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The V(D)J recombination reaction in jawed vertebrates is catalyzed by the RAG1 and RAG2 proteins, which are believed
to have emerged approximately 500 million years ago from transposon-encoded proteins. Yet no transposase
sequence similar to RAG1 or RAG2 has been found. Here we show that the approximately 600-amino acid ‘‘core’’ region
of RAG1 required for its catalytic activity is significantly similar to the transposase encoded by DNA transposons that
belong to the Transib superfamily. This superfamily was discovered recently based on computational analysis of the
fruit fly and African malaria mosquito genomes. Transib transposons also are present in the genomes of sea urchin,
yellow fever mosquito, silkworm, dog hookworm, hydra, and soybean rust. We demonstrate that recombination signal
sequences (RSSs) were derived from terminal inverted repeats of an ancient Transib transposon. Furthermore, the
critical DDE catalytic triad of RAG1 is shared with the Transib transposase as part of conserved motifs. We also studied
several divergent proteins encoded by the sea urchin and lancelet genomes that are 25%�30% identical to the RAG1 N-
terminal domain and the RAG1 core. Our results provide the first direct evidence linking RAG1 and RSSs to a specific
superfamily of DNA transposons and indicate that the V(D)J machinery evolved from transposons. We propose that
only the RAG1 core was derived from the Transib transposase, whereas the N-terminal domain was assembled from
separate proteins of unknown function that may still be active in sea urchin, lancelet, hydra, and starlet sea anemone.
We also suggest that the RAG2 protein was not encoded by ancient Transib transposons but emerged in jawed
vertebrates as a counterpart of RAG1 necessary for the V(D)J recombination reaction.
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Introduction

The immune system of jawed vertebrates detects and
destroys foreign invaders, including bacteria and viruses, by
a specific response to an unlimited number of antigens
expressed by them. The antigens can be identified after they
are specifically bound by surface receptors of vertebrate B
and T immune cells (BCRs and TCRs, respectively). Because
the vast repertoire of BCRs and TCRs cannot be encoded
genetically, ancestors of jawed vertebrates adopted an elegant
combinatorial solution [1]. The variable portions of the BCR
and TCR genes are composed of separate V (variable), D
(diversity), and J (joining) segments, which are represented by
fewer than a few hundred copies each. In a B and T cell site-
specific recombination reaction, commonly known as V(D)J
recombination, one V, one D, and one J segment are joined
together into a single exon encoding the variable antigen-
binding region of the receptor. In addition to this combina-
torial diversity, further diversity is generated by small
insertions and deletions at junctions between the joined
segments. In V(D)J recombination, DNA cleavage is catalyzed
by two proteins encoded by the recombination-activating
genes, approximately 1040-amino acid (aa) RAG1 and
approximately 530-aa RAG2 [2,3]. The site specificity of the
recombination is defined by the binding of RAG1/2 to RSSs
flanking the V, D, and J segments [4]. All RSSs can be divided
into two groups, referred to as RSS12 and RSS23, and consist
of conserved heptamer and nonamer sequences separated by
a variable spacer either 12 6 1 (RSS12) or 23 6 1 (RSS23) bp
long [4–7].

