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Abstract

Background

Salmonellosis causes significant morbidity and mortality in Africa. Information on lineages of

invasive Salmonella circulating in Nigeria is sparse.

Methods

Salmonella enterica isolated from blood (n = 60) and cerebrospinal fluid (CSF, n = 3)

between 2016 and 2020 from five tertiary hospitals in southwest Nigeria were antimicrobial

susceptibility-tested and Illumina-sequenced. Genomes were analysed using publicly-avail-

able bioinformatic tools.

Results

Isolates and sequence types (STs) from blood were S. Typhi [ST1, n = 1 and ST2, n = 43]

and invasive non-typhoidal Salmonella (iNTS) (S. Enteritidis [ST11, n = 7], S. Durham

[ST10, n = 2], S. Rissen [ST8756, n = 2], S. Chester [ST2063, n = 1], S. Dublin [ST10, n = 1],

S. Infantis [ST603, n = 1], S. Telelkebir [ST8757, n = 1] and S. Typhimurium [ST313, n = 1]).

S. Typhi ST2 (n = 2) and S. Adabraka ST8757 (n = 1) were recovered from CSF. Most S.

Typhi belonged to genotype 3.1.1 (n = 44), carried an IncY plasmid, had several antibiotic

resistance genes (ARGs) including blaTEM-1 (n = 38), aph(6)-Id (n = 32), tet(A) (n = 33), sul2
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(n = 32), dfrA14 (n = 30) as well as quinolone resistance-conferring gyrA_S83Y single-

nucleotide polymorphisms (n = 37). All S. Enteritidis harboured aph(3”)-Ib, blaTEM-1, catA1,

dfrA7, sul1, sul2, tet(B) genes, and a single ARG, qnrB19, was detected in S. Telelkebir.

Typhoidal toxins cdtB, pltA and pltB were detected in S. Typhi, Rissen, Chester, and

Telelkebir.

Conclusion

Most invasive salmonelloses in southwest Nigeria are vaccine-preventable infections due to

multidrug-resistant, West African dominant S. Typhi lineage 3.1.1. Invasive NTS serovars,

including some harbouring typhoidal toxin or resistance genes, represented a third of the

isolates emphasizing the need for better diagnosis and surveillance.

Author summary

Whole genome sequencing of 63 invasive Salmonella from 5 tertiary hospitals in Nigeria

revealed multiple serovars including a dominant antibiotic-resistance-gene harbouring S.

Typhi 3.1.1 genotype comprising a gyrA_S83Y and IncY plasmid. We also report invasive

non-typhoidal Salmonella harbouring typhoidal toxins.

Introduction

Salmonella are a group of Gram negative, motile, facultative anaerobic rod-shaped bacteria

belonging to the Enterobacteriaceae family. This genus consists of two known species, Salmo-
nella enterica and Salmonella bongori. S. enterica are further distributed across six subspecies,

of which the S. enterica subsp. enterica are most reported in infections involving homeotherm

animals [1]. Furthermore, S. enterica subsp. enterica consists of over 1500 serovars with dis-

tinct antigenic specificity [2]. The human host-adapted S. enterica subsp. enterica serovars are

usually associated with three marked clinical syndromes: Salmonella enterica subsp. enterica
serovar Typhi cause typhoid fever, and the non-typhoidal Salmonella (NTS) cause gastroenter-

itis in immunocompetent persons but can cause bacteraemia in immunocompromised

(including persons with advanced HIV disease, cases of severe malaria and malnutrition in

children) [3,4]. S. Paratyphi A, B and C produce a syndrome similar to typhoid fever.

The public health impact of typhoidal and invasive non-typhoidal Salmonella infections is

significant particularly in Africa and Asia where they have a great influence on morbidity and

mortality [5,6]. For instance, an estimated 17.8 million cases of typhoid fever occur each year

in low and middle-income countries (LMICs) [7]. An earlier estimate suggests that the burden

of typhoid fever is >100 per 100000 individuals per annum in sub-Saharan Africa with an

associated 1% mortality [8,9]. Furthermore, an estimated 26% (33,490 lives lost) of the annual

global typhoid-related mortality is reported to occur in Africa [9]. The disease burden of

typhoid in Nigeria is estimated at 364,791 typhoid cases resulting in 4,232 deaths (with 68% of

deaths recorded in individuals under 15 years of age) as at 2016 [10], however population-

based data are only just becoming available [11]. Globally, NTS is estimated to cause approxi-

mately 94 million cases of gastroenteritis per annum worldwide with a resultant mortality of

155,000 [12]. In immunocompromised cases of the disease (amongst HIV-positive adults),

NTS is reported to cause a 20% case fatality (212,000 deaths) in western, central, eastern and
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southern Africa annually, while also being responsible for over 1 million cases of bloodstream

infections in children with a case fatality of 18.1% (197,000 child mortality) [3,13,14].

