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ABSTRACT

Building molecular correlates of drug resistance in
cancer and exploiting them for therapeutic interven-
tion remains a pressing clinical need. To identify
factors that impact drug resistance herein we built
a model that couples inherent cell-based response
toward drugs with transcriptomes of resistant/
sensitive cells. To test this model, we focused on a
group of genes called metastasis suppressor genes
(MSGs) that influence aggressiveness and meta-
static potential of cancers. Interestingly, modeling
of 84 000 drug response transcriptome combin-
ations predicted multiple MSGs to be associated
with resistance of different cell types and drugs.
As a case study, on inducing MSG levels in a drug
resistant breast cancer line resistance to anticancer
drugs caerulomycin, camptothecin and topotecan
decreased by more than 50–60%, in both culture
conditions and also in tumors generated in mice,
in contrast to control un-induced cells. To our
knowledge, this is the first demonstration of engin-
eered reversal of drug resistance in cancer cells
based on a model that exploits inherent cellular
response profiles.

INTRODUCTION

Acquisition of resistance toward drugs is detrimental to
targeted cancer therapy. It is one of the major roadblocks
in treatment toward several malignancies. Various mech-
anisms implicated in drug resistance of tumor cells include
activation of drug efflux pumps, increased drug

metabolism, epithelial to mesenchymal transition (EMT)
and secondary mutations in drug target(s) (1). Recent
work catalogs vast number of cell–drug response associ-
ations (2), and molecular correlates derived from gene
expression signatures predict new targets (3), mode of
action pathways (4) and suggest drug repositioning,
demonstrating the effectiveness of integrative approaches
(4–8). For example, Kutalik et al. (6) showed co-modules
in large and ‘noisy’ gene expression data sets can be used
to integrate multiple parameters and produce more
coherent patterns; in another approach drug and gene ex-
pression data from the Connectivity Map were used to
make networks of response information which segregated
in a mode of action-dependent fashion (4). Recently, this
approach was further and substantially extended by three
studies. First, Barretina et al. (5) reported response data of
479 cancer cell lines for 24 anticancer drugs along with
sequence of the cancer lines. Second, in another study
response of 639 tumor cell lines toward 130 clinical/pre-
clinical anticancer molecules was studied along with the
mutational spectrum of 64 commonly mutated genes in
cancer (9) and third, Wacker et al. (10) used transcriptome
sequencing to identify mechanisms of drug action and re-
sistance and as proof-of-concept cytotoxic anticancer
drugs BI 2536 and bortezomib were studied in detail.

Emerging observations draw interesting correlations
between EMT, a differentiation program essential for
morphogenesis during embryo development, and inci-
dence of drug resistance (reviewed in Singh et al. (1)).
The process of EMT is regulated by growth factors and
cytokines including transforming growth factor (TGF)-
beta, however this evolutionarily conserved developmental
program can be deregulated in cancer cells during tumor
progression resulting in gain of not only invasiveness and
metastatic characteristics but also resistance to drugs

*To whom correspondence should be addressed. Tel: +91 11 29879325; Fax: +91 11 2766747; Email: shantanuc@igib.res.in

764–773 Nucleic Acids Research, 2014, Vol. 42, No. 2 Published online 23 October 2013
doi:10.1093/nar/gkt946

� The Author(s) 2013. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited

s
s
ue
-
:
 (6)
as
-
-
 (5)
s
 (10)
epithelial to mesenchymal transition (
)
 A


(11,12). Intriguingly, recent evidence suggests that EMT
can induce reversion to a cancer stem cell (CSC)-like state
(11,12), further associating EMT, CSC and drug resist-
ance. Incidence of metastasis involves several stages/
processes, including gain of invasive characteristics (mes-
enchymal cells resulting from EMT), intravasation and
survival in circulation, homing and extravasation at the
secondary organ site followed by reacquisition of
‘epithelialness’ (which involves mesenchymal to epithelial
transition) and subsequent colonization (13–15). Given
this complexity it is intriguing that a class of factors has
been discovered that can negatively impact the metastatic
process, and are called metastasis suppressor genes
(MSGs). By definition, MSG function is described in
the context of dissemination of cells from the primary
site of tumor incidence to distant sites (reviewed in
(16,17)), a process that is understood to contribute to
more than 90% of cancer-associated mortality (13,15),
thereby underscoring the importance of MSG function
in tumor cells.

