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Abstract

Thrombotic microangiopathy (TMA), characterized by organ injury occurring consequent to severe endothelial damage, can
manifest in a diverse range of diseases. In complement-mediated atypical haemolytic uraemic syndrome (aHUS) a primary
defect in complement, such as a mutation or autoantibody leading to over activation of the alternative pathway,
predisposes to the development of disease, usually following exposure to an environmental trigger. The elucidation of the
pathogenesis of aHUS resulted in the successful introduction of the complement inhibitor eculizumab into clinical practice.
In other TMAs, although complement activation may be seen, its role in the pathogenesis remains to be confirmed by an
interventional trial. Although many case reports in TMAs other than complement-mediated aHUS hint at efficacy,
publication bias, concurrent therapies and in some cases the self-limiting nature of disease make broader interpretation
difficult. In this article, we will review the evidence for the role of complement inhibition in complement-mediated aHUS
and other TMAs.
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Introduction

Thrombotic microangiopathy (TMA) is characterized by throm-
bocytopenia, microangiopathic haemolytic anaemia and organ
injury [1], and can manifest in a diverse range of diseases. There
is overlap in the pathogenic mechanisms involved in the differ-
ent TMAs, and as a consequence classification is challenging.
The introduction into clinical practice of complement-inhibiting
therapy has stimulated particular interest into the role that
complement plays. The prognosis of individuals with comple-
ment-mediated atypical haemolytic uraemic syndrome (aHUS),
a term that we apply here specifically to individuals with TMA
caused by a primary defect in the complement system that

results in dysregulation, has been transformed by the terminal
complement inhibitor eculizumab. This paradigm shift has
understandably led to the question: who else with a TMA might
benefit from this treatment? In this review, we will consider the
contribution of complement dysregulation (resulting from a pri-
mary defect) and complement activation (as a secondary effect)
to the pathogenesis of the different TMAs, and evaluate the
strength of the evidence supporting clinical benefit of comple-
ment-inhibiting therapy. There has never been a randomized
controlled trial (RCT) that demonstrates efficacy of
complement-inhibiting therapy in any TMA. Complement has
important physiological roles, for example in the immune
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defence against encapsulated organisms, so complement inhib-
ition does not come without potential for significant harm;
appropriate selection of individuals who are likely to benefit
from therapy is therefore paramount.

Complement

The complement system comprises >30 plasma and cell
surface-bound proteins that operate in a regulated network of
signalling and amplification [2]. It functions to protect the host
against infection, by stimulating the inflammatory response
and opsonizing and lysing pathogens as a fundamental compo-
nent of the innate immune system, as well as modulating the
adaptive immune system; it also facilitates the disposal of dam-
aged host cells and potentially injurious immune complexes [3].
Complement can be initiated by three pathways (Figure 1): in
the classical pathway, pattern recognition molecules such as
immunoglobulins are recognized by C1q, and in the lectin path-
way mannose-binding lectin (MBL) recognizes pathogen-associ-
ated carbohydrates; these pathways generate the C3 convertase
C4b2b. The alternative pathway can be initiated by pattern rec-
ognition molecules, but in addition is constitutively active, with
spontaneous hydrolysis (tickover) of C3 leading to it interacting
with factor B (FB) to generate the C3 convertase C3H2OBb, and
the pathways converge in the amplification loop, in which C3 is
cleaved and activated by C3bBb. This leads to C5 cleavage, and
results in the production of anaphylatoxins and activation of
the terminal pathway, which initiates the assembly of the cell-
lysing membrane attack complex (MAC). The amplification loop
allows for rapid response to pathogens, but leaves the host vul-
nerable to bystander damage if the tick over component is
unchecked. The system is therefore tightly regulated by plasma
and cell surface proteins; for the alternative pathway the most

important are factor H (FH), factor I (FI) and membrane cofactor
protein (MCP, CD46). Rarely, complement dysregulation due to a
defect in a component or regulator can directly cause disease,
and commonly, in many diseases, tissue damage activates com-
plement, which intensifies the inflammation [4]. Consequently,
there has been much interest and investment in developing
complement-targeted therapy [5].

Complement-inhibiting therapy

The complexity of the complement system means that there
are multiple potential therapeutic targets: drugs that
target the activation pathways, the anaphylatoxins, the amplifi-
cation loop and the terminal pathway have been developed
and have entered preclinical and clinical trials [5]. Alexion
Pharmaceuticals developed in the 1990s a recombinant human-
ized monoclonal antibody that functionally blocked C5 [6], and
this agent, named eculizumab (Soliris), entered early clinical tri-
als for a range of inflammatory conditions [5, 7]. Trials of eculizu-
mab in patients with paroxysmal nocturnal haemoglobinuria
(PNH), a disease characterized by complement-mediated intra-
vascular haemolysis and caused by a somatic mutation that
results in disruption of erythrocyte complement regulation,
yielded the most impressive efficacy [8, 9] and eculizumab was
approved for use in PNH in 2007 by the US Food and Drug
Administration (FDA), and the European Medicines Agency (EMA)
[10]. Because genetic and functional analysis had also identified
aHUS as a disease caused by complement dysregulation, the PNH
breakthrough encouraged the use of eculizumab in patients with
complement-mediated aHUS; promising case reports [11, 12]
were followed by successful clinical trials [13] and it was
approved by the FDA and EMA for use in complement-mediated
aHUS in 2011 [10].

