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Abstract: Detection and quantification of pathogenic free-living amoebae (FLA) in water samples is
critical for assessing water quality and for disease management issues. The most probable number
(MPN) is commonly used to account for FLA in water. Nevertheless, this requires a high number of
water replicates and working volumes, and a consequent number of non-nutrient agar (NNA)-plates
seeded with Escherichia coli. Herein, we aimed at optimizing this difficult method, taking also into
account key factors such as (i) the counting method, (ii) the delay between sample collection and
sample processing, and (iii) the temperature during water sample transportation. To simplify the
MPN method, we filtrated 1 × 1000 and 1 × 100 mL water samples, and cellulose acetate filters
were cut in 10 parts and inverted on NNA-plates overlaid with E. coli. The comparison between
the classical and our optimized MPN method showed that the final counts were similar, therefore
validating the use of the optimized method. Our results also showed that for thermophilic FLA
(such as Naegleria fowleri), water samples can be kept at around +30◦C and processed within 24 h.
This improved MPN method is now routinely used in our laboratory to control Naegleria sp. in the
water samples in Guadeloupe.

Keywords: free-living amoebae; thermophilic amoebae; Naegleria fowleri; most probable number
(MPN); optimized quantification method

1. Introduction

Free-living amoebae (FLA) are ubiquitous unicellular organisms, being found in water, soil, dust,
and air samples. Some FLA are thermophilic, being able to survive and/or replicate at temperatures
equal or above 37 ◦C [1–3]. Amongst these, some can be pathogenic to humans and animals such
as Acanthamoeba sp., Naegleria sp., and Balamuthia mandrillaris [4,5]. Others are nonpathogenic but of
medical importance because they can act as hosts, vehicles, and training grounds for bacteria, such as
Vannella sp. [6] and Vermamoeba vermiformis [7–10].

The thermophilic FLA Naegleria fowleri is frequently found in freshwater and soil [11,12], and it
may cause primary amoebic meningoencephalitis (PAM), a rare but often fatal disease of the central
nervous system [13]. It is generally acquired while swimming or during other recreational activities
in freshwater lakes and ponds. Infection of the brain occurs after N. fowleri reaches the nasal cavity
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and invades the nasal mucosa. Afterwards, N. fowleri penetrates the nasal epithelium to the olfactory
nerves and migrates through the cribriform plate to invade the brain and meninges [14].

In Guadeloupe (French West Indies), a fatal case of PAM occurred in 2008 after a child swam
in a bath fed with geothermal waters [15]. In 2013, our group revealed that thermophilic FLA (and
in particular, N. fowleri) were frequently detected in these baths [12]; the contamination of the water
with N. fowleri occurs after emerging from the geothermal source, when the water runs over the
soil [11]. We also observed that N. fowleri was often found at low concentrations, below 22 amoebae per
liter [12]. These low concentrations in environmental water often make it difficult to accurately count
the FLA [16], regardless of the method that is used to concentrate the samples, either by centrifugation
or filtration [17]. Because of the risk associated to the presence of N. fowleri (the presence of one single
amoeba is enough to cause or start an infection) and the potential link between the concentration
of N. fowleri and pathogenicity, it is important to obtain the most accurate count of this amoeba in
water [18–20].

Several methods have been developed to detect and enumerate thermophilic and pathogenic FLA,
such as loop-mediated isothermal amplification (LAMP) [21], PCR (conventional and quantitative),
and cytometry [16,17,22–25]. Still, the most probable number (MPN) method (followed by FLA
identification by microscopic observation and/or PCR) is the most commonly used to estimate the
concentration of viable microorganisms in a sample by means of replicate amoeba growth in ten-fold
dilutions [26–29]. Nevertheless, this is time-consuming and requires a high number of water sample
replicates and working volumes and a consequent number of non-nutrient agar (NNA)-plates seeded
with E. coli.