Together these studies provide a vast framework for
associating molecular processes that can drive occurrence
of drug resistance in cancer cells, however, it is still not
clear whether this can be extended beyond associations to
engineer resistance in cancer cells. With this in mind, we
sought to study transcriptomes of cancer cells along with
drug response data to identify appropriate molecular
factors. Our approach invokes and experimentally tests
models based on gene signature modules for re-engineer-
ing inherent response of cancer cells toward drugs. Proof-
of-concept findings presented here build support for
engineered reversal of resistance vindicating the use of
high throughput transcriptome and drug response
profiles, and therefore, extend the scope of such data for
re-engineering approaches.

MATERIALS AND METHODS

Chemosensitivity and MSG expression analysis

The 60 cell lines used in this study were previously assayed
for their sensitivity to a variety of compounds as a part of
the Developmental Therapeutics Program at the National
Cancer Institute, as described (http://dtp.nci.nih.gov) (18).
For this work, first GI50 of all 60 cell lines were clustered
for the 1400 drugs and then the expression values of all cell
lines were clustered for 30 MSGs. Next, the cell lines were
classified as resistant or sensitive for each compound. Cell
lines with GI50 (log10) at least 0.8 SDs above the mean
were defined as ‘resistant’ to the compound tested,
whereas those with GI50 (log10) at least 0.8 SDs below
the mean were defined as sensitive. Analysis was per-
formed for compounds with at least six sensitive and six
resistant cell lines. For all drug molecules that had at least
six cell lines in each group the expression of MSGs were
noted and averaged to produce a representation that
shows the effect of all genes vis-a-via drug molecules.
The cell groups were further used to produce drug signa-
tures to be compared with the experimental gene expres-
sion profiles. Two-dimensional unsupervised hierarchical
clustering was performed using cluster software developed

by Eisen labs (19), and heat map was generated using
Treeview software (20).

Analysis of gene expression signatures

To test correlation between gene expressions differences
observed in drug response versus the changes observed
on inducing the MSG Non-Metastatic 2 (NME2), we
first pre-processed the data sets using a previously pub-
lished method (21). Briefly, v (defined as relative fold
change for each gene) between expression in resistant
versus sensitive cell groups for any given drug molecule
was calculated using

v ¼ sð1� PÞ

where ‘P’ is the P-value calculated by performing a
student’s t-test for expression difference of a gene
between the resistant and sensitive cell lines, ‘s’ denotes
the sign of the difference between the average values in
the two sets considered. Therefore, ‘v’ indicates the extent
to which a gene was up- or down-regulated in the resistant
cell lines relative to sensitive ones with maximal and
minimal values of 1 and –1, respectively. ‘v’ for genes
from the data set of NME2-induced MDA-MB-231 cells
was calculated similarly using respective un-induced cells
as control. Following this, ‘v’ obtained from drug response
was compared with that from NME2-induced condition
for respective genes; statistical significance of this com-
parison was tested using the Pearson’s correlation test.
Differentially expressed genes were analysed using
Genecodis2 (www.genecodis.dacya.ucm.es) to identify
enriched pathways and biological processes.

Cells and culture conditions

MDA-MB-231 and MDA-MB-468 cells were obtained
from the national repository of cell lines at National
Centre for Cell Sciences (NCCSs), Pune, India and main-
tained in Dulbecco’s modified Eagle medium (DMEM)
supplemented with 10% fetal bovine serum at 37�C in
5% CO2 environment. The cells were transfected using
NME2-GFP/only GFP cDNA (Origene Inc., USA)
plasmid vector containing a CMV promoter for constitu-
tive expression of NME2-GFP fusion protein, and stable
clones were selected using G418 sodium salt.

