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Abstract Autophagy is a catabolic process of paramount

importance for cellular homeostasis during starvation.

Generally, autophagy and translation are inversely regu-

lated. Many kinds of stress lead to attenuation of transla-

tion via phosphorylation of eukaryotic translation initiation

factor alpha (eIF2a). This response is conserved from

yeast to man and can be either protective or detrimental

depending on strength and duration of stress, and additional

factors. During starvation or viral infection, phosphoryla-

tion of eIF2a is required for induction of autophagy. As

exemplified here by a-hemolysin, a small pore-forming

toxin (PFT) of Staphylococcus aureus and (S)-3-oxo-C12-

homoserine lactone [(S)-3-oxo-C12-HSL], a quorum-

sensing hormone of Pseudomonas aeruginosa, bacterial

exoproducts may also impact translation and autophagy.

Thereby, PFT and (S)-3-oxo-C12-HSL act differentially.

Damage of the plasma membrane by PFT causes efflux of

potassium, which leads to amino acid starvation and energy

loss. This triggers amino acid-sensitive eIF2a-kinase

GCN2, as well as energy sensor AMPK, and deactivates

mTORC1. The output of this response, that is, transient

metabolic reprogramming is an essential part of a defense

program which enables cells to survive attack by a pore-

forming agent. Thus, nutrient/energy sensors serve as

sentinels of plasma membrane integrity. In contrast to PFT,

(S)-3-oxo-C12-HSL does not cause acute loss of ATP or

activation of GCN2, but also triggers phosphorylation of

eIF2a and inhibits translation. This response appears not to

depend on efflux of potassium and requires eIF2a-kinase

PKR. Like a-toxin, (S)-3-oxo-C12-HSL increases lipida-

tion of LC3 and accumulation of autophagosomes in cells.

Apart from directly affecting host-cell viability, bacterial

exoproducts might galvanize bystander cells to prepare for

close combat with microbial offenders or inadvertently

accommodate some of them.
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Basic mechanisms of autophagosome formation

The term autophagy—hereafter used in place of ‘‘macro-

autophagy’’—was first introduced during the CIBA foun-

dation symposium on lysosomes, London, in 1963 [1]. It

denotes an important catabolic process in eukaryotes, the

hallmark of which is the formation of an intracellular

double-bilayer membrane compartment, the autophago-

some. Autophagy may occur in an apparently random

manner anywhere in the cytosol, or alternatively at par-

ticulate cargo destined to be degraded or otherwise

removed from a cell. The principal function of autophagy

is break down and recycling of macromolecules, but there

is evidence for involvement in atypical secretion as well

[2–5]. Autophagic flux is subject to complex regulation by

extracellular and intracellular cues to meet cellular energy
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requirements, provide molecular building blocks, and

achieve ‘‘garbage’’ removal.

Although the source of the membrane required for the

formation of an autophagosome remains a matter of debate,

there is evidence that it may be derived from various

organelles, including ER, mitochondria, nucleus, Golgi,

and PM [6]. The formation of closed, vesicular auto-

phagosomes is preceded by the occurrence of crescent-

shaped double-membrane phagophores. Autophagosome

biogenesis is commonly subdivided into three steps: initi-

ation or nucleation, elongation, and maturation. Genetic

studies in yeast have led to the identification of more than

30 genes involved in this process, and mammalian homo-

logs are known for many of them [7, 8].

The class III phosphoinositide 3 kinase (PI3K) Vps34,

which acts in complex with additional proteins including

Beclin1 and Atg14L/Barkor catalyzes the formation of

PI(3)P, which is an essential early step during phagophore

formation [9]. PI3K is regulated by the ULK1-complex

consisting of the serine/threonine kinases ULK1, ULK2,

FIP200, mAtg10 and Atg101 [7, 10].

Elongation of phagophores and the formation of auto-

phagosomes depend on two ubiquitination-like reactions.

First, Atg7 and Atg10 catalyze conjugation of the Ub-like

protein Atg12 to Atg5 [11]. The conjugation product

interacts with Atg16L1, and the ternary complex finally

associates with the membrane of phagophores [12].