During V(D)J recombination, RAG1/2 complex binds one
RSS12 and one RSS23, bringing them into juxtaposition, and
cuts the chromosome between the RSS heptamers and the
corresponding V and D, D and J, or V and J coding segments
[3,8]. A rule requiring that efficient V(D)J recombination
occur between RSS12 and RSS23 is known as the ‘‘12/23’’ rule
[1]. Even prior to the discovery of RAG1 and RAG2, it had
been suggested that the first two RSSs were originally
terminal inverted repeats (TIRs) of an ancient transposon
whose accidental insertion into a gene ancestral to BCR and
TCR, followed by gene duplications, triggered the emergence
of the V(D)J machinery [4]. Later, this model was expanded by
the suggestion that both RAG1 and RAG2 might have evolved
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from a transposase (TPase) that catalyzed transpositions of
ancient transposons flanked by TIRs that were precursors of
RSSs [9]. This model has received additional support through
observations of similar biochemical reactions in transposition
and V(D)J recombination [10,11]. Finally, it was demonstrated
that RAG1/2 catalyzed transpositions of a DNA segment
flanked by RSS12 and RSS23 in vitro [12,13] and in vivo in
yeast [14]. In vertebrates, in vivo RAG-mediated trans-
positions are strongly suppressed, probably to minimize
potential harm to genome function. So far, only one putative
instance of such a transposition has been reported [15].
However, given the lack of significant structural similarities
between RAGs and known TPases, the ‘‘RAG transposon’’
model [9,12,13,16] remained unproven. Here we demonstrate
that the RAG1 core and RSSs were derived from a TPase and
TIRs encoded by ancient DNA transposons from the Transib
superfamily [17].

The Transib superfamily is one of ten superfamilies of DNA
transposons detected so far in eukaryotes [17]. Like other
DNA transposons, Transib transposons exist as autonomous
and nonautonomous elements. The autonomous Transib
transposons are 3–4 kb long and code for an approximately
700-aa TPase that is not similar to TPases from any other
transposon superfamilies. Computational analysis of Transib
elements, including their numerous insertions into copies of
other transposons, demonstrated that Transib transposons are
flanked by 5-bp target site duplications (TSDs), which also
distinguishes this superfamily from all the others [17]. Transib
transpositions are expected to be catalyzed by the binding of
the TPase to TIRs of autonomous and nonautonomous
transposons [17]. As discussed in this paper, in addition to
the fruit fly (Drosophila melanogaster) and African malaria
mosquito (Anopheles gambiae) genomes, in which Transib trans-
posons were originally discovered, these genes are also
present in diverse animals (Table S1), including other species
of fruit fly (e.g., Drosophila pseudoobscura, Drosophila willistoni),
yellow fever mosquito (Anopheles aegypti), silkworm (Bombyx
mori), red flour beetle (Tribolium castaneum), dog hookworm
(Ancylostoma caninum), freshwater flatworm (Schmidtea mediter-
ranea), hydra (Hydra magnipapillata), sea urchin (Strongylocen-
trotus purpuratus), and soybean rust (Phakopsora pachyrhizi).
Genomes of plants and vertebrates seem to be free of any
recognizable Transib transposons (Figure 1).

Results

Detection of Similarity between Transib TPases and RAG1
Using protein sequences of seven known Transib TPases

(Transib1 through Transib4 and Transib1_AG through
Transib3_AG from D. melanogaster and A. gambiae, respec-
tively) [17] as queries in a standard BLASTP search against all
GenBank proteins, we found that the approximately 60-aa C-
terminal portion of the Transib2_AG TPase was 35%�38%
identical to the C-terminal portion of the RAG1 core (Figure
S1). However, this similarity was only marginally significant (E
= 0.07 where the E-value is an expected number of sequences
matching by chance; Table 1). In another search against
GenBank, using PSI-BLAST [18] (see Materials and Methods)
with the Transib2_AG TPase as a query, we found that two
unclassified proteins (GenBank gi 30923617 and 30923765;
annotated as hypothetical proteins) and RAG1s constituted
the only group of any GenBank proteins similar to the

Transib2_AG TPase (Table 1). The statistical significance of
similarity between the TPase and RAG1s was measured by Ei

= 0.025, where Ei is the E-value threshold for the first
inclusion of RAG1 sequences into the PSI-BLAST iterations
[18] (Materials and Methods). The observed improvement in
significance of the Transib/RAG1 similarity (from E = 0.07 in
BLASTP to Ei = 0.025 in PSI-BLAST; Table 1) was due to the
fact that both 151-aa and 123-aa hypothetical GenBank
proteins were apparent remnants of Transib TPases (approx-
imately 40% identity to the Transib2_AG TPase, E , 10�10