Gene expression profiling

Total RNA was purified from MDA-MB-231 cells ex-
pressing GFP alone (vector control) or NME2-GFP
fusion protein using TRIzol reagent (Sigma, USA).
mRNA was linearly amplified by in vitro transcription
using T7 RNA polymerase (MEGA script T7 kit,
Ambion, Inc., USA). The quality and integrity of total
and amplified mRNA (cRNA) was monitored by both
spectrophotometry (OD UV 260/280 ratio> 1.8) and
Agilent bioanalyser. Gene-expression profiling was per-
formed using Illumina HumanWG-6 BeadChip, which
contains 47 296 transcripts. BeadChips were scanned
with a BeadStation 500 GX and data were analysed
using bead studio software. FDR was calculated based
on method proposed by Storey and Tibshirani (22).
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Drug sensitivity assay

Both MDA-MB-231 cells with GFP or NME2-GFP were
plated in 96-well microtiter plates at a density of 8000
cells/well for 24 h. Both cell types were treated
with anticancer drugs camptothecin, topotecan and
caerulomycin at different concentrations and also with
DMSO as vehicle control. After 48 h of drug treatment
total number of viable cells was assayed using CellTiter-
Glo� luminescent cell viability assay kit (Promega).
Luminescence obtained from cells treated with DMSO
was taken as 100% and percentage decrease in lumines-
cence was calculated in response to drug doses in respect-
ive cases and data were plotted/represented as percentage
cell viability.

In vivo tumor growth and cell viability assay

Three million cells of each type (MDA-MB-231 breast
cancer cells expressing GFP only or induced with
NME2) were diluted in 150ml of PBS and implanted in
4th mammary fat pad of BALB/c nude (nu/nu) female
mice. The growth of the tumor was monitored every
week by a caliper. We expressed the growth as mean of
tumor diameter. After 8 weeks, mice were euthanized ac-
cording to institutional animal ethics protocol, and
tumors were recovered and processed for histology or
cell culture. For drug sensitivity assay experiments,
tumors were digested in collagenase II, and the recovered
cells were cultured in vitro. These cells were used for cell
viability assays within 2–3 passages as described earlier.

RESULTS AND DISCUSSION

The overall approach was broadly divided into four parts
(Figure 1). In the first part of this study transcriptome and
drug sensitivity data from the NCI60 panel were used to
build drug-specific MSG signatures. This led to the iden-
tification of differentially expressed MSGs in response to
drugs. In the second part, stable induction of a candidate
MSG was done in drug resistant cancer cells. Changes in
transcriptome brought about by induction of MSG were
compared with the drug resistance signature built from the
NCI-60 panel. In the third part, we experimentally tested
response of commonly used drugs in cancer therapeutics
toward MSG-induced resistant cancer cells. Finally, in the
fourth part we investigated the underlying molecular
process of MSG-mediated reversal of drug response in
cancer cells.

Metastasis suppressor factors are repressed in drug
resistant cancer cell types

We noted many cell types despite distinct tissue origin
have similar resistance/sensitivity profiles against a
number of drug molecules. We first designated a cell line
resistance or sensitive based on its 50% growth inhibition
(GI50) for a drug, and then clustered 60 different cell types
according to their reported GI50 for 1400 drugs (available
from http://dtp.nci.nih.gov; Figure 2A, upper panel). To
check the expression status of MSGs in sensitive/resistant
cell types we selected 36 established MSGs (16,23,24).

Several MSGs were repressed in resistant cell types
relative to sensitive ones (Figure 2A, lower panel). We
next checked whether expressions of MSGs were relatively
robust across multiple cell types that were either resistant
or sensitive to a particular drug. Cell types were con-
sidered sensitive or resistant if its GI50 was at least
6-folds below or above, respectively, the average GI50
for the drug across all cell lines tested (Figure 2B).
Based on this, out of 1400 we found 1115 drug molecules
with at least six cell lines that were resistant and also, at
least 6 other cells lines that were sensitive. Next we asked
whether MSG expression was significantly different
between the resistant and sensitive groups for each of
the 1115 drugs. Interestingly, in all the cases we found
expression of at least one MSG was significantly different
between the resistant and sensitive cell groups (P< 0.05);
representative cases with higher expression of MSG in
sensitive relative to resistant cell types is shown in
Figure 2C (data with all MSGs and 1115 molecules is
given as Supplementary Figure S1).