Fig. 1. Complement activation, regulation and therapeutic intervention. The alternative pathway of complement is a positive amplification loop. C3b interacts with factor

B, which is then cleaved by factor D to form the C3 convertase C3bBb. Unchecked, this leads to activation of the terminal complement pathway with generation of the effec-

tor molecules, the anaphylatoxin C5a and the MAC (C5b-9). To protect host cells from bystander damage the alternative pathway is down-regulated by complement regula-

tors including FH, FI and CD46. In complement-mediated aHUS, activating mutations in C3 and CFB and loss-of-function mutations in CFH, CFI and CD46, in addition to

autoantibodies to FH and FI, result in over-activation of the alternative pathway with resultant endothelial damage and thrombus formation. Eculizumab is a humanized

monoclonal antibody that binds to C5 and prevents activation of the terminal pathway, thereby preventing the generation of the effector molecules that cause TMA.
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Potential complications of complement-inhibiting drugs

The terminal complement pathway is fundamental to the immune
response against encapsulated organisms, so the major concern
with terminal complement inhibition is infection, and individuals
deficient in terminal complement components are particularly
susceptible to Neisseria infections [10, 14]. Disseminated gonococcal
infection has been reported in patients treated with eculizumab,
and the risk of meningococcal infection is increased by up to 10 000
times by treatment with eculizumab [14]. For this reason meningo-
coccal vaccination and antibiotic prophylaxis is recommended in
patients receiving eculizumab [15], though meningococcal infec-
tion can still occur despite these measures [16, 17].

There may be other infectious associations: respiratory tract
infections are reported to be more common in patients on eculi-
zumab compared with placebo [14], and a case of progressive
multifocal leucoencephalopathy, an opportunistic infection of
the CNS caused by reactivation of the polyomavirus JC, was
recently reported in a patient treated with eculizumab, though
they had also received multiple immunosuppressants [18].

In addition to infection complications, other concerns may
emerge as use of complement-inhibiting therapy in clinical prac-
tice increases. Eculizumab-associated hepatotoxicity has been
reported in children [19], and glomerular deposition of eculizu-
mab in individuals with C3 glomerulopathy (C3G) [20], though
not complement-mediated aHUS [21], has been reported
although the long-term clinical consequences are as yet unclear.

TMAs

TMAs are the consequences of severe endothelial injury with
pathological features representing the tissue response to injury
[15]. TMAs are characterized by thrombocytopenia (due to aggrega-
tion and consumption of platelets), microangiopathic haemolytic
anaemia (haemolysis consequent to mechanical injury to erythro-
cytes in partially occluded vessels) and organ injury (ischaemia) [1].
They can manifest in a diverse range of diseases and result in a
range of clinical presentations, though they commonly comprise
acute kidney injury (AKI) due to the apparent propensity of the glo-
merular circulation to endothelial damage and occlusion.

The classification and nomenclature of the TMAs can be
challenging. Thrombotic thrombocytopenic purpura (TTP) refers
to individuals with ADAMTS13 activity <5%, and Shiga toxin-
producing Escherichia coli-associated HUS is defined as STEC-
HUS. The term atypical haemolytic uraemic syndrome (aHUS)
has broadly been used to describe any TMA that was not TTP or
STEC-HUS, thus describing a heterogeneous mixture of condi-
tions. There is a move towards using the term ‘complement-
mediated aHUS’ to define those individuals with a complement
abnormality as the primary underlying pathology, to distin-
guish them from individuals with TMA consequent to an under-
lying disorder; this is important because it may help guide
therapeutic strategies [22, 23]. However, this distinction is not
unequivocal: it is well recognized that complement gene muta-
tions exhibit variable penetrance, and individuals with a genetic
predisposition usually require an environmental trigger for
TMA to manifest [3]. Conversely, in cases of TMA where no
genetic or acquired complement abnormality is found, comple-
ment can be seen to be activated and may play a role in patho-
genesis (Figure 2). TMA diagnosis, classification and treatment
decisions are difficult; there may be no definitive diagnostic
test, and no refined methods of monitoring disease activity or
therapeutic response beyond crude tests of haemolysis parame-
ters and organ recovery [24].