Although available reports suggest infection with Salmonella enterica to be the most com-

mon cause of bloodstream infections in Africa [15], the incidence and microbiology of typhoi-

dal and invasive non-typhoidal Salmonella (iNTS) is still poorly understood. Many regions on

the continent have garnered little or no attention in the literature [7]. Blood culture-based sur-

veillance represents the standard method for assessing the epidemiology and aetiology of bac-

terial invasive infections [16]. Limited surveillance of invasive Salmonella on the Africa

continent is majorly due to financial, logistical, and infrastructural constraints for the institu-

tion and maintenance of blood culture-based surveillance systems in the region [7,8,16,17].

Such limitations not only obscure the true burden and prevalence of invasive Salmonella
infections in resource-limited settings but also limit opportunity for genomic surveillance of

this pathogen. For instance, despite the huge burden of typhoid infections in Nigeria, before

the current study, only 131 of total (n = 4389) Salmonella genomes (all S. Typhi) from the

country was available on Pathogenwatch (https://pathogen.watch/, containing all publicly

available genomes to November 2020) [18], a web-based platform for surveillance of microbial

genomes, all of which were collected on or before 2013 and most from only two centres [19].

Outside this study, no public S. Typhi genomes from Nigeria were uploaded between Novem-

ber 2020 and November 2021. Lack of genomic surveillance information of invasive Salmo-
nella in resource-limited countries, including Nigeria, may deter interventions necessary to

ameliorate this burden, such as the typhoid conjugate vaccines [8,17,19,20]. Hence, this report

provides genomic characterization of 2016–2020 invasive Salmonella retrieved from tertiary

hospitals enrolled into Nigeria’s Antimicrobial Surveillance Network coordinated by the Nige-

ria Centre for Disease Control (NCDC).

Materials and methods

Ethics statement

Isolates were obtained as part of the surveillance efforts in line with Nigeria’s national action

plan. Surveillance began in 2019 and labs in the surveillance system were also requested to for-

ward retrospective isolates that had been collected since 2016. Therefore, isolates included in

this report were obtained from 2017 to 2020. Ethical approval for using them in research was

obtained from the University of Ibadan/University College Hospital ethics committee (UI/EC/

15/093). Patient consent was not obtained and the data were analysed anonymously.

Isolate collection, identification and antimicrobial susceptibility testing

Tertiary hospitals located in southwest Nigeria and enrolled into the Nigeria Antimicrobial

Surveillance Network provided cryopreserved isolates from blood and cerebrospinal fluid to

the AMR National reference laboratory. The isolates were from retrospectively batched periods

of 2016–2018 (retrospective isolates), 2019 and 2020. The national reference lab in partnership

with the Global Health Research Unit for the Genomic Surveillance of Antimicrobial Resis-

tance (GHRU-GSAR) conducted the re-identification of the isolates using the Gram-negative

(GN) test kit on (Ref: 21341) on VITEK 2 systems (version 2.0, Marcy-l’Etoile, France, Biomér-

ieux). Briefly, the cryopreserved isolates (at -80˚C) are resuscitated before use for reidentifica-

tion by subculturing onto Salmonella-Shigella Agar and incubated aerobically at 37˚C. Isolated

colonies from pure cultures are the streaked on Nutrient Agar (NA), incubated aerobically at

37˚C. Isolated colonies on NA is then used to prepare inoculum for VITEK using GN cards.

This test is based on forty-seven biochemical tests and a negative control. The cards contain

wells with substrates for the different tests in dried form. The cards are inoculated with a saline
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suspension of the organisms before incubation. Upon incubation, biochemical reactions are

read by the machine and recorded as positive or negative. A bionumber which is based upon

the combination of different test results is then generated. The bionumber is compared to

VITEK 2 robust database to match the organism and this is used to identify the organism. An

added step for confirming identity of VITEK-identified isolates utilized whole-genome

sequencing of all isolates. Antimicrobial susceptibility testing was done using VITEK AST

N280 test kit (Ref: 413432). N280 Cards are incubated within the VITEK 2 compact upon

inoculation with appropriate saline suspension of test organism. The minimum inhibitory

concentration (MIC) is recorded as the highest concentration of an antibiotic for which no

bacterial growth is observed. The MICs were interpreted as either resistant, intermediate or

susceptible in accordance to CLSI standards [21].