Second, ubiquitin-like molecules of the Atg8 family

(LC3, GABARAP, and GATE-16) are modified by cova-

lent addition of phosphoethanolamine (PE). In the case of

LC3 addition of PE is catalyzed by Atg7, Atg3 and Atg12/

Atg5-conjugate, which function as E1-like, E2-like and

E3-like enzymes, respectively [13, 14]. Lipidated LC3

(LC3II) associates with the autophagosomal membrane

where it promotes tethering and hemifusion during the

formation of autophagosomes [7, 15]. Therefore, LC3II is

commonly used as a marker of autophagy, but its deposi-

tion is not strictly confined to autophagosomal membranes.

Selective autophagy of bacteria

Although starvation-induced autophagy appears to occur

randomly in cells, autophagy of foreign bodies like

invading bacteria (xenophagy) is obviously a selective

process, which has become a subject of intense research.

An early account of xenophagy, was the observation that

rickettsiae accumulates in autophagosomal-like structures

of guinea pig polymorphonuclear leukocytes [16]. The fate

of microorganisms captured by autophagosomes is diverse:

they may manipulate maturation of the autophagosome,

escape into the cytosol, benefit from autophagy, or may be

destroyed [17–22] .

Selective autophagy depends on adapter proteins, also

termed SLRs (sequestosome-like receptors), because the

best known adapter protein is p62/sequestosome1; other

known members are NBR1, NDP52, and optineurin. SLRs

comprise ubiquitin association regions (UBAs) and LC3

interacting regions (LIRs); they target bacteria to the

autophagic pathway [23, 24]. Notably, p62 and NDP52

seem to serve non-redundant functions during selective

autophagy [25, 26]. Modification of adapter proteins, for

example, by phosphorylation adds specificity and another

level of regulation to the process of selective autophagy

[27, 28]. It remains unclear whether host proteins in the

phagosomal membrane or bacterial proteins have to be

ubiquitinated for targeting of SLRs. At any rate, ubiquiti-

nation seems not to be absolutely necessary for selective

targeting of misfolded proteins to the autophagic degra-

dation pathway. The BAG3-mediated chaperone-based

targeting uses the specificity of Hsp70 chaperones to mis-

folded proteins as the basis for selectivity [29].

Evidence for a role of membrane damage for selective

autophagy

Involvement of membrane damage and/or pore-forming

toxins in selective autophagy has emerged as a common

theme from several studies of different bacterial species,

namely Streptococcus pyogenes, Listeria monocytogenes,

Shigella flexneri, Salmonella enterica, and S. aureus

[21, 30–32]. Membrane damage/PFT might promote

selective autophagy in several ways: first, by allowing

bacterial escape from vacuolar compartments; second, via

(modification and) recognition of pore-forming agents per

se by the autophagy machinery; or third, via biochemical or

biophysical changes secondary to pore formation which are

recognized by the autophagy machinery, three possibilities

that are mutually non-exclusive. Apparently, membrane

remnants or damaged vacuoles are targeted by autophagy

[33, 34], and growth of Salmonella in infected cells is

reportedly restricted by autophagic targeting of damaged

SCV (Salmonella containing vacuoles) [35, 36].

In the case of intracellular Listeria and intracellular

S. aureus, it has been demonstrated that selective autophagy

correlates with the ability of these bacteria to produce a

pore-forming toxin (LLO and a-hemolysin, respectively),

[31, 37, 38]. GFP-LC3 and p62 were also recruited to

endocytosed toxin after application of purified protein or as

a liposomal complex [37, 38]. This suggests that escape from

vacuoles and subsequent exposure of bacteria to the cytosol

is probably not required for selective autophagy to occur at

intracellular Listeria or S. aureus; toxin appears to suffice as

a trigger. Because LLO has been shown to be ubiquitinated,

it is possible that a fraction of modified toxin binds adapter
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proteins and is internalized by autophagosomes instead of