Herein, we aimed at optimizing this MPN method by reducing the working volumes and
number of replicates. Additionally, we evaluated the impact of the delay between sample collection
and sample processing, and the temperature during water sample transportation, on the counts of
thermophilic FLA.

2. Results

2.1. Optimization of the MPN Method

In Table 1, we present the number of thermophilic FLA (sensu lato) and, in particular, for N. fowleri
obtained after using the classical (cMPN) and the modified (mMPN) MPN methods. The results show
that for FLA, the percentage of samples with equal or higher counts obtained with the mMPN method
compared to those obtained with the classic method are 84% (16/19 samples) for both 100 mL boxes
and 10 mL boxes. Nevertheless, regardless of the sample, the slight differences are not statistically
significant (Mc Nemar Test, p-value = 0.48 for 100 mL boxes and p-value = 0.70 for 10 mL boxes).
Moreover, only 2 samples (samples 1 and 13) tested positive for N. fowleri using the cMPN, while the
optimized method revealed the presence of this amoeba in six water samples (samples 1, 8, 13, 14, 15,
and 19).

As we were concerned about accurately assessing the count of pathogenic N. fowleri, we also
seeded water samples with known quantities of pure N. fowleri. For this, we counted the number of
positive dilutions (for cMPN) or the number of positive filters (for mMPN) for amoeba growth and
reported these values to MPN tables [30]. Indeed, using a 100 mL sample volume, we obtained a
higher number of N. fowleri colonies with the mMPN compared to the cMPN (p = 0.03, Wilcoxon test),
although the number of amoebae/L artificially seeded was within the range of counts obtained with
both MPN methods.
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Table 1. The number of thermophilic free-living amoeba and Naegleria fowleri colonies observed and the most probable number obtained with the classical most
probable number (MPN) method and the modified MPN method.

Thermophilic FLA Naegleria fowleri

Samples
Classical MPN Method Modified MPN Method Classical MPN Method Modified MPN Method

Positive Petri Boxes MPN
Number
(FLA/L)

Positive Filter Pieces MPN
Number
(FLA /L)

Positive Petri Boxes MPN
Number

Nf /L

Positive Filter Pieces MPN
Number

Nf /L100 mL 10 mL 100 mL 10 mL 100 mL 10 mL 100 mL 10 mL

1 10 3 86 (39–191) 9 6 80 (37–175) 3 0 7 (3–20) 1 2 6 (2–19)
2 3 3 14 (6–31) 5 3 21 (10–43) 0 0 <2 0 0 <2
3 10 10 >461 10 10 >461 0 0 <2 0 0 <2
4 1 0 2 (1–14) 1 0 2 (1–14) 0 0 <2 0 0 <2
5 0 0 <2 0 0 <2 0 0 <2 0 0 <2
6 10 10 >461 10 10 >461 0 0 <2 0 0 <2
7 10 8 321(150–696) 10 7 241 (110–529) 0 0 <2 0 0 <2
8 1 0 2 (1–14) 2 0 5 (1–16) 0 0 <2 1 0 2 (1–14)
9 0 0 <2 0 0 <2 0 0 <2 0 0 <2

10 1 0 2 (1–14) 1 0 2 (1–14) 0 0 <2 0 0 <2
11 3 0 7 (3–20) 0 0 <2 0 0 <2 0 0 <2
12 7 0 21(10–43) 4 1 12(5–28) 0 0 <2 0 0 <2
13 7 0 21(10–43) 7 4 35 (18–70) 1 0 2 (1–14) 1 0 2 (1–14)
14 10 7 241 (110–529) 10 10 >461 0 0 <2 1 1 4 (1–16)
15 4 0 10(4–25) 7 0 13 (6–30) 0 0 <2 1 0 2 (1–14)
16 2 0 5 (1–16) 5 0 13 (6–30) 0 0 <2 0 0 <2
17 0 0 <2 0 0 <2 0 0 <2 0 0 <2
18 4 1 12 (5–28) 5 0 13 (6–30) 0 0 <2 0 0 <2
19 10 10 >461 10 4 109 (47–253) 0 0 <2 1 0 2 (1–14)