We further asked how differential expression of all the
36 MSGs as a group correlated in the sensitive versus re-
sistant cell lines. This was done using 10 randomly selected
sets of 36 genes; each set was checked across resistant
versus sensitive cell lines for all the 1115 cell–drug com-
binations, and the average number of genes found differ-
entially expressed was taken as ‘random expectation’.
Significance of genes differentially expressed in the set of
36 MSGs with respect to ‘random expectation’ was found
using the chi-square test. In 666 out of the 1115 (59%)
cases we found a statistically significant difference in the
number differentially expressed MSGs between the sensi-
tive and resistant cell lines (P< 0.05).

To further test the relationship between expression of
MSG and drug response we ranked 60 cells types accord-
ing to expression of particular MSGs. Top 15 (high MSG
expression) along with bottom 15 cell types (low MSG
expression) were selected and response of these cells
toward 1115 drugs was checked. Strikingly, in most
cases we noted an overall reversal of the chemoresistance
in cancer cells with relatively increased expression of the
MSG; in order to focus on MSGs that could negatively
impact resistance toward one or more drugs we show rep-
resentative examples for several MSGs NME2, PTPN11
and CRMP1 (Figure 2D) CTGF, GSN and CBX5
(Supplementary Figure S2).

Transcriptome signature derived from cancer cells induced
with metastasis suppressor factors suggest altered response
to drug resistance

Next we sought to test whether induction of selected
MSGs can regulate drug response in cancer cells. Our
approach involved: (i) derivation of expression profiles
following induction of a particular MSG; (ii) construction
of drug-specific expression signatures for that particular
MSG derived from analysis of multiple resistant cell lines
against sensitive cell lines; and finally (iii) comparison of
(i) versus (ii) to test how change in MSG levels could affect
drug response.
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For proof-of-concept studies we selected the metastasis
suppressor NME2 as the candidate MSG based on
multiple considerations: NME2 levels were negatively
correlated with resistance in multiple cell/drug combin-
ations (Figure 2D) and therefore presented a potential
opportunity to increase sensitivity of cells on its induction,
and we found several other studies demonstrating NME2
levels to be depleted in breast, oral and ovarian carcinoma
(25–28). Additionally, we analysed expression of the 36
MSGs across 2468 clinical transcriptome profiles repre-
senting four cancer types (lungs, breast, ovarian and
colon) and noted that only NME2 was down-regulated
consistently in advanced stages in all the cases across
four cancer types (Supplementary Figure S3A and B).
We selected camptothecin and doxorubicin as drugs for
case studies as these have been widely studied and used
against multiple cancers (29).

We checked NME2 levels in cell types grouped as re-
sistant or sensitive with respect to the drug camptothecin.
We observed lower level of NME2 in resistant cell types
compared with sensitive cell types suggesting levels of
MSG could be crucial in determining response of drugs
in cancer cells (Figure 3A). From the list of resistant cell
types we selected the widely used metastatic breast cancer
line MDA-MB-231 which results in aggressive drug resist-
ant tumors (30). To test the effect of NME2 on the drug
response, we performed gene expression profiling of
MDA-MB-231 cells before and after NME2-induction;

1522 genes were up and 331 genes down-regulated
(P< 0.01; FDR< 10%)—this differential expression
profile was designated as the ‘NME2-induction’ signature
(Figure 3A). Based on our prediction we conjectured that
NME2-induction would result in enhanced response
toward a drug, and therefore expected the ‘NME2-induc-
tion’ signature obtained in MDA-MB-231 to correlate
negatively with the gene expression signature found in
cells resistant to camptothecin. To test this we build an
expression signature that would define resistant versus
sensitive ‘states’ from a group of cell types.

Drug-specific signatures of resistance constructed from
multiple cell types and tested for re-engineering drug
response

Drug-specific gene expression signatures were built based
on: (i) average expression of constituent genes of the sig-
nature was significantly different in sensitive cell types
relative to resistant ones (at least 6 cell types were con-
sidered in each category sensitive/resistant); and (b) in
addition, expression of each gene was required to signifi-
cantly correlate with GI50 values. In other words, for a
given drug and say, the resistant cell types, expression of
the gene would increase or decrease in a consistent fashion
with respect to the increase/decrease (or vice versa) in
GI50 (Supplementary Figure S4). Using 10 different cell
types that are sensitive and 14 cell types that are resistant

Figure 1. Scheme of overall approach showing coupled analysis of transcriptome profiles obtained from resistant/sensitive cells and following
induction of MSG in cancer cells.