in BLASTP). The RAG1 proteins appeared to be more similar
to the position-specific scoring matrix (PSSM) created by PSI-
BLAST based on multiple alignment of the Transib2_AG
TPase and two Transib TPase-like proteins, than to the solo
Transib2_AG TPase in the BLASTP search.
Given the latter observation, we decided to improve the

quality of the PSSM constructed by PSI-BLAST for different
Transib TPase sequences. To achieve that, we combined
protein sequences of the seven known Transib TPases with
the set of all GenBank proteins. As a result, Ei-values for
matches of RAG1s to a new PSSM based on alignment of nine
Transib TPases (the two GenBank TPase-like proteins plus
seven added TPases) noticeably dropped in comparison with
the Ei-values obtained for the PSSM constructed in the
previous step based on alignment of the three TPases (Table
1).
To support the observation that Ei-values of matches

between RAG1s and the Transib TPase PSSM decrease as the
number of TPase sequences used for construction of the
PSSM increases, we identified six new Transib TPases
(Transib5, Transib3_DP, Transib4_DP, Transib1_AA,
Transib2_AA, Transib3_AA; Figure S2). During the next
step of the PSI-BLAST analysis, the original GenBank set was
combined with 13 Transib TPases. Again, Ei-values of matches
between RAG1s and the new PSSM derived from multiple
alignment of 15 Transib TPases (the two GenBank proteins
plus all our TPases) were much smaller (approximately 10�6–
10�3; Table 1) than those obtained based on the PSSM
constructed from the nine TPases at the preceding step
(approximately 10�3–10�2). In the final step, we identified one
more set of five new Transib TPases (Transib1_DP, Tran-
sib2_DP, Transib4_AA, Transib5_AA, and Transib1_SP).
When all 18 TPases were combined with the original
GenBank set, the Ei values of matches between RAG1s and
the Transib PSSM dropped significantly further (10�9–10�4;
Table 1). During the final revision of this manuscript, we
identified an intermediate RAG1-like sequence in Hydra
magnipapillata, called RAG1L_HM, which is significantly
similar to both RAG1 and Transib TPase, as shown later. This
direct result represents an independent validation of our
analysis.
The PSI-BLAST PSSM of Transib TPases approximates

conservation/variability of the Transib TPase consensus
sequence. The more diverse the TPases used in determining
the PSSM, the more accurate is the approximation; some of
the insect Transib TPases are less than 30% identical to each
other, as shown in Figure 2. The RAG1 Ei values decreased as
the number of Transib TPases used for the PSSM construction
increased due to the fact that RAG1 evolved from a Transib
TPase. In all cases, the E values obtained after several rounds
of iterations were less than 10�20 at the point of convergence.
Nearly the entire sequences of several Transib TPases,
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excluding their 100–140-aa N-terminal domains, converged
with an approximately 600-aa portion of RAG1 defined by
positions approximately 360–1010 (Figure S3). This portion
of RAG1 corresponds to the ‘‘RAG1 core,’’ hereafter
numbered relative to human RAG1 (residues 387–1011),
which along with RAG2 is known to be sufficient to perform

V(D)J cleavage even after deletions of the 383-aa N-terminal
and 32-aa C-terminal portions of RAG1 [19,20].
During studies reported here, we identified 11 additional

new families of Transib transposons and TPases (see Figure S2)
that are well preserved in the genomes of fruit flies (Transib5
in D. melanogaster; and Transib1_DP, Transib2_DP, Tran-

Figure 1. Schematic Presentation of Transib transposons, RAG1, RAG2, and RAG1-Like Proteins in Eukaryotes

The basic timescale of the evolutionary tree is based on published literature [49–51]. Red circles mark species in which Transib TPases were
found. Gray squares indicate RAG2; orange and blue ellipses show the RAG1 core and RAG1 N-terminal domain, respectively. Overall taxonomy,
including common and Latin names, is reported on the right side of the figure. A question mark at the lamprey lineage indicates insufficient
sequence data. A lack of any labels means that the Transib TPase and RAG1/2 are not present in the sequenced portions of the corresponding
genomes. Among branches lacking Transib TPases, only lamprey and crocodile genomes are not extensively sequenced to date. In sea anemone,
the RAG1 core–like protein is capped by the ring finger motif, which also forms the C-terminus in the RAG1 N-terminal domain. In fungi, the
Transib TPase was detected in soybean rust only.
DOI: 10.1371/journal.pbio.0030181.g001