Evidence for the role of complement in the
TMAs
Complement-mediated aHUS

The pathogenesis of complement-mediated aHUS is archetypal
for diseases occurring due to over activation of the complement
system. Ever since 1998, when genetic studies first produced
molecular evidence that CFH mutations are associated with
complement-mediated aHUS [25], there have been major
advances in the understanding of the pathogenesis. Genetic
studies and functional analysis in individuals, families and
large cohorts [26, 27] have identified pathogenic activating
mutations in the genes encoding the alternative pathway com-
ponents C3 and CFB, and loss of function mutations in the genes
encoding the alternative pathway regulators CFH, CFI and CD46
[3, 28–30]. A mutation is identified in �60% of individuals [23].
Autoantibodies that bind to FH [31, 32] and FI [33] resulting in
complement dysregulation [34] have also been identified in
5–56% of individuals with complement-mediated aHUS [35].
Even in those individuals with a complement mutation or auto-
antibody a trigger, for example infection or pregnancy, is fre-
quently required for disease to manifest [3].

The evidence that this disease is mediated by a primary
complement defect is strong, so there is mechanistic rationale
for complement-inhibiting therapy, though there has never
been an RCT. The landmark trials of eculizumab for comple-
ment-mediated aHUS published in 2013 [13] were single-arm
studies; however, given the high morbidity and mortality in
individuals with complement abnormalities [3- to 5-year sur-
vival without established renal failure (ERF) of 52–64% in chil-
dren and 33–36% in adults, even with plasma exchange (PEX)
[26, 27]], it is accepted that comparison with historical controls
is justified. The positive results (Table 1) paved the way for the
first-line use of eculizumab in clinical practice, and its efficacy
has been validated in subsequent prospective studies [37–39]
and cohort analysis [42]. The prognosis of complement-medi-
ated aHUS has been transformed: full recovery of renal function
is now expected, other than in those who present late in the
course of disease. Kidney Disease: Improving Global Outcomes
(KDIGO) recommends that all patients with a clinical diagnosis
of complement-mediated aHUS are eligible for treatment with a
complement inhibitor [15]. International consensus recommen-
dations are that in children with a clinical diagnosis of comple-
ment-mediated aHUS, eculizumab (or PEX if eculizumab is not
available) should be started within 24–48 h (results of comple-
ment genetic tests are not required for this decision) [290].

More recently, with increased use in clinical practice, it
has become clear that not all patients respond to eculizumab
[94, 263]; in a non-randomized, uncontrolled trial of eculizumab
in children, improvement in renal function was seen in all
patients with a complement mutation or autoantibody, but not
in 27% of those without an identified complement abnormality
[39, 291]. The initial trials in adults included a higher proportion
of patients with mutations than is seen in clinical practice.
Further research is therefore required to inform a stratified
approach to treatment [292] and it may be that the most clini-
cally relevant classification would differentiate eculizumab
responsive and eculizumab-resistant aHUS.

Prophylaxis and recurrence of complement-mediated
aHUS after kidney transplantation

The outcomes of kidney transplantation in patients with comple-
ment-mediated aHUS were historically very poor: a retrospective
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analysis reported recurrence of 68%, and 5-year death-censored
graft survival of 51% [63]; even if patients with recurrence were
treated with PEX, 59% of grafts failed [65]. The genetic background
predicts the risk of recurrence and graft failure: rates of >70% have
been reported in individuals with CFH mutations, but the risk is
very low if the mutation is in CD46 [64, 293]. Some patients were
therefore considered ‘untransplantable’. One option was combined
liver and kidney transplantation, but experience is very limited
internationally and short-term risk is significant: for 20 published
cases, the success rate was 80% but the mortality rate was 15% [55].
There are no trials that specifically examine the use of eculizumab
for prophylaxis or for treatment of recurrence in kidney transplan-
tation, although the single-arm eculizumab trials included small
numbers of adults [13, 37, 38] and children [39] with prior kidney
transplant, and reported efficacy. Retrospective cohort analyses
have reported successful use of eculizumab to facilitate transplanta-
tion [42–44] and to treat recurrence [43], and there are multiple case
reports (Table 1). Again, despite the lack of RCT evidence, the
favourable results with eculizumab compared with historical out-
comes are felt to justify that prophylactic eculizumab is now the

gold standard approach to kidney transplantation in those with a
high-risk genetic background.