DNA extraction and library preparation

The isolates were processed for the extraction of genomic DNA using Wizard DNA extraction

kit (Promega; Wisconsin, USA) following manufacturer’s instructions. The extracted DNA

was quantified on a Qubit fluorometer (Invitrogen; California, USA) using dsDNA Broad

Range quantification assay. Double-stranded DNA libraries were prepared using the Covaris

LC220 for fragmentation, and NEBNext Ultra II FS DNA library kit for Illumina with

384-unique indexes (New England Biolabs, Massachusetts, USA; Cat. No: E6617L). Libraries

were sequenced on an Illumina HiSeq X10 (Illumina, California, USA).

Genome assembly

Generated sequence reads from Illumina runs were de novo assembled following GHRU pro-

tocols (https://gitlab.com/cgps/ghru/pipelines/dsl2/pipelines/assembly) using a Nextflow

workflow which inclusively comprises of adapter trimming (trimmomatic v0.38), contamina-

tion detection (ConFindr v0.7.2), assembly (SPAdes v3.12.0), Quality Control (multiqc v1.7,

qualifyr v1.4.4) and Bactinspector (v 0.1.3).

Sequence typing of Salmonella genomes

Sequence reads were deposited in the Salmonella database on EnteroBase [22]. Multi-locus

sequence types (MLST) for the isolates were determined and core-genome MLST calculated.

Evolutionary relationship based on cgMLST of all S. Typhi of human origin from Africa

deposited in Enterobase were determined [22]. The Salmonella genome assemblies were ana-

lysed using the Salmonella In-Silico Typing Resource (SISTR) for the prediction of serovars

and serogroups (https://github.com/phac-nml/sistr_cmd). Genomes belonging to S. Typhi

were loaded unto Pathogenwatch for the prediction of their genotypes [18].

Identification of AMR, plasmids, virulence genes and Salmonella
pathogenicity islands

Determinants of AMR, virulence and plasmid replicons were identified following GHRU pro-

tocols (https://gitlab.com/cgps/ghru/pipelines). Prediction of Salmonella pathogenicity islands

(SPIs) in the genomes was done by mapping raw reads to SPIs database (https://bitbucket.org/

genomicepidemiology/spifinder_db)

Single Nucleotide Polymorphism (SNP) calling and phylogeny

The sequence reads of the S. Typhi and S. Enteritidis genomes from our study were mapped to

NCBI reference sequence, Salmonella enterica subsp. enterica serovar Typhi strain
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H12ESR00755-001A (assembly accession: GCF_001362195.2) and Salmonella enterica subsp.

enterica serovar Enteritidis strain 18569 (assembly accession: GCF_000335875.2), respectively,

to determine evolutionary relationship amongst the strains following GHRU nextflow SNP

phylogeny protocols (https://gitlab.com/cgps/ghru/pipelines/snp_phylogeny). Briefly, reads

were trimmed (trimmomatic v0.38) and mapped to the reference genomes described above

using bwa mem (v0.7.17) and variants were called and filtered using bcftools (v1.9). A pseu-

doalignment with the reference was used to generate a maximum likelihood tree using iqtree

(v1.6.8) [23]. SNP distances between the genome pairs were calculated using snp-dists v.0.8.2

(https://github.com/tseemann/snp-dists) on the pseudo-genome alignment.

Results

Invasive Salmonella from sentinel hospitals from Nigeria’s AMR

surveillance network

Using the VITEK system for bacterial identification described above, a total of 69 isolates

retrieved from patients from five (n = 5) sentinel hospitals were identified as Salmonella spp.,

at the reference laboratory. However, results from whole-genome sequencing confirmed

n = 61 of these to be Salmonella enterica. In addition, two other isolates from our surveillance

collection initially identified as Escherichia coli and Acinetobacter baumanii using VITEK were

subsequently identified as Salmonella enterica using WGS.

In the sixty-three (63) WGS-confirmed invasive Salmonella isolate genomes, the average

number of contigs was 58 and N50 values ranged from 172132bp to 731013bp (average 246872

bp). The G+C (%) content of the genomes ranged from 51.86% - 52.37% (average 52.10%) (S1

Table). The isolates were retrieved from blood (n = 60) and cerebrospinal fluid (n = 3). The

sending sentinel hospitals include: University of Ilorin Teaching Hospital (ILO, Ilorin, Kwara

State, n = 25), University College Hospital, Ibadan (UCH, Ibadan, Oyo State, n = 23), Obafemi

Awolowo University Teaching Hospital, Ile-Ife (OAU, Ile-Ife, Osun State, n = 8), Lagos Uni-

versity Teaching Hospital (LUT, Idi-Araba, Lagos State, n = 4) and Babcock University Teach-

ing Hospital (BUT, Ilishan-Remo, Ogun State, n = 3) (Fig 1A). Majority of the isolates were

retrieved in 2019 from ILO (n = 22). Thirteen isolates had no year specified metadata but were

retrospective isolates retrieved between 2016 and 2018 (Fig 1A). The hospitals are all in the

Fig 1. Epidemiological information showing. (A) number of Salmonella isolated received from the different sentinel hospitals at different years, and (B)

Number of different Salmonella serotypes received from the different sentinel hospitals.

https://doi.org/10.1371/journal.pntd.0010716.g001
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southwestern part of Nigeria with ILO just north of the South-West geopolitical zone and all

the rest within it. All the Salmonella isolates from cerebrospinal fluid were obtained from LUT.