Table 1. Significance of Similarities between the Transib TPases and RAG1 Core

TPase Query BLASTP

E

2 þ 0

Ei

2 þ 7

Ei

2 þ 13

Ei

2 þ 18

Ei

Transib1 — — — — 2 3 10�6 (3)

Transib2 — — — — 3 3 10�4 (2)

Transib3 — — 7 3 10�4 6 3 10�6 (2) 4 3 10�8 (2)

Transib4 — — — — 8 3 10�6

Transib5 — — 4 3 10�4 3 3 10�8 (2)

Transib1_AG — — 0.005 0.001 1 3 �10�7 (3)

Transib2_AG 0.07 0.025 0.013 2 3 10�5 (2) 3 3 10�8 (2)

Transib3_AG — — 0.013 1 3 10�6 (2) 5 3 10�9 (2)

Transib1_DP — — 5 3 10�6

Transib2_DP — — 6 3 10�7 (2)

Transib3_DP — — — 2 3 10�5 (3)

Transib4_DP 0.08 0.007 8 3 10�5 5 3 10�7 (3)

Transib1_AA — — 0.002 2 3 10�9 (3)

Transib2_AA — — 6 3 10�4 7 3 10�7

Transib3_AA — — — —

Transib4_AA — — —

Transib5_AA — — —

Transib1_SP — — 2 3 10�7 (2)

The first column lists all 18 Transib TPases used as queries in our analysis, and the shaded areas indicate those added to the original set of all GenBank proteins in subsequent PSI-BLAST searches. The original GenBank set included two

incomplete Transib TPase-like proteins. Column 2 lists E-values of best matches between RAG1s and Transib TPases detected in BLASTP searches against the original GenBank set. Column 3 reports Ei-values of best matches between RAG1s

and a PSSM derived from the chosen query sequence and the two GenBank TPase-like proteins in PSI-BLAST searches against the original set of all GenBank proteins (see Materials and Methods). Columns 4–6 report the Ei-values for best

matches between RAG1s and a Transib-derived PSSM after adding 7, 13, and 18 Transib TPases to the GenBank set, respectively. The numbers of the PSI-BLAST iterations after which the entire RAG1 core significantly aligned with the TPases are

indicated in parentheses. Ei-values greater than 1 are indicated by dashes. Each empty cell indicates that the corresponding TPase query was not used at the particular stage of PSI-BLAST analysis.

DOI: 10.1371/journal.pbio.0030181.t001

PLoS Biology | www.plosbiology.org June 2005 | Volume 3 | Issue 6 | e1811000

V(D)J Recombination and Transib Transposons



sib3_DP, and Transib4_DP in D. pseudoobscura), mosquitoes
(Transib1_AA, Transib2_AA, Transib3_AA, Transib4_AA, and
Transib5_AA from A. aegypti) and sea urchin (Transib1_SP).
Transib1_SP is the first Transib transposon identified outside
of insect genomes. A well-preserved 4132-bp Transib1_SP
element (contig 7839, positions 376–4506) is flanked by a 5-bp
CGGCG TSD, and it encodes a 676-aa TPase (two exons) that
is most similar to the Transib2 TPase (34% identity). Based on
the currently available sequence data, we also reconstructed
portions of TPases that were missed in previous studies [17]
(Materials and Methods; see Figure S2). Using the Tran-
sib1_SP TPase as a query in TBLASTN searches against all
GenBank sections (NR, HTGs, WGS, dbGSS, dbEST, dbSTS,
and Trace Archives) we also found diverse Transib TPases in
silkworm, red flour beetle, dog hookworm, freshwater flat-
worm, soybean rust, and hydra (Table S1). At the same time,
recently sequenced genomes of honeybee, roundworms, fish,
frog, mammals, sea squirts, plants, and fungi (except soybean
rust) do not contain any detectable Transib transposons (see
Figure 1). The observed patchy distribution could be caused

by horizontal transfers and extinctions of Transib transposons
in eukaryotic species.