De novo TMA after transplantation

In kidney transplant recipients, the incidence of de novo TMA
has been reported as 0.8% in the United States Renal Data
System (USRDS) [294], but single-centre studies report inciden-
ces of up to 14% [295]. Multiple associations and risk factors
have been observed, including viral infections such as cytome-
galovirus (CMV), immunosuppressant drugs such as calcineurin
inhibitors (CNIs) and sirolimus [295], and antibody-mediated
rejection (AMR) [72]. These factors, together with ischaemia-
reperfusion injury, create an ‘endothelial damaging milieu’ that
transplant recipients are exposed to [296], and it is not clear to
what extent complement is involved. Underlying complement
mutations may play a role especially where the initial cause of
end-stage renal failure was unclear. In one cohort analysis,
mutations were identified in 29% of patients with de novo TMA
[66]. Evidence regarding management is also limited; good
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outcomes with CNI withdrawal, with and without PEX, have
been described in case reports and series [72, 74, 75]. A small
number of case reports describe good outcomes with eculizu-
mab for de novo TMA after kidney [67, 68] and simultaneous pan-
creas and kidney (SPK) [69–71] transplantation, but in all cases
this was in combination with other strategies such as immuno-
suppression alteration and PEX. De novo TMA has also been
reported to occur in 4% of liver transplant recipients and 2.3% of
lung transplant recipients; the cause again is likely to be multi-
factorial [297].

For those carrying a complement mutation where the initial
diagnosis may not have been made there is a clear rationale for
eculizumab. In those without underlying complement abnor-
malities, the role of eculizumab is less clear and in many cases
removal of CNIs or treatment of viral infections is sufficient to
stop the TMA. Despite this, evidence of complement activation
can be seen in these scenarios and it is unclear whether eculizu-
mab would have an additional benefit to removal of the offend-
ing stimuli.

Antibody mediated rejection

TMA can manifest in the context of AMR; it was observed in
13.6% of C4d-positive biopsies in one large retrospective study
[298]. There is no evidence for the role of complement in AMR
triggering a TMA. The deposition of C4d in peritubular capilla-
ries suggests classical complement pathway activation [76],
though this feature is not requisite for the diagnosis of AMR
according to the 2013 Banff criteria [299]. Therapeutic strategies
for AMR (not specific to AMR with TMA) include PEX, intrave-
nous immunoglobulin (IVIG) and rituximab, but there is insuffi-
cient evidence to determine the optimal treatment [92]. A trial
of eculizumab for treatment of AMR was negative (unpublished;
NCT01895127) and a non-randomized trial of eculizumab in
sensitized recipients found that acute episodes were reduced
but not chronic AMR [81]. Case reports of eculizumab for AMR
with [77, 79, 80, 278] and without [84–91] TMA describe both
good and poor outcomes. In summary, further research is
required to define the role of eculizumab in TMA associated
with AMR.

DGKE-mediated renal disease

Recessive mutations in the DGKE gene causing TMA were first
reported in 2013 [94]. Genetic pleiotropism is also seen in DGKE-
mediated renal disease with a separate report describing a
membranoproliferative glomerulonephritis-like disease [300].
In vitro experiments suggest that the development of TMA due
to loss of DGKE expression or activity is independent of comple-
ment activation [93]. Data regarding outcomes and treatment
response are limited. Good outcomes have been reported with
supportive treatment and PEX or plasma infusion [96, 97], but in
the largest published cohort all patients developed progressive
chronic kidney disease (CKD) or ERF regardless of treatment,
and the single patient who received eculizumab relapsed on
treatment [94]. One child with a DGKE mutation in the paediat-
ric eculizumab trial did respond [39, 291] although given the
relapsing/remitting nature of DGKE-mediated disease, attribut-
ing efficacy is difficult. In a separate case report of eculizumab
response, the patient had a concomitant C3 mutation [95]. More
data are required before the role of complement in the patho-
genesis of DGKE-mediated aHUS and thus eculizumab treat-
ment can be defined.

Methylmalonic aciduria and homocystinuria, cobalamin
C (cblC) type

Homozygous or compound heterozygous mutations in the
MMACHC gene result in a disorder of cobalamin (cbl; vitamin
B12) metabolism. The severity of phenotype may vary but
includes developmental, ophthalmological, neurological, car-
diac and renal manifestations. TMA is associated with MMACHC
mutations although the pathophysiological mechanisms that
result in endothelial damage are unclear [129]. It can present in
childhood or adulthood, and prognosis is very poor if untreated
or if there is cardiopulmonary involvement; however, metabolic
therapy with hydroxycobalamin is very effective [129]. The role
of complement is not clear; there are isolated reports of con-
comitant complement gene mutations and polymorphisms that
may modify the disease [129–131], but the small number of pub-
lished reports of eculizumab use describe non-response [129,
132]. As such, treatment with metabolic therapy remains the
gold standard.