Distribution of Salmonella enterica subsp. enterica serovars across sentinel

hospitals

All the Salmonella enterica isolates belonged to the subspecies enterica but differed by serotype

with a total of 10 serovars detected. They include Typhi (n = 46), Enteritidis (n = 7), Durham

(n = 2), Rissen (n = 2), Adabraka (n = 1), Chester (n = 1), Dublin (n = 1), Infantis (n = 1), Tele-

lkebir (n = 1), Typhimurium (n = 1). Three Salmonella enterica isolates belonging to serovars

Adabraka (n = 1) and Typhi (n = 2) were retrieved from cerebrospinal fluid from LUT. All

other Salmonella serovars were retrieved by blood culture at the respective sentinel sites (S1

Table). Salmonella Typhi and iNTS were recovered from all sentinel sites, with iNTS being

much less frequently recovered (Fig 1B).

Sequence types, genotypes, and nucleotide polymorphisms

Salmonella sequence-typing based on Achtman’s MLST scheme [24] identified two S. Typhi

Sequence Types (STs) (ST1, n = 1 and ST2, n = 45). There were nine different iNTS STs. These

included previously reported STs from invasive infections: S Enteritidis ST11 (n = 7) and S
Typhimurium ST313 (n = 1), which are repeatedly reported from Africa. Other iNTS were S.

Dublin (ST10), S. Infantis (ST603), S. Durham (ST2010), S. Chester (ST2063), S. Telelkebir

(ST2222). Two novel STs belonging to S. Rissen and S. Adabraka were curated and designated

STs 8756 and 8757 respectively by EnteroBase.

To further place our S. Typhi genomes in a wider context, we performed cgMLST analysis

based on differences in core genomes of our strains and all S. Typhi from human sources in

Africa deposited in EnteroBase (n = 980) (Fig 2). All genomes included in this study had simi-

lar core genome allelic differences at HC400, whereas at HC200 genomes from this study had

similar allelic profile with 98.06% (n = 961) of the genomes in the population. Genomes

accounting for the difference in cluster numbers in the population at HC400 were from Nige-

ria (n = 9, ~0.92%), Cameroon (n = 4, ~0.41%) Algeria (n = 3, ~0.3%) Morocco (n = 2, 0.2%)

and Senegal (n = 1, 0.1%). Generally, S. Typhi genomes from this study clustered with others

from West Africa, including Nigeria, Cameroon, Togo, Mauritania, Mali, Burkina Faso,

Guinea, Benin, and Ivory Coast, emphasizing further on their endemicity in the West Africa

region (Fig 2). Further, based on S. Typhi genotyping scheme, we observed that the isolate of

S. Typhi ST1 belonged to genotype 4.1 (UCH), whereas genotypes 2.3.1 (n = 1, UCH) and

3.1.1 (n = 44) were S. Typhi ST2 isolates. In addition, S. Typhi genomes from CSF (n = 2)

belonged to the 3.1.1 genotype (Fig 3).

We compared sequence diversity of our S. Enteritidis genomes to S. Enteritidis collection

from Africa described by Feasey et al. [25]. This collection included over 360 genomes from 27

countries in Africa, majority of which were from South Africa (n = 94), Democratic Republic

of Congo (n = 77) and Malawi (n = 76) (Fig 4A). There were no genomes from Nigeria in this

collection, except those from this study (Fig 4A). We observed our genomes clustered with

other West Africa genomes from Mali, Senegal, Guinea and Ivory Coast (Fig 4B). All the

genomes in this cluster belong to Feasey et al. [25] hierBAPS cluster 2 described as the multi-

drug resistant West African epidemic clade associated with human invasive infections and

phenotypic and genotypic resistance to� 1 antimicrobial class. In concordance with the study

of Nikiema et al. [26], and as similarly observed with our genomes, members of this clade have

similar core genome allelic profiles at HC100. To further investigate the genetic relatedness of

the genomes in this study, we determined pairwise SNP differences among the genomes. We
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observed that the three S. Enteritidis isolates from ILO (n = 3) were near identical having pair-

wise SNP range from 0 to 1 (S4 Table).