Common Structural Hallmarks of the Transib TPase and
RAG1 Core
All three core residues from the catalytic DDE triad in the

RAG1 proteins (residues 603, 711, and 965) that are necessary
for V(D)J recombination [21,22] are conserved in the Transib
TPases (Figures 3 and S3). This includes the distances between
the second D and E residues, which are much longer in
Transib transposons (206–214 aa) and RAG1 (253 aa) than in
DDE TPases from other studied superfamilies (e.g., approx-
imately 35-aa inMariner/Tc1 [23], 2-aa in P [23], approximately
35-aa in Harbinger [24], with hAT as an exception (325-aa, [25]).
Moreover, each catalytic residue is a part of a motif that is
conserved in the Transib TPases and RAG1 (motifs 4, 6, and 10
in Figures 3 and S3). The RAG1 core is composed of the N-
terminal region and the central and C-terminal domains
([26,27]. The N-terminal region includes the RSS nonamer-
binding regions (residues 387–480), referred to as NBR
[28,29]. The two terminal motifs of RAG1 NBR are conserved
in the Transib TPases (Figure S3), which indicates that they
may be important for their binding to the Transib TIRs during
transposition (the RSS-like structure of TIRs is described
below; Figure 4). The central domain of the RAG1 core
(residues 531–763) includes two aspartic acid residues from
the DDE triad and is also thought to be involved in binding to
the RSS heptamer and RAG2 [30,31].
The C-terminal domain of RAG1 (residues 764–1011) is the

portion of RAG1 that is most conserved between RAG1 and
Transib TPases. In addition to the catalytic activity attributed
to the last residue of the DDE triad, this domain has a strong
nonspecific DNA-binding affinity because it binds to coding
DNA upstream of the RSS heptamer, and is thought to be
involved in RAG1 dimerization [26,27]. This domain is
predicted to function analogously in Transib transposons.
Several other motifs conserved in Transib TPases and RAG1
include aa residues that have been shown experimentally to
be important for specific functions in V(D)J recombination
(Figure S3). Based on this information, the function of these
motifs in Transib TPases is expected to be similar to that in
RAG1. Among the most conserved motifs, motif 5 (see Figures
3 and S3) is of particular interest because its function is not
known yet but is expected to play a role both V(D)J
recombination and Transib transposition.
In conjunction with detailed studies of the Transib super-

family, we also analyzed the remaining nine known super-
families of DNA transposons defined by diverse TPases (see
Table 1 in [24]). Some of these TPases, including Mariner,
Harbinger, P, and hAT, also contain the catalytic DDE triad
[23]. However, based on PSI-BLAST searches, no significant
similarities between these nine TPases and RAG1 protein
were found (data not shown). Therefore, given that the only
significant similarity of the RAG1 core was to the Transib
TPase, the RAG1 core was re-confirmed as belonging to the
Transib superfamily.
In addition to the statistically significant similarity between

the approximately 600-aa RAG1 core and Transib TPases,
there are two other lines of evidence suggesting evolution of
the V(D)J machinery from Transib DNA transposons. They
include the characteristic TSDs and structure of the TIRs
discussed in the next two sections.