being delivered to proteasomes. In line with this, LLO has

been shown to colocalize with p62 and ubiquitin in aggre-

some-like structures [39]. Similarly, S. aureus a-toxin

colocalizes with p62 in target cells. Whether ubiquitination

of toxin is required for the recruitment of p62 is currently

unclear, but the available data suggest that pore-forming

toxins can be ubiquitinated, which might suffice to directly

recruit adapter proteins [40]. Alternatively, host proteins on

damaged membranes could be ubiquitinated and recruit

adapter proteins. The identification of ubiquitination tar-

gets, of the enzymes involved, and cues that actually initiate

the process remains an important task. Antibodies specific

for ubiquitin have been shown to label membrane remnants

(defined by co-staining with antibodies directed against

Galectin-3) in Shigella-infected cells. The authors proposed

that membrane remnants are targeted by the autophagic

machinery in a p62-dependent manner [33]. More recently,

it was reported that the adapter protein NDP52 directly

interacts with Galectin-8 which is recruited to the SCV

(Salmonella-containing vesicles) of cells infected with

S. enterica [34]. Thus, sugar moieties which become exposed

after damage of vacuoles play a role for early recognition by

adapter proteins. Because NDP52 and p62, despite structural

similarity, seem to be functionally non-redundant and

localize to distinct microdomains on vacuolar membranes/

bacteria targeted for autophagy, it remains unclear how p62

is targeted to bacteria and/or membrane remnants.

Another pathway implicated in selective autophagy is

based on the generation of the lipid second messenger

diacylglycerol; it plays a role for xenophagy of Salmonella

and does not depend on Atg5 [41].

It should be noted that although deployment of p62 is a

hallmark of selective autophagy, p62 is also involved in

starvation-induced autophagy [42, 43], providing a

molecular link between random and selective autophagy.

Perforation of the PM triggers a starvation response

and autophagy

The earliest account of autophagy induction by a pore-

forming toxin (PFT) was a report about the protective role

of autophagy for target cells of Vibrio cholerae cytolysin, a

small b-barrel PFT [44]. Subsequent work on the structur-

ally related S. aureus a-toxin provided clues to the signaling

pathways involved in autophagy induction by PFT and to

the protective mechanism of autophagy: Previous studies

with S. aureus a-toxin and SLO had established that

membrane damage by these PFT, and consequences thereof

are reversible in many cell types [45–49]. The transient

nature of PM perforation is reflected by massive, but tran-

sient drop of cellular ATP levels, a fact that our group has

exploited to characterize repair/recovery mechanisms. One

important finding of these studies was that the removal of

the oligomeric plasma membrane pore complexes by dyn-

amin-dependent endocytosis is prerequisite for membrane

repair after S. aureus a-toxin attack [50]. Second, membrane

perforation turned out to trigger starvation and metabolic

reprogramming, which proved to be also essential for

recovery [38]. These findings were born out of an unbiased

transcript profile of perforated cells obtained by serial

analysis of gene expression (SAGE). This analysis revealed

that membrane perforation by S. aureus a-toxin triggers

expression of immediate early genes [48], whereby trans-

lation of these transcripts was delayed; moreover, eIF2a-

phosphatase GADD34 was among the most abundant

transcripts overexpressed under these conditions [48].

Together, this suggested that a-toxin causes an integrated

stress response, via transient phosphorylation of eukaryotic

translation initiation factor 2a, (eIF2a), and transient, global

translational arrest. This assumption was confirmed, and

GCN2 and PKR were subsequently identified as 2 kinases

responsible for phosphorylation of eIF2a in response to a-

toxin [38]. Importantly, pore-dead single amino acid

mutants failed to activate this response, firmly establishing

the link between membrane pore formation and integrated

stress response. GCN2 is a sensor of amino acid starvation,

which is conserved between yeast and man; uncharged

tRNAs trigger autophosphorylation of GCN2. Activated

GCN2 phosphorylates eukaryotic translation initiation fac-

tor 2a, leading to global translational attenuation [51, 52].

Intriguingly, GCN2 and PKR had previously been found to

be required for amino acid starvation-induced autophagy

[53]. Therefore, we reasoned that membrane perforation by

PFT might also cause amino acid starvation, and that

translational stop and autophagy might be required to

overcome nutrient shortage during transient perforation.

Because exposure of susceptible cells to pore-forming

toxins causes massive drop of intracellular ATP [45–49],

we assumed that PFT activate AMPK. This kinase serves

as the major cellular energy sensor, which regulates the

activity of mTORC1, a master switch of translation and

autophagy which integrates multiple signals from nutrient

sensors. In fact, S. aureus a-toxin, V. cholerae cytolysin,

Streptolysin O, and E. coli hemolysin induced phosphor-

ylation of AMPK in epithelial cells [38]. Moreover, S6K, a

substrate of mTORC1, became dephosphorylated. Trans-

mission electron microscopy analyses revealed many

multivesicular bodies, large, empty vacuoles, and vesicles

delineated by double membranes, providing morphological

evidence that PFT induced autophagy. Recently, it was

found that mTORC1 activity is also regulated through

availability of amino acids. Interestingly, amino acids

induce relocalization of mTOR to lysosomal membranes in

a p62-dependent way [42], suggesting that p62 may link
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selective and starvation-induced autophagy. That AMPK