Antimicrobial susceptibility profiles, antimicrobial resistance

determinants and plasmids replicons in TS and NTS

Antimicrobial susceptibility testing revealed majority of the S. Typhi to be resistant to sulpha-

methoxazole/trimethoprim (SXT) and ampicillin (n = 41 each) and nalidixic acid (n = 36), of

which three were ciprofloxacin non-susceptible, according to CLSI (2021) criteria. (S2 Table).

While not relevant to the antimicrobial chemotherapy of invasive infections, resistance to

nitrofurantoin was identified in the n = 2 S. Typhi isolated from CSF and in n = 9 isolates from

blood with the highest MICs (128 μg/mL) seen in the CSF isolates only. Resistance to cephalo-

sporins, cefuroxime and cefuroxime axetil was observed in S. Typhi 3.1.1 from UCH.

The single S. Typhi 2.3.1 isolate was resistant to ampicillin and SXT whereas no phenotypic

resistance was observed with S. Typhi 4.1. All S. Enteritidis and S. Typhimurium were resistant

to ampicillin and sulphamethoxazole/trimethoprim. Asides Telelkebir harbouring resistance

to nalidixic acid and ciprofloxacin, other NTS were either susceptible or intermediately resis-

tant to other antimicrobials (S2 Table). For example, S. Adabraka, Dublin and Telelkebir were

intermediately resistant to cefuroxime axetil. (S2 Table and microreact link for antimicrobial

susceptibility testing: https://microreact.org/project/ahQ3Yb64nsbnhHMzz3WQn9-genomic-

epidemiology-of-invasive-salmonella-in-southwestern-nigeria-ast-data)

Fig 2. Grape tree showing core genome MLST of S. Typhi from human sources in Africa, deposited in the EnteroBase database. Red leaf labels are

genomes from this study.

https://doi.org/10.1371/journal.pntd.0010716.g002
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A combined total of 14 acquired antimicrobial resistance genes (ARGs) conferring resistance

to drugs within seven antibiotic classes were detected amongst the genomes. Amongst the S.

Typhi genomes, n = 36/46 harboured at least one ARG conferring reduced susceptibility to 5 anti-

biotic classes, with n = 41 harbouring a sulphonamide resistance gene [sul1 = 9/46, sul2 = 33/46)]

and n = 39 each harbouring a beta-lactam (blaTEM-1), tetracyclines (tetA, n = 33 and tetB, n = 6),

and trimethoprim resistance determinant (dfrA1, [n = 1], dfrA15 [n = 8] and dfrA14 [n = 30]). In

addition, chloramphenicol resistance genes, catA1, were also detected in the genomes (n = 8).

Fig 3. SNP-phylogeny based tree and gene presence/absence showing the genomic profile of Salmonella Typhi genomes retrieved from 5 sentinel

laboratories in Nigeria. ARGs: antibiotic resistance genes, STs: Sequence types.

https://doi.org/10.1371/journal.pntd.0010716.g003
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Point mutations identified among the sequenced S. Typhi isolates were those associated with the

quinolone resistance determining region (QRDR), gyrA_S83Y SNPs (n = 37), which mediate

resistance to fluoroquinolones (Fig 3). Furthermore, n = 45 of the S. Typhi genomes had at least

one plasmid predicted to occur in each genome. Majority (n = 33) possessed an IncY plasmid rep-

licon, plasmid replicons IncFIA_HI1, IncHIA and IncHIB were respectively detected in n = 9 of

S. Typhi genomes whereas one isolate harboured an IncQ plasmid replicon (Fig 3).

For the iNTS, S. Enteritidis genomes possessed at least one ARG to six antibiotic classes. All

Isolates of this serotype harboured aph(3”)-Ib, blaTEM-1, catA1, dfrA7, sul1, sul2, tet(B) genes,

and only differed in the absence/presence of aph(6)-Id (n = 4) (Fig 5). In tandem, S. Typhimur-

ium harbour ARGs [aadA1, aph(3”)-Ib, aph(6)-Id, blaTEM-1, catA1, dfrA1, sul1, sul2] encoding

resistance to 5 antibiotic classes (Fig 6). The only occurring quinolone resistance gene among

isolates in this study, qnrB19, was detected in S. Telelkebir. No ARGs were detected in Salmo-
nella serovars Chester, Rissen, Durham, Infantis, Adabraka and Dublin. Antimicrobial point

mutations identified among iNTS were associated with gyrA and parC gene regions (Fig 6).

The quinolone resistance conferring gyrA_D87Y SNPs were identified only amongst S. Enteri-

tidis (ILO, n = 3 and UCH, n = 1), whereas the parC_T57S mutations were detected in all

iNTS except S. Enteritidis and S. Typhimurium. Plasmids were predicted to occur only in S.