Thrombotic thrombocytopenic purpura

TTP is a TMA mediated by deficiency of ADAMTS13, a von-
Willebrand factor (VWF)-cleaving protease, which can be
hereditary (ADAMTS13 mutations) or acquired (anti-ADAMTS13
autoantibody), and is characterized by unusually large VWF
multimers and consequent occlusive microvascular platelet
aggregation [22]. There is some evidence of complement
involvement in a mouse model [98] and in vitro [99], and obser-
vational clinical data suggesting that the alternative comple-
ment pathway is activated [98, 100–103] (Table 1). One study
analysed the complement genetics in patients with TTP and
found no mutations [104]. The advent of PEX in the treatment of
TTP decreased mortality to <10% from essentially universal
fatality and numerous RCTs demonstrate its efficacy [109], and
rituximab rituximab reduces the relapse rate in acquired TTP
[110–112]. PEX is unquestionably the first-line treatment in TTP
and should be instituted urgently once the diagnosis is sus-
pected. There is speculation about an adjuvant role for comple-
ment inhibiting therapy in severe TTP [301], but there is only a
single case report that describes a response to eculizumab in a
patient with TTP and no complement mutation or FH autoanti-
body [108], so currently there is no evidence to support this.

Pregnancy-associated TMAs

Pregnancy-associated complement-mediated aHUS
Pregnancy appears to be the trigger for complement-mediated
aHUS to manifest in �20% of women, and this usually presents
in the post-partum period [302]. In a pregnancy-associated
aHUS cohort, complement mutations were identified in 86%,
and though a high proportion were treated with PEX, 76% devel-
oped ERF [303]. Pregnancy-associated complement-mediated
aHUS was not included in the initial trial of eculizumab,
although good outcomes have been published in case reports
[116, 117]. Given that pregnancy-associated aHUS appears to
have a high incidence of complement mutations there is a good
rationale for complement inhibition and, based on this, the
authors’ opinion is that pregnancy-associated complement-
mediated aHUS should be treated with eculizumab.

Pregnancy-associated TTP
It has been reported that 10–36% of women with TTP present
during pregnancy [304], particularly during the second or third
trimesters [303]; in normal pregnancy, there is increased release

612 | V. Brocklebank and D. Kavanagh



of VWF, which consumes ADAMTS13, therefore its activity falls,
and in women with a genetic predisposition it can fall low
enough for TTP to manifest [303]. There is no evidence regard-
ing complement and complement therapeutics in pregnancy-
associated TTP.

Syndrome of haemolysis, elevated liver enzymes and low platelets
(HELLP)
The HELLP syndrome is a TMA-like syndrome that occurs in
0.5–0.9% of all pregnancies, and complicates 5–10% of cases of
severe pre-eclampsia [124]. The pathogenesis is poorly under-
stood, though there is some evidence suggesting an association
with increased circulating levels of the syncytiotrophoblast-
derived antiangiogenic factors soluble endoglin and the soluble
form of the vascular endothelial growth factor (VEGF) receptor
(sFlt-1) [305, 306]. Unlike pregnancy-associated complement-
mediated aHUS only a minority (8–10%) of patients with pre-
eclampsia and HELLP syndrome harbour complement genes
variants, mostly of unknown significance or non-pathogenic
[125]. There is some observational data that suggests the alter-
native complement pathway is activated in HELLP [119] and
pre-eclampsia [120, 121], and in vitro, eculizumab added to
HELLP serum resulted in reduced cell killing [118]. Complete bio-
chemical resolution has been observed with expectant manage-
ment, which includes bed rest, sodium-restricted diet,
antihypertensive treatment, anticonvulsant treatment and
non-invasive monitoring, but fetal mortality is high [128]. The
use of eculizumab (in addition to expectant management) to
delay delivery in a patient with HELLP has been reported [128].
However, it is notable that in a cohort of women with PNH tak-
ing eculizumab, 8% still developed pre-eclampsia [126], and in a
small case series of women with complement-mediated aHUS,
both pre-eclampsia and HELLP occurred despite ongoing eculi-
zumab treatment during pregnancy [127]. Although it is possible
that complement does play a role in HELLP pathogenesis,
the current available evidence does not support the use of
complement-inhibiting therapy.

Infection associated

STEC-HUS
In STEC-HUS endothelial damage occurs following ribosomal
inactivation, and inhibition of protein synthesis by Shiga toxin,
which enters the cells after binding to the Gb3 receptor [22, 307].
In addition, Shiga toxin can activate signalling pathways
inducing an inflammatory response in affected cells [308]. The
prognosis is good compared with that of most other TMAs;
long-term outcome data suggest that 70% fully recover, 3%
develop ERF and 9–18% develop CKD [150], and it is considered
to be a self-limiting condition.

There is evidence suggesting that the lectin [134] and alter-
native [133, 135, 138, 139] complement pathways are activated
or dysregulated [137] in in vitro and animal models of STEC-HUS
[309]. In patients with STEC-HUS, increased levels of C5b-9 have
been observed, suggesting that the terminal pathway is acti-
vated [140–142]. However, mutations in complement genes are
only rarely detected in these patients, and in these cases the
clinical picture is unusually severe [21, 140, 143–146].