20* 8 0 26 (13–54) 9 0 35 (18–69)
21* 8 0 26 (13–54) 9 0 35 (18–69)
22* 4 1 12 (5–28) 6 0 16 (8–36)
23* 3 0 7 (3–20) 4 0 10 (4–25)
24* 1 0 2 (1–14) 2 0 5 (1–16)

FLA/L: Number of free-living amoebae per liter. Nf /L: Number of Naegleria fowleri per liter. * 20, 21, 22, 23, 24: Water doped with 36, 18, 8, 4, and 2 Naegleria fowleri per liter, respectively;
number in the square brackets correspond to the 95% confidence limits with the lower and upper values.
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2.2. Assessment of the Time and Storage Temperature of Water Samples, Prior to Processing

To study the effect of temperature on FLA prior to water sample processing, we selected two
temperatures: 4 ◦C (usually used for samples storage) [26] and 30 ◦C, the average daily maximum
air temperature in Guadeloupe. The results presented in Figure 1 show that the median numbers of
thermophilic amoebae were not significantly different according to the temperature.

Regarding the time before sample processing, we selected several time windows ranging from
90 min to 2 h [26], 4 and 8 h (which is the maximum if the samples have to be processed on the
same day as the sampling), and up to 24 h (in case water samples come from neighboring islands).
Our results showed that there was no significant difference in the median number of thermophilic
amoebae regardless of the delay between the collection and the culture.
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3. Discussion

Thermophilic FLA, and in particular Naegleria sp., have been frequently detected in Guadeloupe,
in soil [11] and in natural thermal water [12]. French health authorities have endorsed a rule that
forbids swimming or playing sports in natural water where the concentration of N. fowleri is above
100 amoebae/L [18]. As a preventive health measure, the local French health agency (ARS Guadeloupe)
requests that we investigate 3–4 times per year the presence of Naegleria sp. (in particular N. fowleri)
in the geothermal recreational waters often frequented by tourists and Guadeloupians. It is thus
important to have an easy-to-use and reliable method to account for these FLA.

Many rapid detection assays have recently been developed and optimized to overcome
conventional culture and microscopy techniques to detect N. fowleri in clinical and environmental
samples. Many other studies also reported the superior sensitivity of real-time PCR over PCR,
immunohistochemistry, or culture [16,17,21–25]. Herein, we used the MPN method because it allows
identifying the number of viable, thermophilic, and cultivable FLA, such as Acanthamoeba, Naegleria,
Vannella, and Vermamoeba. FLA viability can reflect the ability of trophozoites to multiply in water
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and the high resistance of FLA cysts to water treatments. Therefore, we can determine the potential
dissemination of pathogenic FLA amoebae in habitats related to human population.

However, it is widely known that the classical MPN method (using either filtration or centrifugation
to recover the FLA) is time-consuming, even if only performed with five replicates [27]. Our work
clearly shows that this method can be substantially simplified. Indeed, our method using two samples
(1000 and 100 mL) filtered once is cheaper and much simpler than other methods, but most importantly,
it is also reliable. Although we used a small number of water samples in our study, the new method
gives results (FLA/L) similar to those obtained with the cMPN and enabled accounting for equal or
more N. fowleri than the cMPN method. We believe that cutting a filter in 10 equal pieces instead of two
increases the probability of amoebae getting in contact with E. coli seeded on the NNA, promoting their
growth, and therefore reduces the competition between N. fowleri and other FLA for food [2]. This is
particularly important when it comes to having a good estimate of N. fowleri concentrations in water.

This optimized method has an additional advantage: ease of sample transportation. With
the mMPN method, we only need two sterile flasks per site, which can be transported at ambient
temperature and can be processed within 24 h post-collection. These are very important features to
take into account when it is necessary to perform water sampling in hot springs that are remote and
difficult to access by car. Since natural thermal water baths are of small size in Guadeloupe (from 8 to
40 m2), this sampling is enough to give an indication of the contamination by N. fowleri.