Dublin [IncFII(S), IncX1 and IncX1_1], S. Enteritidis (IncI1 and IncQ1), S. Typhimurium

[IncFIB, IncFII(S) and IncQ1] among the iNTS.

Predominant IncY + gyrA_S83Y + tetA harbouring S. Typhi 3.1.1 in

Nigeria

We observe that all S. Typhi of the 3.1.1 lineage harbouring an IncY plasmid replicon (n = 33/

46) similarly possessed the gyrA_S83Y chromosomal gene mutation and harboured a tetA

Fig 4. Grape tree showing core genome MLST of S. Enteritidis from human sources in Africa, deposited in the EnteroBase database. Red leaf labels are

genomes from this study.

https://doi.org/10.1371/journal.pntd.0010716.g004
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gene. Although other antimicrobial resistance genes were seen at slightly lower numbers

(n = 32/33 for sul2 and aph(6)-Id and n = 30/33 for blaTEM-1 and dfrA14), the IncY+-

gyrA_S83Y+tetA in S. Typhi 3.1.1 phenomenon was observed to occur in all the sentinel hospi-

tals in this study. Additionally, maximum pairwise SNP distance between the variants in this

cluster was 23. This is approximately twice as less of what was determined in S. Typhi 3.1.1

outside this cluster (n = 47), thereby, emphasizing clonality within this cluster.

Fig 5. SNP-phylogeny based tree and gene presence/absence map showing the genomic profile of Salmonella Enteritidis retrieved from 3 sentinel

laboratories in Nigeria. ARGs: antibiotic resistance genes, STs: Sequence types.

https://doi.org/10.1371/journal.pntd.0010716.g005
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Salmonella virulence determinants and predicted pathogenicity islands

The isolates possessed a plethora of virulence determinants (S2 Table). Among the S. Typhi

genomes, a total of 98 virulence determinants were detected, and 97 of these were conserved

within members of this serovar (with the exception of pipB2 gene in an S. Typhi 3.1.1 from

UCH).

A total of 106 virulence genes were detected among the S. Enteritidis genomes, 104 of these

were conserved within these genomes, with 2 strains from UCH lacking either a Salmonella
secreted protein H (sspH) or secretion system effector I (sseI). A total of 122 virulence genes

were detected in the iNTS genomes, and n = 86 of these were conserved in all iNTS genomes.

For instance, the iNTS possessed genes encoding (i) Adherence; such as agf–thin aggregative

fimbrae or curli (csgABCDEGF), misl–an autotransporter protein, pef—plasmid-encoded fim-

brae (present only in S. Typhimurium) ratB (carried by iNTS strains harbouring CS54 islands),

shdA (only found in S. Infantis), sinH (detected in all NTS except S. Enteritidis) and Type 1

fimbrae (fimCDFHI) (ii) Stress adaptation; sodCI–superoxide dismutase (detected in iNTS ser-

ovars except Durham, Chester and Rissen and Infantis and Telelkebir), sopA (not detected in

S. Infantis) (iii) Nutritional/metabolic factor (mgtBC, present in all strains) (iii) Antimicrobial

activity/competitive advantage; such as macrophage inducible genes (mig-14, present in all

strains) and (iv) Enterotoxin; T3SS effectors–spvBC (in S. Typhimurium, Enteritidis and Dub-

lin), avrA (in all iNTS except S. Dublin) and Typhoidal toxin—cdtB (present in S. Durham, S.

Telelkebir and S. Chester).

Fig 6. Gene presence/absence map showing the genomic profile of non-typhoidal Salmonella retrieved from 5 sentinel laboratories in Nigeria. ARGs:

antibiotic resistance genes, STs: Sequence types.

https://doi.org/10.1371/journal.pntd.0010716.g006
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Since the cdtB are reported to be co-located with other cytolethal distending toxins (cdt),
pertussis-like toxins A (pltA) and B (pltB), on same pathogenicity islet [27], we ran a blast

search of our strains for the presence of pltA and pltB. The nucleotide sequences were extracted

from the virulence factor database (VFDB) and used as a local database for a blast search

against our iNTS genomes. Our results reveal high similarity (100% coverage and� 96.62%

identity) with cdtB, pltA and pltB genes in the iNTS genomes (S. Chester, S. Durham and S.

Telelkebir).