and GCN2 are activated by PFT suggested that damage of

the plasma membrane causes cellular starvation and energy

shortage, the classic inducers of autophagy. In fact, uptake

of radio-labeled leucine was reduced by a-toxin [38],

presumably because amino acid transporters were inhibited

by the dissipation of natural ion gradients. Two recent

studies appear to support our conclusion that membrane

damage causes starvation and triggers nutrient sensors like

GCN2/p-eIF2a and mTORC1: one paper reports that these

pathways are also triggered by intracellular Salmonella and

Shigella, and the authors propose that this is also due to

membrane damage [54]; the second study indicates that the

concept of pore-forming toxin-dependent activation of

nutrient sensors holds in a Drosophila infection model [55].

Loss of potassium links plasma membrane damage

to activation of metabolic sensors

Rapid release of potassium ions is a common consequence

of membrane perforation by PFT, for example [56, 57].

Loss of potassium—or low concentrations of this ion in

perforated cells—seems to trigger a multitude of responses

in target cells of PFT, because high concentrations of

potassium in the extracellular milieu prevent these respon-

ses, and because they can be also triggered by the potassium

ionophore nigericine. Examples are the activation of casp-

ases [56, 58], activation of kinases including, for example,

p38 [59], AMPK, GCN2 [38], and CREB [60]. Importantly,

high potassium concentrations in media did not impair

activation of p38 by hydrogen peroxide, indicating that

these experimental conditions do not generally paralyze

pathways leading to the phosphorylation of stress kinases

[38]. That GCN2 is activated by membrane perforation in a

potassium-efflux-dependent manner raises the possibility

that cells exploit the dependence of nutrient transport across

the PM on physiological ion gradients to indirectly sense

changes of ion concentrations. The link between physio-

logic ion gradients and regulation of translation initiation

has been noted previously in a paper about the marine toxin

Palytoxin (PAL) which converts the Na?/K? exchanger to a

channel. As a consequence, intracellular potassium con-

centrations drop and translation stops [61]. In line with this,

PAL causes phosphorylation of eIF2a (Fig. 1a).

The role of MAPK for cellular responses

to pore-forming toxins: potential links to autophagy

Several pathways have been implicated in the survival of

cells or whole organism (Caenorhabditis elegans and

insects) exposed to PFT or microorganisms releasing PFT

[44, 57, 62–69]; for review, see [70–73]. Among them, the

p38 MAPK pathway was the first found to protect C. ele-

gans or mammalian cells from small pore-forming toxin

attack [66]. Subsequently, we demonstrated in mammalian

cells that p38 does not confer resistance to the pore-

forming activity of S. aureus a-toxin, but is required for

recovery from perforation. It was also demonstrated that

this function was not required for recovery from membrane

perforation by a large pore-forming toxin (SLO), revealing

that membrane repair or metabolic recovery mechanisms

are diverse [67]. At low concentrations, a-toxin does not

induce a significant influx of Ca?? ions, and therefore

would not be able to trigger the so-called wounded mem-

brane response [74, 75]. Although the critical downstream

targets of p38 for recovery from a-toxin are not known to

date, the finding that a-toxin has to be internalized by target

cells and that autophagy is required for energy homeostasis

offers at least two potential explanations: Because Rab5 is

a regulator of endocytosis [76], and because p38 impacts

on the engagement of Rab5 with membranes [77], it is

possible that p38 is required for the internalization of small

PFT. MAPK p38 has also been implicated in regulation of

autophagy [78, 79]. Therefore, it is possible that one way

this kinase may impact on the outcome of an attack by PFT

is through regulation of autophagy. JNK, another important

stress-activated protein kinase (SAPK) is also activated by

PFT and may therefore impact cellular responses to

membrane perforation [68]. An important role of JNK for

starvation-induced autophagy has been demonstrated [80].

