion. The current and voltage protocols were generated and data recorded online using
the Axopatch 200B amplifier and pClamp 8.1 software via the Digidata 1322A acquisition
system (Axon instruments, Union City, CA, USA).

4.3. Immunofluorescence

Enzymatically dissociated cardiomyocytes were allowed to settle on the bottom of 8-
chamber slides. The cells were permeabilized and incubated with primary rabbit polyclonal
anti-TRPM7 (#ACC-047; Alomone Labs, Jerusalem, Israel) or rabbit polyclonal anti-TRPM6
antibody (#ACC-046; Alomone Labs, Jerusalem, Israel) diluted (1:200) in PBS containing
3% BSA in blocking buffer overnight at 4 ◦C. The TRPM6 and TRPM7 antibodies were
obtained from the same company in order to minimize the possibility of cross-reactivity
during immunolabeling. For the negative controls, incubation with the primary antibody
was omitted to check for nonspecific binding of the secondary antibody. The cells were
incubated for 1 h with a fluorescently labeled secondary antibody (donkey anti-rabbit IgG;
Alexa Fluor® 488 conjugate; A21206, Invitrogen, Thermo Fisher Scientific, Rockford, IL,
USA; dilution 1:200) co-stained (for 20 min) with Phalloidin-Alexa Fluor® 546 (A22283,
Invitrogen, Thermo Fisher Scientific, Waltham, MA, USA; dilution 1:100) and with Hoechst
33342 (B2261, Sigma-Aldrich, St. Louis, MO, USA; for 10 min) for labeling of the F-actin
cytoskeleton and of the nucleus, respectively. Cardiomyocytes were visualized under a
confocal laser scanning microscope (Olympus BX61, Olympus Corporation, Tokyo, Japan)
from which images were taken using the same scanning parameters for both the TRPM7
and TRPM6 proteins in all the cardiomyocyte preparations.

4.4. Solutions and Drugs

The standard Tyrode solution used during cell dissociation contained (in mM): 135 NaCl,
5.4 KCl, 0.9 MgCl2, 1.8 CaCl2, 0.33 NaH2PO4, 10 HEPES, and 10 glucose; the pH was ad-
justed to 7.4 with NaOH. During the patch clamp measurements, the cells were superfused
with a solution of similar composition, except that, when necessary, K+ was replaced by
Cs+, and the Mg2+ levels were changed. The standard pipette solution was contained
(in mM): 155 KCl, 5.5 MgCl2, 5 Na2ATP, 1 EGTA, 0.1 Na2GTP, and 5 HEPES (pH 7.25;
adjusted with KOH) and was modified by changing the levels of Mg2+, by replacing K+

with Cs+, or by substituting EGTA with BAPTA. The phosphate-buffered saline (PBS)
used in immunofluorescence contained (in mM): 155.2 NaCl, 2.71 Na2HPO4·2H2O, and
1.54 KH2PO4 (pH 7.4; adjusted with NaOH).
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HMR1556 was from Aventis Pharma, Frankfurt Am Main, Germany, and E-4031
was from Tocris, Bristol, UK. All the other drugs or chemicals were from Sigma-Aldrich
(Bornem, Belgium) or Merck (Darmstadt, Germany). Nifedipine was prepared as a stock
solution in ethanol and was protected from light, whereas HMR1556 was prepared in
dimethyl sulfoxide (DMSO). All the other chemicals were dissolved in water.

4.5. Data and Statistical Analyses

An electrophysiology data analysis was performed using Clampfit 8.2 (Axon Instru-
ments, Union City, CA, USA) and Origin 7 (Microcal, Northampton, MA, USA).

The distribution of the immunofluorescence was analyzed using the Olympus Flu-
oview FV1000 (Olympus Corporation, Tokyo, Japan) and ImageJ software. Sixty-times
magnifying (60×) of the oil immersion objectives were utilized for all the acquisitions. The
images were presented as stacks of 8–10 slices at a fixed intensity. The cardiomyocyte area
(pixels) and fluorescence intensity were measured in stacks using Imaris software (Bitplane
AG, Zurich, Switzerland). The immunodetected TRPM6 and TRPM7 protein levels were
calculated by the formula: fluorescence intensity × 1000/cell area. In order to reduce
the effect on any statistical confounder, the same parameters for fluorescence intensity
detection (image acquisition control and spectral settings, etc.) were always applied. In
addition, the immunofluorescence reading was blinded, as the conditions used to keep the
cells were unknown to the person performing the reading.

The average data were presented as the mean ± standard error of the mean (S.E.M)
or box plots, with n indicating the number of cells studied under each condition. The
means were compared using the two-tailed Student’s t-test, whereas differences among
the multiple groups were evaluated using an analysis of variance (ANOVA). p ≤ 0.05 was
taken as the threshold for statistical significance.
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