A small case series published in 2011 first reported full renal
and neurological recovery in three children with severe disease
who were treated with eculizumab [149]. Subsequently, in the
2011 O104:H4 outbreak in Europe, which was characterized by
severe disease in adults as well as children, a significant propor-
tion were treated with eculizumab. The retrospective analyses

did not demonstrate a beneficial role of eculizumab or PEX over
supportive care [147, 148, 153], though direct comparison is diffi-
cult because the patients who were treated with eculizumab
had more severe disease. A further case series of eculizumab
use in STEC-HUS with neurological involvement has been pub-
lished [310], and many unanswered questions remain regarding
any potential role [311]. An RCT of eculizumab for STEC-HUS in
children is ongoing (NCT02205541) and in such a self-limiting
illness only this will define the role of complement inhibition.

Pneumococcal HUS
TMA is reported in association with Streptococcus pneumoniae
infection; a hypothesized mechanism is that neuraminidase
produced by pneumococci cleaves sialic acid residues from gly-
coproteins on erythrocyte, platelet and endothelial cell mem-
branes, exposing the cryptic Thomsen-Friedenreich antigen
(T-antigen) to which IgM in the plasma can then bind, resulting
in cell damage and TMA [158]. Pneumoccocal HUS is therefore
Coombs test positive. The natural history is of poor prognosis,
with high morbidity and mortality [312–315], usually reflecting
the severity of the infection [155]. The role of complement is
unclear although transient low serum C3 levels [156, 157] and
rare complement gene mutations [129] have been reported.
There is also speculation that neuraminidase may induce a
functional FH deficit [155, 316]. A single case report describes a
good outcome in a child treated with eculizumab after poor
response to supportive care [156]. Currently, there is insufficient
evidence to recommend eculizumab treatment in a situation
where there is active infection.

HIV
Prior to the advent of highly active anti-retroviral therapy
(HAART), TMA was not uncommon in people with HIV infection
[317]: incidences of 7% [160], and 35% in those with AKI [161],
have been reported. The pathogenic mechanisms remain unde-
fined, despite investigation in Macaque models of HIV-associ-
ated TMA [318]. With the introduction of HAART the incidence
has fallen to 0.3% [162]. There is a single case report describing
good outcome with eculizumab in an individual who had been
non-compliant with HAART, presumably concurrently with the
reintroduction of anti-retrovirals [159]. Again, treatment of the
underlying infection should remain the mainstay of treatment.

Bone marrow transplant-associated TMA

A multisystem TMA complicates 10–20% of allogenic bone marrow
transplants (BMTs) [175] although individual centres have
reported an incidence as high as �40% [171]. There are multiple
risk factors, including CNIs, graft versus host disease (GvHD), HLA
mismatch, chemotherapy, radiation therapy and infections [319].
In common with solid organ transplantation, it is likely that these
factors contribute to an endothelial-damaging milieu. Prognosis is
very poor, with mortality rates variously reported at 21–75% [168,
169, 181, 183]. There has been much interest in the possible role of
complement. Mouse models suggest that complement is activated
during radiation conditioning [164, 165] and observational data in
humans suggest that complement may be activated [166–168].
Rare functionally significant variants in known aHUS-associated
complement genetic risk factors [171] and factor H autoantibodies
[170] have been reported rarely. There is no evidence that PEX
results in reduced mortality [175, 181, 183] and its role has not
been established [109]. There are no prospective trials of comple-
ment inhibiting therapy. In the largest retrospective analysis, 1-
year survival (62%) was favourable in those treated with
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eculizumab compared with historical controls [172]. In some case
series and reports, mortality has been high despite a haematologi-
cal response [179, 180], though in others the outcome was good
[175–178]. Trial evidence will likely be required before a consensus
on the role of complement-inhibiting therapy can be achieved.

Severe hypertension

Case series of patients with severe hypertension have identified
TMA in 27–44% [190, 320–322]. The pathophysiology of severe
hypertension is complex and not completely understood, and
the role of complement has not been fully defined [323, 324].
Conversely, any patient with a TMA may have severe hyperten-
sion, and distinguishing between severe hypertension-associ-
ated TMA and complement-mediated aHUS at the time of the
acute presentation to guide appropriate management strategy
is a major challenge. In a retrospective case series, genetic anal-
ysis identified rare variants in complement genes in patients in
whom TMA was initially attributed to severe hypertension;
eight of nine patients progressed to ERF despite management of
hypertension [324]. However, in the majority of patients with
TMA associated with severe hypertension, renal function and
microangiopathic haemolytic anaemia (MAHA) usually recover
with the management of blood pressure [323, 325] and therefore
in practice the failure of the TMA to respond to blood pressure
control often informs the diagnosis and future investigation
and management.