Globally, our study demonstrates that this optimized method can replace the classical MPN
method in any laboratory working on FLA. For instance, it is now routinely used in our laboratory to
control Naegleria sp. in the water samples in Guadeloupe.

4. Materials and Methods

4.1. Water Samples and Amoeba Isolation

Two types of water samples were used: (i) those collected from 19 geothermal baths in Guadeloupe
and (ii) five which were prepared with natural geothermal water that was filtered and then seeded with
N. fowleri (previously isolated by our team from a hot spring in Guadeloupe) at different concentrations
ranging from 2 to 36 N. fowleri per liter (Table 1). All samples were pressure-filtered through a cellulose
nitrate filter (pore size, 1.2 µm; diameter, 47 mm, Millipore (FisherScientific)) [16,31].

4.2. The Most Probable Number (MPN) Methods

To compare the two counting methods, the water samples mentioned above were divided into
two equal parts: one to be tested by the classical MPN method (cMPN) and the other with the modified
MPN method (mMPN). The two methods are described below. All the plates for both procedures were
incubated at 44 ◦C.

4.2.1. Classical MPN Method

For this, water samples of 1 L and 100 mL were filtered as follows: 10 × 100 and 10 × 10 mL,
respectively [17,26,27]. Each filter was cut into two pieces, and placed inverted on a 1.5 % non-nutrient
agar plate seeded with a thin layer of Escherichia coli (NNA–E. coli), i.e., two pieces of filter per plate,
per volume [17].

4.2.2. Optimized MPN Method

When 1 L and 100 mL water samples were collected, each sample was filtered only one time
for each volume. Each filter was cut into 10 equal pieces (passing through the center of the filter),
and placed inverted on a 1.5 % NNA–E. coli plate, i.e., ten pieces of filter per plate, per volume.
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4.3. Amoeba Identification and Counting

During incubation, the first-line plates were examined daily macroscopically and microscopically
using an inverted microscope. This allowed us to see the development of lytic areas over the bacterial
coating, which corresponds to amoebic growth. Every amoeba plaque emerging along the filters was
picked and subcultured on fresh NNA–E. coli (second-line plates). The isolates were pre-identified
morphologically using Page’s taxonomy key [32]. Amoeba identification was then performed by PCR
using ITS and NFITS primers, as previously described [12,33].

For the cMPN method, the concentration of thermophilic FLA and N. fowleri was obtained by
counting the total number of positive plates or each volume and by referring to the MPN table [34].

For the mMPN, the number of positive filter pieces was counted. Each filter piece obtained after
filtering 100 mL was considered to be 10 mL of water, and each filter piece obtained after filtering 1 L
was considered to be 100 mL of water. The numbers of positive piece of filter for each volume were
reported in the same MPN statistical table.

4.4. Assessment of Storage Temperature and Delay of Delivery of Water Samples

To evaluate the impact of temperature storage and time on amoeba recovery, before filtration,
we used eight water samples. Each sample was separated in 10 parts: Five were kept at ambient
temperature (+30 ◦C), and the others were stored at +4 ◦C. At different times post-collection, one
sample that was stored at ambient temperature and one that was stored at +4 ◦C were filtered and
cultured. For this, we used the classical MPN method by filtering 1100 mL of water as described above.

4.5. Statistical Analyses

All statistical analyses were performed using R software, version 3.5.2 (R Foundation for Statistical
Computing, Vienna, Austria. URL https://www.R-project.org/). The means of positives cultures and
the estimated numbers of colonies obtained after new vs. classical MPN methods, and mean numbers
of colonies obtained after transportation at +4 vs. +30 ◦C were compared using the nonparametric
Wilcoxon rank test for paired series. The mean numbers of colonies that were obtained with a
transportation delay were compared using the Kruskal–Wallis nonparametric test. For all comparisons,
p-values < 0.05 were considered to be statistically significant.
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