Nucleic Acids Research, 2014, Vol. 42, No. 2 767

Non Metastatic 2 (
)
z
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt946/-/DC1
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt946/-/DC1
to
 -- 
s
a
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt946/-/DC1


Figure 2. MSGs are associated with chemosensitivity. (A) Clustering of drug/cell line combination based on GI50 values (upper panel) and MSG
expression in different cell lines (lower panel)—MSG expression segregates with resistance/sensitivity for many drug–cell line pairs. Absence of GI50
value in upper panel heatmap represented by white color. (B) Representation of the groups containing resistant and sensitive cell lines based on GI50
values. A cell line with at least 6-fold change above/below average GI50 was considered as resistant/sensitive, respectively. (C) Expression of MSG
was distinct between resistant and sensitive groups of cells for many drug molecules (see Supplementary Figure S1 for all molecules). (D) Cell lines
with high or low expression of MSG (NME2, PTPN11 or CRMP1) show distinct response to most drug molecules.
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to camptothecin we therefore built a camptothecin-specific
resistance-minus-sensitive expression signature and called
this the response engineering module, resistance-minus-
sensitive (REMr–s) (Figure 3A). This was done so that
we could define a minimal signature for each drug on a
case-to-case basis and then identify factors that signifi-
cantly perturb the REM. The ‘NME2-induction’ signature
was found to negatively correlate with the camptothecin

REMr–s (r=–0.85, P< 0.001, see Methods section for
details of the analysis).
In a similar fashion, we next analysed the ‘NME2-induc-

tion’ signature against the doxorubicin REM and found
this to negatively correlate with the resistance-minus-sensi-
tive signature (r=–0.85, P< 0.001, Figure 3B).
Resistant and sensitive group of cells were constructed

based on arbitrary GI50 cut-off of 6-fold change. To test

Figure 3. Chemoresistance and ‘MSG-induction’ are anti-correlated in many cases. (A–C) Comparative analysis of the ‘MSG-induction’ signature
versus drug-specific gene signatures (REM)-NME2 expression in cell lines grouped as resistant or sensitive is shown in left panels. Expression
profiling of MDA-MB-231 cells before or after NME2-induction and the resultant change in transcriptome of MDA-MB-231 cells is compared with
the sensitive/resistant gene signature derived for camptothecin (A), doxorubicin (B) and caerulomycin (C) in the right panels. Correlation of the
resistant-minus-sensitive gene signature derived from multiple cell lines—response engineering module (REMr–s)—with the ‘NME2-induction’ signa-
ture in MDA-MB-231cells (center panels) is shown.
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whether the effect extends beyond this threshold we
studied response of NME2-induced MDA-MB-231 cells
toward the anticancer molecule caerulomycin
(MDA-MB-231 cells were not found in the list of resist-
ance cells according to our GI50 criterion, Figure 3C). We
observed negative correlation between the caerulomycin
REMr–s and ‘NME2-induction’ signature (r=–0.89,
P< 0.001, Figure 3C), suggesting that this model works
beyond the applied threshold effectively. Additionally, we
compared REMr–s for three other drugs with the ‘NME2-
induction’ signature obtained from MDA-MB-231 cells
and found significant negative correlations
(Supplementary Figure S5). Together these analyses
suggest relatively robust reversal in drug response of
MDA-MB-231 cells on induction of NME2 for three
known anticancer molecules.