Eleven and twelve Salmonella pathogenicity islands (SPIs) were predicted in S. Typhi and

iNTS genomes, respectively (Fig 7). All S. Typhi were predicted to have 11 SPIs, i.e., SPI-1,

SPI-2, SPI-3, SPI-4, SPI-5, SPI-6, SPI-7, SPI-8, SPI-9, SPI-10 and SPI-12. However, SPI-4 was

predicted to occur only in S. Typhi lineages 2.3.1 and 4.1. In contrast to S. Typhi, only SPI-3

was predicted to occur in all the iNTS genomes. Certain SPIs were shown to be associated with

members of certain serovars. For instance, SPI-2 and SPI-8 were detected only in S. Typhimur-

ium and S. Rissen, respectively. Other pathogenicity islands were detected in this study (Fig 3),

such as SPI-4 (S. Adabraka, Chester, Typhimurium), SPI-6 (all NTS except S. Durham, Rissen

and Telelkebir), SPI-12 (all NTS except S. Chester, Durham, Rissen and Telelkebir) and

CS54_island was detected in S. Dublin, S. Typhimurium, S. Infantis and S. Enteritidis (n = 6).

Discussion

In this report we present the outcome of genomic characterization of invasive Salmonella
infections from AMR surveillance in sentinel hospitals in Nigeria. The genomic characteriza-

tion of invasive Salmonella isolates in this study was possible because these hospitals perform

blood culture and are enrolled in Nigeria’s new antimicrobial resistance surveillance system,

which offers genomic services at the National Reference Laboratory level [28]. Nonetheless,

blood culture is available at very few institutions in Nigeria, a limitation still prevalent in many

Fig 7. Frequency of occurrence of Salmonella pathogenicity island in TS (Typhoidal Salmonella) and NTS (Non-typhoidal Salmonella) in this study.

https://doi.org/10.1371/journal.pntd.0010716.g007
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African settings that impacts the genomic surveillance of invasive Salmonella. [8,16,29]. More-

over, these sentinels perform very few blood cultures so that the isolates studied here represent

a very small proportion of circulating strains.

Using WGS and bioinformatic analytics, we were able to determine prevalent serotypes and

dominant genotypes of invasive Salmonella infections. Most of the Salmonella isolates cultured

from blood were S. Typhi, as has been previously reported from different parts of Nigeria,

including Ibadan [30–32], even though iNTS may predominate in some other African settings

[4,33]. While our data are few, the predominance of Typhi at all sites points to a significant

burden of severe disease that could be averted if Typhoid Conjugate Vaccines were deployed

in Nigeria. Out of a total of 10 S. Typhi genotypes recorded from Nigeria in Pathogenwatch,

three were identified in this study. The S. Typhi genotype 3.1.1 we report was similarly com-

mon in the Nigeria cluster on Pathogenwatch (n = 87/131). As in our study, this cluster pos-

sessed similar prevalence of genetic determinants of beta-lactam (blaTEM-1−83.90%) resistance,

indicating that these determinants are well-conserved in the genotype. However, prevalence of

other AMR genetic determinants from this lineage such as catA1, sul1, sul2, dfrA14, dfrA15,

tetA, tetB were similar with what is reported from this study, but at different rates.

This multidrug-resistance gene-encoding S. Typhi 3.1.1 is shown to be one of the broadest

lineages in sub-Saharan Africa and endemic in the West Africa region [19,34,35]. This S.

Typhi genotype is frequently reported to be isolate genomes, the multidrug and ciprofloxacin

resistant [29,31]. All S. Typhi 3.1.1 (except one from OAU) harbouring quinolone-conferring

SNPs in gyrA showed phenotypic resistance to nalidixic acid. Additionally, we observed that

the S. Typhi genotype 3.1.1 clone variants harboured an IncY + gyrA_S83Y + tetA genes. The

Pathogenwatch database includes three S. Typhi 3.1.1 strains isolated from blood samples in

2013, in Abuja, north-central capital of Nigeria with similar clonal characteristics (having

same genotype, plasmid replicon, chromosomal QRDR and antimicrobial resistance gene,

tetA) [19]. Outside Nigeria, this lineage has also been identified in the United Kingdom (acces-

sion: SRR7165434, SRR5585020) [32]. Our data suggest that this resistant sub-lineage is pre-

dominant in our setting and should be sought elsewhere in Nigeria and the region. In

addition, long read sequencing to unveil the carriage of the IncY plasmids would be potentially

vital to understanding the success of this lineage in Nigeria.