Drug-mediated TMA

There are many published reports that describe drug-mediated
TMA, either by acute, immune-mediated reactions [326] or by
dose-dependent toxicity [327–329]. A systematic review in 2015
found evidence of a definite association in only 28% of the 78
drugs reported, the most common of which included quinine
(immune mechanism) and ciclosporin, tacrolimus, sirolimus
and interferon, and chemotherapy agents such as gemcitabine
and mitomycin (toxic mechanism) [326]. There is no strong evi-
dence for the role of complement, and recovery has been
reported following drug withdrawal [201, 202]. The only recog-
nized role for PEX is in ticlodipine-associated TMA, which is
associated with severe ADAMTS13 deficiency [109].

Malignancy-associated TMA

TMA can manifest in malignancy, though it can be challenging to
differentiate between chemotherapy-induced TMA and malig-
nancy-induced TMA [330]. One proposed mechanism for TMA is
erythrocyte shearing following direct contact with microvascular
embolic tumour cells [203, 331, 332], and when TMA is associated
with disseminated malignancy the prognosis is predictably very
poor regardless of treatment strategy [203–205].

Complement factor H autoantibodies have also been associ-
ated with malignancy, although not in the setting of TMA [333].
Case reports of eculizumab use in patients with cancer and
treated with chemotherapy agents have suggested a TMA
response [195–198], though in most cases the eculizumab was
concurrent with drug withdrawal or PEX.

TMAs associated with glomerular diseases

Focal segmental glomerulosclerosis (FSGS) and INF2-mediated renal
disease
TMA has been reported in patients with primary FSGS [258, 334–
336], and FSGS is a frequent pathological sequelae of STEC-HUS

[337]. There is some observational data suggesting that comple-
ment is activated in FSGS [261] and may be associated with
worse outcomes [262]. Mutations in INF2 are the most common
cause of familial autosomal dominant nephrotic syndrome;
however, more recently it has also been associated with TMA
[263]. In this report, all individuals with INF2 mutations present-
ing with a TMA also had complement-mediated aHUS risk hap-
lotypes, potentially accounting for the genetic pleiotropy.
Despite this eculizumab was ineffective in controlling the TMA,
suggesting that the mechanism is not dependent on the termi-
nal pathway of complement.

IgA nephropathy
Histopathological evidence of TMA has been reported in 2.3–
53% [338, 339] of IgA nephropathy biopsies although few also
had laboratory evidence of MAHA. In those with TMA a very
high proportion had uncontrolled hypertension, so it is difficult
to distinguish between TMA associated with severe hyperten-
sion and TMA associated with IgA nephropathy. There is some
evidence that complement genetics are associated with IgA
nephropathy: CFHR3/1 deletion may be protective [240, 340] and
CFHR5 rare variants may contribute to genetic susceptibility
[241]. Mesangial C3 deposition is seen in �90% of patients [234],
and deposition of MBL suggests the lectin pathway may be acti-
vated [235–237] and associated with more severe disease [238].
Two case reports describe the use of eculizumab for crescentic
IgA nephropathy with TMA: there was a transient response, but
it did not prevent progression to ERF [242, 243]. A single-arm
trial of the C5a inhibitor CCX168 in IgA nephropathy (not
restricted to cases with a TMA) is ongoing, but there is currently
not strong evidence for complement-inhibiting therapy in cases
with a TMA.

ANCA-associated vasculitis
Histopathological evidence of TMA has also been reported to
occur in 14% of ANCA-associated vasculitis (AAV) biopsies [341],
again without laboratory evidence of MAHA. Prognosis among
those with concomitant TMA is poor: death or ERF occurs in up to
60% [258]. Mouse models suggest that complement is important
in pathogenesis [244, 245] and C5aR blockade is protective [246].
In humans, the majority of AAV biopsies show deposition of C3d,
C4d and C5b-9 [249], and hypocomplementaemia is associated
with higher mortality [247] and worse renal prognosis [248].
There are no published reports of complement-inhibiting therapy
in patients with AAV and TMA. An RCT of the C5aR inhibitor
CCX168 in AAV (not restricted to cases with TMA) is ongoing.

Membranous nephropathy
There are case reports of TMA occurring with membranous
nephropathy [257–260, 342, 343]. There is strong evidence that
complement is activated in membranous nephropathy: in rat
models [252], in vitro (lectin pathway) [252] and in observational
clinical studies [253–255]. There is no evidence regarding man-
agement specific to membranous nephropathy with TMA, but
an early trial of eculizumab in membranous nephropathy (pre-
sented in abstract form but never published) [252] was negative,
though dosing was inadequate and follow-up was short.