Figure 2. Diversity of the Transib TPases and RAG1 Core–Like Proteins in

Animals

The phylogenetic tree was obtained by using the neighbor-joining
algorithm implemented in MEGA [44]. Evolutionary distance for each
pair of protein sequences was measured as the proportion of aa sites
at which the two sequences were different. Its scale is shown by the
horizontal bar. Bootstrap values higher than 60% are reported at the
corresponding nodes. Species abbreviations are as follows: AA, yellow
fever mosquito; AG, African malaria mosquito; BF, lancelet; CL, bull
shark; DP, D. pseudoobscura fruit fly; FR, fugu fish; HM, hydra; HS,
human; NV, starlet sea anemone; SP, sea urchin; XL, frog. (Transib1
through Transib5 are from D. melanogaster fruit fly).
DOI: 10.1371/journal.pbio.0030181.g002
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Similar Length of TSDs and Target Site Composition in

Transib and RAG1/2-Mediated Transpositions
It has been known that RAG1-mediated transposition in

vitro, both intermolecular and intramolecular, is most
frequently accompanied by 5-bp TSDs [12,13]. In one study
[12], 35 of 38 (92%) TSDs generated during RAG-mediated
intermolecular transposition were 5 bp long, and the
remaining 8% were either 4 or 3 bp long. Also, 69% of 36
TSDs recovered during RAG-mediated intramolecular trans-
positions were 5 bp in length; of the remaining ones, 28%
were 4 bp and 3% were 3 bp long. In another study [13], six of
six TSDs detected in the intermolecular transposition were 5
bp long. Intramolecular transposition mediated by murine

RAG1/2 proteins was also studied recently in vivo in yeast
[14]. Again, 60% of TSDs recovered in 26 events were 5 bp
long [14]. Given the predominance of 5-bp TSDs, it is striking
that Transib transposons belong to the only superfamily of
eukaryotic DNA transposons with 5-bp TSDs generated upon
insertions into the genome [17,24]. To illustrate the charac-
teristic 5-bp TSDs, we show copies of Transib transposons with
intact 59 and 39 TIRs from diverse families of Transib
transposons present in the D. melanogaster, D. pseudoobscura,
A. gambiae, and S. purpuratus genomes (Figure S4). Moreover,
some families show high target site specificity, e.g., Transib-
N1_AG and Transib-N2_AG integrate preferentially at
cCASTGg and cCAWTGc, respectively (TSDs are capitalized).

Figure 3. Multiple Alignment of Ten Conserved Motifs in the RAG1 Core Proteins and Transib TPases

The motifs are underlined and numbered from 1 to 10. Starting positions of the motifs immediately follow the corresponding protein names.
Distances between the motifs are indicated in numbers of aa residues. Black circles denote conserved residues that form the RAG1/Transib
catalytic DDE triad. The RAG1 proteins are as follows: RAG1_XL (GenBank GI no. 2501723, Xenopus laevis, frog), RAG1_HS (4557841, Homo
sapiens, human), RAG1_GG (131826, Gallus gallus, chicken), RAG1_CL (1470117, Carcharhinus leucas, bull shark), RAG1_FR (4426834, Fugu
rubripes, fugu fish). Coloring scheme [43] reflects physiochemical properties of amino acids: black shading marks hydrophobic residues, blue
indicates charged (white font), positively charged (red font), and negatively charged (green font); red indicates proline (blue font) and glycine
(green font); gray indicates aliphatic (red font) and aromatic (blue font); green indicates polar (black font) and amphoteric (red font); and yellow
indicates tiny (blue font) and small (green font). The species abbreviations for the Transib transposons are as follows: AA, yellow fever mosquito;
AG, African malaria mosquito; DP, D. pseudoobscura fruit fly. (Transib1 through Transib5 are from the fruitfly D. melanogaster).
DOI: 10.1371/journal.pbio.0030181.g003
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RAG1/2-mediated transpositions also show significant target
specificity, presumably reflecting the original specificity of
the Transib TPase [12]. Indigenous properties of the Transib
TPase, that were not related directly to RAG1 functions,
including those responsible for the precise 5-bp length of
TSDs, might have been altered during evolution of RAG1,
leading to occasional 4-bp and 3-bp TSDs that are atypical for
Transib transposons. Both RAG1/2-mediated and Transib
transpositions show strong preference for GC-rich target
sites [12–14,32], even though genomes hosting Transib trans-
posons are AT-rich (Figure S4; Table 2).