A bacterial quorum-sensing hormone of P. aeruginosa

attenuates translation and impacts autophagy

Apart from PFT, few other bacterial exoproducts including

LPS [81] and NLR ligands [82–84] have been shown to

induce autophagy. (S)-3-oxo-C12-HSL is a small molecule

produced by the Gram-negative bacterium Pseudomonas

aeruginosa. (S)-3-oxo-C12-HSL is not only involved in

regulating cell-to-cell signaling in these bacteria, but

impacts signaling in mammalian cells [85]. Thus, (S)-3-oxo-

C12-HSL has been shown to inhibit NF-jB [86] and oxi-

dative stress [87], and to trigger phosphorylation of p38

MAPK and eIF2a [88]. Because the latter two events are also

triggered by PFT, and because eIF2a appears to be important

for the induction of autophagy in response to S. aureus

a-toxin, we have recently started to investigate whether

(S)-3-oxo-C12-HSL might also impact on autophagy.

First, we confirmed that (S)-3-oxo-C12-HSL triggered

eIF2a-phosphorylation in HaCat cells. Notably, high con-

centration of potassium in media did not affect phosphory-

lation in response to (S)-3-oxo-C12-HSL, although it blocked

phosphorylation of eIF2a in perforated cells (Fig. 1b).
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Fig. 1 A quorum-sensing hormone of P. aeruginosa impacts transla-

tion and autophagy. Materials and methods employed here have been

published previously [59, 88]. Metabolic labeling was performed as

described by [89]. In the figure, (S)-3oxo and (R)-3oxo denote (S)-3-

oxo-C12-HSL and (R)-3oxo-C12-HSL, respectively. a Western blot for

(p)-eIF2a with whole cell lysates (HaCaT) treated with palytoxin (PAL)

as indicated in the figure. b Western blot for (p)-eIF2a with whole cell

lysates (HaCaT) treated with the indicated compounds in the presence

of normal concentrations of potassium (n), or in media with high

concentration of potassium (hi) [59]. c Western blot for p-eIF2a,

p-GCN2, and GCN2 after treatment of HaCaT cells with the P. aeru-
ginosa quorum-sensing hormone (S)-3-oxo-C12-HSL or the control

compound (R)-3-oxo-C12-HSL for the indicated times. As expected,

(R)-3-oxo-C12-HSL fails to cause phosphorylation of eIF2a. Note that

GCN2 is not phosphorylated in response to either lactone; UV served as

a positive control. Untreated cell samples (media alone) are denoted Ø.

d Autoradiographic detection of P32-PKR in samples of HaCat cells

treated for the indicated times with the compounds denoted underneath

the panel. Co: medium alone. e Western blots for p-eIF2a, p-p38, or p38

with straight Cos7-cell lysates obtained 48 h following transfection

with siRNAs and subsequent treatment with S-3-oxo-C12-HSL.

f Autoradiography of an SDS-Gel visualizing incorporation of

S35-Methionine into newly synthesized proteins. Note marked inhibi-

tion of protein synthesis in cells treated with S-3-oxo-C12-HSL.

g Western blots for ubiquitination and LC3I/II with lysates of HaCat

cells treated as indicated in the figure for 3 h. h Fluorescence

microscopy images of HaCat cells transfected with EGFP-LC3 and

treated for 3 h with compounds indicated in the figure. Note redistri-

bution of diffuse green fluorescence signal into dots in cells treated with

a-toxin, or S-3-oxo-C12-HSL. i Western blot for GFP with lysates of

HaCat cells transfected with EGFP-LC3 treated as indicated in the

figure. The untreated cell sample (media alone) is denoted Ø. Loading

control with a-tubulin. Combination of (S)-3-oxo-C12-HSL and

a-toxin led to a significant accumulation of LC3II
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(S)-3-oxo-C12-HSL did not cause phosphorylation of

eIF2a-kinase GCN2 (Fig. 1c), but led to the phosphorylation

of eIF2a-kinase PKR (Fig. 1d). Therefore, signals upstream

of phosphorylation of eIF2a after treatment with PFT, or (S)-

3-oxo-C12-HSL are different. Although (S)-3-oxo-C12-

HSL-dependent phosphorylation of PKR was weaker than

that caused by a-toxin (Fig. 1d), knock down of PKR

inhibited (S)-3-oxo-C12-HSL-dependent phosphorylation

of eIF2a, indicating that PKR plays a critical role for cellular

stress signaling in response to this compound (Fig. 1e). In

line with this, activation of p38 was also markedly reduced

after KD of PKR (Fig. 1e). Unlike PFT, (S)-3-oxo-C12-HSL

did not cause significant loss of ATP at early time points, and

only moderate dephosphorylation of S6K was discerned

(data not shown). Thus, metabolic changes in response to

(S)-3-oxo-C12-HSL appear to be less pronounced than those

caused by PFT. However, metabolic labeling experiments

revealed that (S)-3-oxo-C12-HSL inhibits translation

(Fig. 1f). Many stress responses are accompanied by

enhanced ubiquitination and degradation of proteins.