C3G/mesangioproliferative glomerulonephritis with TMA
Both C3G and mesangioproliferative glomerulonephritis (MPGN)
are complement-mediated diseases with autoimmune (C3 neph-
ritic factor, factor H autoantibodies) and inherited (CFH, C3, CFHRs
mutations) complement abnormalities [344–348] underlying
many cases. Despite the role of complement in C3G, in a small
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single-arm trial of eculizumab in C3G not all patients responded
[273], potentially suggesting a role of complement downstream of
C5. Concurrent [258, 275, 349, 350] and sequential [351] manifesta-
tion of C3G and TMA has been reported. There is one case report
of MPGN with TMA describing TMA resolution with eculizumab
[274]. Despite the lack of efficacy of eculizumab in C3G where the
presentation is nephrotic syndrome, given that C3G and comple-
ment-mediated aHUS share many of the same complement auto-
immune and genetic predispositions it seems likely that
eculizumab would have a role where a TMA supervenes, though
definitive evidence is not available.

TMAs associated with autoimmune conditions

Systemic lupus erythematosus
Concurrent TMA has been observed in 8–15% of systemic lupus
erythematosus (SLE) biopsies and was reported to have no influ-
ence on outcome [352, 353] in some cohorts, but was associated
with worse renal outcome in another [354]. In a mouse model of
SLE, C5 inhibition increased survival [206]; in humans hypocom-
plementaemia correlates with disease activity [207], and
CFHR3/1 deletion is associated with susceptibility to SLE [208].
Successful use of eculizumab for SLE with TMA has been pub-
lished in case reports [209–213], but the only trial of eculizumab
in SLE to date is a phase 1 study [207].

Antiphospholipid syndrome
The catastrophic antiphospholipid syndrome (CAPS) interna-
tional registry reports the incidence of TMA to be 14% [232]. In a
mouse model of antiphospholipid antibody (aPL Ab)-mediated
TMA both complement-dependent and complement-independ-
ent pathways were described [215] and C5 blockade inhibited
in vivo effects of aPL Ab [218]. There is observational data in
humans suggesting that complement is activated [219–221].
Case reports and series describe the successful use of eculizu-
mab for CAPS in native kidneys [223–228] and transplant kid-
neys [229–231]. There are no RCTs of complement-inhibiting
therapy but the evidence supports the rationale, and a prospec-
tive, single-arm trial of eculizumab to enable renal transplanta-
tion in CAPS is ongoing (NCT01029587).

Scleroderma renal crisis
Scleroderma renal crisis (SRC) occurs in �10% of people with
systemic sclerosis, and TMA manifests in 45–50% [355]. The use
of angiotensin-converting enyzme (ACE) inhibitors has trans-
formed prognosis: from �85% mortality at 6 months to 25–35%
[268]. There is no strong evidence that complement is involved
in the TMA. In two case reports eculizumab was used in addi-
tion to ACE inhibitors: there was haematological response in
both, though one died [266, 267].

Summary

Ensuring that complement inhibitory therapy is used appropri-
ately is critically important, principally to avoid exposing
patients unnecessarily to the risks of terminal complement
inhibition, but the financial implications to health services (ecu-
lizumab costs £327 600 per person per year in the UK [356]) also
need to be considered.

In addition to its central role in the pathogenesis of comple-
ment-mediated aHUS, complement activation is seen in many
other forms of TMA. Despite this, it is unclear if this is the pri-
mary event, a modifying event or has no contribution to the
TMA whatsoever.

Although the seminal trial of eculizumab did not use a con-
trol arm to demonstrate efficacy, the high historical morbidity
and mortality of aHUS in individuals with complement abnor-
malities suggested effectiveness. For other cases of TMA, the
evidence for utility of eculizumab comes mainly from case
reports with the inherent publication bias. Additionally, inter-
pretation of available data in other TMAs is difficult because:
some disorders are self-limiting (e.g. STEC-HUS); some have a
clear precipitant that can be treated/removed (e.g. severe hyper-
tension and drug-mediated TMA); some are complex and multi-
factorial (e.g. TMAs occurring after bone marrow or solid organ
transplantation); and in some the prognosis of the underlying
disorder may be very poor (e.g. TMA associated with dissemi-
nated malignancy).

For those individuals with an established complement-
mediated aHUS (mutation or autoantibody), treatment is not
informed by RCTs, and while the current recommendation is for
lifelong treatment with eculizumab there is no evidence that
this is necessary. Research is needed to determine who can stop
it and when, as well the appropriate monitoring strategy.
A number of cases of eculizumab withdrawal have been
published [23], and Alexion Pharmaceuticals are collecting data
on individuals in whom eculizumab is stopped (‘EVIDENCE’
observational study), a trial is being conducted in France
(NCT02574403) and a prospective trial of eculizumab withdrawal
in complement-mediated aHUS is under way in the UK.

In summary, further research is needed to define the role of
complement in the spectrum of TMAs, and complement C5-
inhibiting therapy should not be considered a panacea.
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