S. Enteritidis were the most frequently recovered iNTS in our study and sent from three

sentinel hospitals. This outcome contrasts with earlier reports of S. Typhimurium ST313 as a

predominant serotype in eastern and southern Africa, but also present across the continent,

including Nigeria [15,36,37], but it is concordant with more recent reports describing S. Enter-

itidis in higher proportions in invasive infections in The Gambia [38]. Several of the S. Enteri-

tidis in our study were multidrug resistant (resistant to ampicillin, SXT, nalidixic acid) and

belong to the West African epidemic clade previously described [25]. This multidrug resistant

clone has also been reported in bacteraemia in other parts of Africa [39,40]. We observed that

S. Enteritidis retrieved from different patients in ILO (in 2019) had highly similar genetic fea-

tures (antimicrobial resistance determinants, virulence, plasmids replicons) and clustered

together at 0–1 SNP distances between them. The isolates were recovered on the 27th of June,

26th of August and 28th of August 2019 and their genetic, geographic and temporal connected-

ness may be indicative of a previously unrecognized outbreak. Both S. Typhimurium ST313

and S. Enteritidis ST11 are dominant clones in sub-Saharan Africa [40] and are a major cause

of invasive disease, with a corresponding high case-fatality rate [14]. These serovars are justifi-

ably vaccine development priorities. Non typhoidal Salmonella serovars, such as Dublin,

Infantis, Chester, Rissen have been reported severally from food animals [4,41–44], their pres-

ence in human invasive human infection may attest to concerns with water and food safety,

including animal contact [45–47]. Although no ARGs were detected in the genomes of these
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serovar isolates, they remain a public health concern [14,47]. The single occurrence of an

acquired quinolone resistance gene, qnrB19 in this study was detected in S. Telelkebir. The

strain also expressed phenotypic resistance to the quinolones nalidixic acid and ciprofloxacin.

S. Telelkebir has been reported a few times from Africa (as seen in Enterobase, [48]), and are

more commonly reported in parts of Europe, China and USA [49]. The expansion of atypical

Salmonella serovars in invasive infections is associated with a high health burden [17,38]. Inva-

sive NTS vaccines in the pipeline may not cover all NTS serovars [50], and we identified sev-

eral in this study, harbouring an assortment of virulence and antimicrobial resistance

determinants. This points to the need for widespread and robust access to invasive Salmonella
diagnostics in Nigeria to elucidate on the burden and make a case for serovar vaccine priorities

[17,38,49].

Amongst a plethora of virulence determinants present on both S. Typhi and iNTS, we

observed that S. Telelkebir, S. Durham and S. Chester isolates harboured the cytolethal dis-

tending toxin islet genes (cdtB, pltA, pltB) also known as typhoid toxin. These toxins were orig-

inally thought to be restricted to serovars Typhi and Paratyphi A [51]. However, these have

now been reported in other NTS serovars including Bredeney, Javiana, Montevideo, Schwar-

zengrund, and more recently in Telelkebir [52–54]. A literature search on PubMed and Google

Scholar revealed little information on these toxins being reported in S. Durham and S. Chester.

The cytolethal distending toxin islet cause DNA damage and cell cycle arrest in impaired cells

[55]. More implicatively, these genes encoded by NTS serovars have been reported to play vital

roles in disease pathogenesis [53,54]. Many of Salmonella virulence determinants are clustered

in pathogenicity island on the bacterial chromosome, playing key roles in disease pathogenesis

[56,57]. A variety of SPIs were identified in this study. The SPI-7 which were exclusively

detected in S. Typhi in this study are known to be large and major backbone constituent of S.

Typhi, harbouring several virulence determinants including the Vi antigen [58]. Like in this

study, the CS54 island and SPI-14 island are more commonly detected NTS [59–62], with

scarce reports in S. Typhi, and the CS54 island are suggested to have evolved over multiple

horizontal transfers [63]. Thus, this study emphasizes on an expanding number of serovars

causing invasive infections in the country, and the public health implications therein. Further

studies focussed on molecular analysis of gene content of SPIs in invasive Salmonella infec-

tions could be pertinent in understanding pathogenesis and aid in the advancement of treat-

ment options [64].

Conclusion

The outcome of our study emphasizes the need for expanded genomic surveillance of invasive

Salmonella infections in Nigeria as a valuable tool to monitor antibiotic resistance spread and

genetic characterization of circulating lineages in Nigeria. Close monitoring of the dominant

S. Typhi 3.1.1 clone harbouring the IncY plasmid replicon and gyrA_S83Y chromosomal

mutation, identified in all the tertiary hospitals in this study, including other serovars is vital,

and this may help to establish strategies for empirical treatment and control of spread of anti-

biotic resistant lineages. Furthermore, our data suggests that introducing typhoid conjugate

vaccines, recommended by the World Health Organization for countries like Nigeria that have

a high typhoid disease burden, will have a significant impact on health [65]. Development of

vaccines which target NTS would be useful in reducing the overall burden of NTS on the conti-

nent. Rigorous surveillance plays an essential part in determining which serovars most require

coverage, as we observe S. Enteritidis to be most prevalent NTS in invasive infections in south-

west Nigeria, and hence recommended as vaccine priorities. Importantly, broader protective
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effects may be achieved by improvements in water, sanitation and hygiene that could interrupt

transmission of the causes of typhoid and other invasive salmonellosis.
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