Engineered reversal of drug resistance in cancer cells

Next we tested the effect of NME2-induction on
chemoresistance (Figure 4, upper panel). Stable
MDA-MB-231 lines generated after induction of NME2
were treated with caerulomycin, camptothecin or
topotecan, a derivative of camptothecin. For multiple
camptothecin and topotecan concentrations we found
that relative viability of cancer cells decreased by more
than 60% in NME2-induced cells relative to cells with
control vector, demonstrating increased sensitivity
(Figure 4). Similarly treatment with caerulomycin
resulted in 50% decrease in cell viability in NME2-
induced MDA-MB-231 cells compared with vector
control (Figure 4). To further test this effect in vivo, we
developed tumors from NME2-induced cells in immune
compromised mice. Cells extracted from the developed
tumors after 8 weeks were again subjected to the
chemosensitivity test. Consistent with the in vitro
findings, cells extracted from tumors also showed
increased chemosensitivity relative to control cells
indicating that the NME2-induced effects are sustained
within the tumor microenvironment (Figure 4).
Similarly, we induced NME2 expression in MDA-MB-

468 breast cancer cells, which are also known to be drug
resistant though not to the extent noted from MDA-MB-
231 cells (31). Stable lines with induced expression of
NME2 were treated with camptothecin or topotecan as
done earlier. Once again we found that viability of
cancer cells decreased by 20–25% in NME2-induced
cells relative to control cells showing increased response
toward the drug molecule (Supplementary Figure S6). The
effects were modest in MDA-MB-468 cells compared with
MDA-MB-231 cells possibly because the viability/
resistance of the MDA-MB-468 cell type is known to be
inherently less in presence of many chemotherapeutic
drugs (32).

Mesenchymal to epithelial transformation as a molecular
process underlying reversal of resistance in cancer cells

Next, we checked whether the process of EMT was
associated with NME2-mediated decrease in
chemoresistance of cancer cells. As mentioned earlier,
EMT has been linked to not only tumorigenesis but also

increased drug resistance in cancer (1,12). We conjectured
that increased sensitivity of cancer cells could be due to the
opposing transformation, i.e., mesenchymal to epithelial
transition (MET) on induction of NME2. Quantitative
RT-PCR of NME2-induced MDA-MB-231 cells showed
increase in several epithelial markers and decrease in mes-
enchymal markers suggesting induction of MET in
MDA-MB-231 cells which are mesenchymal breast
cancer cells with aggressive invasive potential (Figure 5).
Induction of MET was also expected to lead to decreased
invasiveness of the MDA-MB-231 cells. Both, decreased
invasiveness (tested using modified Boyden chamber
assays) and trans-endothelial migration, hallmarks of ag-
gressive cancer cells was diminished on NME2-induction
relative to un-induced cells (Supplementary Figure S7A
and B). MDA-MB-468 cells also showed decreased
invasiveness on NME2-induction relative to control cells
(Supplementary Figure S7C).

To further test this approach we sought to test other
MSGs. We found expression profiles following CLDN1
and RECK induction in CL1-5 and HT-1080, respectively
(33). CLDN1 and RECK-specific ‘induction’ signatures
were compared with the caerulomycin and camptothecin
REM. In both cases we found negative correlation
between the respective ‘induction’ signatures and
camptothecin REMr–s (P-value 0.05; Supplementary
Figure S8, upper panel). Following this we checked the
genes involved in the induction signatures, several genes
represented multiple pathways that modulate EMT signal-
ing (Supplementary Figure S8, lower panel). Though
further work is required, together these suggest that
MET in cells with increased MSGs RECK and CLDN1
induce drug sensitivity.

In addition, we asked whether our approach was con-
sistent with previously reported drug resistance studies in
DrugBank (34) and Connectivity Map (7). For analysing
DrugBank data on drugs and respective target/transporter
we selected three drugs mitoxantrone, doxorubicin and
camptothecin. Cells resistant or sensitive to these drugs
were checked to first test whether EMT was activated in
resistant cells using the well-established and robust Gene
Set Enrichment Analysis (GSEA (35)). This confirmed
that for all the three test cases genes involved in EMT
were positively correlated with resistant cells (see
Supplementary Figure S9). These findings are also in
line with literature reports on expression of transporters
(ABCG2 in case of mitoxantrone, doxorubicin and
camptothecin) during EMT in drug resistant cancer cells
(36,37). Next we analysed expression data from
Connectivity Map for MCF7 cells and drugs doxorubicin,
camptothecin and vinblastine. On performing the GSEA
analysis for EMT genes we found genes involved in EMT
were significantly enriched among differential expressed
genes in resistant cells (Supplementary Figure S10).