Therefore, we investigated ubiquitination of proteins in

(S)-3-oxo-C12-HSL-treated cells (Fig. 1g). In contrast to

a-toxin, (S)-3-oxo-C12-HSL alone appeared not to signifi-

cantly enhance steady state levels of ubiquitinated proteins,

but addition of bafilomycin revealed that (S)-3-oxo-C12-

HSL increased the rate of ubiquitination. In Western blot

experiments with antibodies against LC3, higher levels of

LC3II were observed following treatment with a-toxin or

(S)-3-oxo-C12-HSL, and in both cases, this effect was

enhanced by bafilomycin (Fig. 1g, lower panel). Consis-

tently, numbers of GFP-LC3-positive puncta in transiently

transfected cells were increased by (S)-3-oxo-C12-HSL

(Fig. 1h). Therefore (S)-3-oxo-C12-HSL impacts autoph-

agy. Since P. aeruginosa and S. aureus are commonly found

together in wounds, or in the respiratory tract of patients

suffering from cystic fibrosis, potential synergism of

(S)-3-oxo-C12-HSL and S. aureus a-toxin might bear on the

pathogenesis in coinfections with these bacteria. In fact, the

combination of (S)-3-oxo-C12-HSL and S. aureus a-toxin at

concentrations which caused little increases in LC3II, led to

a significant accumulation of this product (Fig. 1i).

Conclusion

Bacterial exoproducts may impact host-cell translation and

autophagy. Pore-forming toxins (PFT) represent one

important class of bacterial exoproducts which affect these

processes. Based on the studies of cellular responses to

PFT, including S. aureus a-toxin, we found that the loss of

ATP / ADP

K+
inhibition of

amino acid transport

Translation off
Autophagy on

membrane damage

removal of toxin?

GCN2

amino
acids

P

eIF2αAMPK

mTORIL-1β secretion 

Fig. 2 Membrane damage by pore-forming toxins induces classic

starvation responses. PFT represents an important class of bacterial

exoproducts which affect host-cell translation and autophagy. Loss of

cellular potassium from perforated cells leads to the failure of nutrient

transport and transient drop of ATP, thus activating cellular nutrient

and energy sensors GCN2 and AMPK, subsequent phosphorylation of

eIF2a and deactivation of mTORC1. As a consequence, transient

global translational attenuation and induction of starvation-associated

autophagy occur to overcome energy and nutrient crisis caused by

membrane damage. Membrane perforation by a-toxin induces IL-1b
secretion [56], and a role of autophagy in unconventional secretion of

IL-1b has been recently documented [5]. Whether autophagy is also

involved in the release of toxosomes [50], undigestible toxin

oligomers associated with exosomal-like structures, remains to be

investigated
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cellular potassium from perforated cells leads to failure of

nutrient transport and loss of ATP, thus activating cellular

nutrient and energy sensors GCN2 and AMPK, subsequent

phosphorylation of eIF2a and deactivation of mTORC1

(Fig. 2). Therefore, we propose that nutrient/energy sensors

serve as sentinels of membrane integrity. In addition to the

removal of membrane pores by endocytosis, phosphoryla-

tion of eIF2a and induction of autophagy by these path-

ways are required to prevent abysmal loss of ATP in cells

perforated by S. aureus a-toxin. Thus, studying transient

membrane perforation by S. aureus a-toxin has provided

important novel insights into cell autonomous defense

against an archaic threat to a cell, namely damage of the

plasma membrane.

Like PFT, (S)-3-oxo-C12-HSL, a quorum-sensing hor-

mone of P. aeruginosa causes phosphorylation of eIF2a,

attenuation of translation, and accumulation of autophago-

somes. However, (S)-3-oxo-C12-HSL did neither cause

severe loss of ATP nor phosphorylation of GCN2; and

phosphorylation of p-eIF2a was insensitive to high levels of

extracellular potassium. Therefore, PFT and (S)-3-oxo-C12-

HSL modulate translation and impact autophagy by different

pathways, which may act synergistically.
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