We undertook the REM approach to test the hypothesis
that factor(s) that modulate transcriptomes associated
with drug response may also alter inherent cellular resist-
ance when extraneously induced/repressed. This approach
was tested over a group of cell lines implying its robust-
ness, however with the added risk that too heterogeneous
a cell group may result in non-specificity. Several features
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of the model suggest its ‘tunability’ across a range of
gene/cell/drug combinations underscoring utility of the
REM analysis in a variety of settings. For example,
first, drug-specific REMs can be constructed for any
chemosensitivity indicator of choice and stringency

(e.g., by increasing/decreasing the GI50 cut-off). Once
developed, a drug-REM can be used to screen against
‘induction’ or ‘repression signatures’ of any gene of
interest. In addition, and perhaps more interestingly, ‘in-
duction signatures’ developed for small molecule ligands
can be used to predict molecules that augment
chemosensitivity when administered in combination with
a primary chemotherapeutic agent.
In this study we focused on identifying candidate

MSGs, if any, which would impact drug resistance in
cancer cells. The primary reason for this approach was
the understanding that even one MSG could impact re-
sistance/sensitivity of cancer cells. Our observation on
considering all the 36 MSGs as a group—where significant
correlation with resistance cells were found only in a
subset of cases (59% of the drug–cell combinations
studied by us) appears to be in line with the understand-
ing. Furthermore, it also suggests that function of MSGs
may be context specific (see below).
In this case study we focused on reversal of resistance.

Based on the analysis showing REMr–s negatively correl-
ates with the ‘induction signature’ of NME2 we induced a
selected MSG. It must be noted that all MSGs may not
produce similar results. In addition, MSGs depending on
the cell type or physiological context may function dis-
tinctly. For example, NME2 is up-regulated in resistant

Figure 4. MSG-induction leads to reversal of drug resistance. Viability of cells in presence of anticancer molecules decreased after induction of
NME2 in MDA-MB-231 cells, but not in un-induced control cells in both, under culture conditions and also when tumors were developed in vivo in
mice (n = 5).

Figure 5. NME2 promotes MET. NME2-induced MDA-MB-231 cells
showed up-regulation of epithelial and down-regulation of mesenchy-
mal markers in quantitative real-time mRNA analysis.
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cells in many cell–drug combinations (Supplementary
Figure S1). The correlation, positive or negative,
between REM versus ‘induction signature’ would deter-
mine how repression or induction of the MSG would
influence chemosensitivity. For many MSG/cell/drug
combinations repression co-segregated with sensitivity
(Figure 2A), in such cases it is likely that repression,
instead of induction, would lead to induced
chemosensitivity for the drug molecule in question. The
seemingly opposite activities of MSG with respect to
chemosensitivity may be due to the contextual dependence
on a combination of factors, including cellular physiology,
mode of drug action and biological pathways that deter-
mine drug sensitivity. Keeping these in mind, in order to
select a candidate for this case study we adopted an
approach that involved analysis of patient samples
(Supplementary Figure S3).
It is likely that other MSGs also have similar functions.

To prioritize selection of any MSG for experimental
testing, expression profiles following induction or repres-
sion of the MSG can be compared with drug-specific
REMr–s. The resultant correlation value is expected to
be a reasonable indicator of false discovery. Further
support for the selection can be gained from analysis of
genes involved in the induction signature; for example, we
found several genes represented multiple pathways that
modulate EMT signaling. Together these would increase
the potential of finding other MSGs that induce
chemosensitivity in a cell/drug-specific manner.
It is possible that all MSGs do not influence metastasis

potential in similar ways (38). Particularly since metastasis
involves a number of stages/processes, which may in prin-
ciple be antagonistic—for example, EMT at the inception
of the metastatic process may need to be complemented
with MET at the distant site for effective colonization of
cells following extravasation into the parenchyma. Thus,
regardless of the underlying biological pathways, REM
being derived from gene expression profiles that portray
the end-point of a combination of physiological events,
gives a robust prediction method for identifying suitable
factors that can be tested for reversal of chemoresistance.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online,
including [39–49].
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