Structure of Transib TIRs
The structure and conservation patterns of the 38-bp

termini of Transib transposons from 21 different families
closely resemble those of RSSs, suggesting that the latter were
derived from termini of ancient Transib transposons (Figures
4 and S4). The 38-bp consensus TIR of Transib transposons
consists of a conserved 59-CACAATG heptamer separated by
a variable 23-bp spacer from an AAAAAAATC-39 nonamer.
This corresponds closely to the structure of RSSs, which are
composed of the conserved heptamers 59-CACAGTG sepa-
rated by a variable 22-bp spacers from ACAAAAACC-like

nonamers [1,5–7]. Only bases at positions 1 through 3 in the
heptamer and at positions 5 and 6 in the nonamer are
universally conserved in RSSs and absolutely essential for
efficient V(D)J recombination [5–7]. The corresponding
positions are perfectly conserved in all Transib transposons
(Figure 4A and 4B; excluding the 85% conserved position 34
in the Transib consensus that corresponds to position 5 in the
RSS nonamer). The probability of the observed match
between the RSS and Transib termini to occur by chance is
less than 10�3 (see Materials and Methods). Although most
Transib families are represented by transposons flanked by
TIRs similar to RSS23 (Figure 4A), several families include
transposons with 59 and 39 termini similar to RSS12 and
RSS23, respectively (Figure 4C). Therefore, even the 12/23
rule [1] can be derived directly from the sequence structure
of known Transib transposons.

RAG1 Core–Like Sequences in the Sea Urchin, Lancelet,
Starlet Sea Anemone, and Hydra Genomes
Using RAG1 proteins as query sequences in a WU BLAST

search against sea urchin contigs sequenced at Baylor College
(see Materials and Methods), we identified eight proteins
approximately 30% identical to portions of the RAG1 core

Figure 4. Structural Similarities between the Transib TIRs and V(D)J RSS Signals

The species abbreviations are: AA, yellow fever mosquito; AG, African malaria mosquito; DM, D. melanogaster fruit fly DP, D. pseudoobscura fruit fly;
SP, sea urchin. (Transib1 through Transib5 are from the fruit fly D. melanogaster).
(A) Frequencies of the most frequent nucleotides at each position of the consensus sequence of the 59 TIRs of transposons that belong to 20
families of Transib transposons identified in fruit flies and mosquitoes. The RSS23 consensus sequence is shown immediately under the TIRs
consensus sequence. The most conserved nucleotides in the RSS23 heptamer and nonamer, which are necessary for efficient V(D)J
recombination, are highlighted. The 23 6 1 bp variable spacer is marked by Ns.
(B) Non-gapped alignment of consensus sequences of 59 TIRs from 21 families of Transib transposons.
(C) The 12/23 rule follows from the basic structure of TIRs of the consensus sequences of transposons that belong to the Transib5, Transib2_AG,
TransibN1_AG, TransibN2_AG, and TransibN3_AG families. The 59 TIRs of these transposons are aligned with the corresponding 39 TIRs.
Structures of the 59 and 39 TIRs resemble RSS12 and RSS23, respectively.
DOI: 10.1371/journal.pbio.0030181.g004
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and approximately 50% identical to each other (see Figures 2,
5, and S5). Only one protein is present in two copies, which
are 94% identical to each other at the DNA level (contigs
81987 and 6797). Both copies appear to be encoded by
pseudogenes damaged by a stop codon at the same position of
each protein. Interestingly, the 6,690-bp contig 6797 harbours
two additional defective pseudogenes coding for different
RAG1 core–like proteins (Figure 5). We also identified a 597-
aa protein sequence encoded by a single open reading frame
(contig 29068, positions 1157–2944), which is 28% identical to
nearly the entire RAG1 core (positions 461–1002 in the
human RAG1, Figure S5). Extensive analysis of the flanks
failed to show any hallmarks of putative transposons that
might be associated with this RAG1-like protein, and we did
not find any evidence indicating that other RAG1 core–like
proteins are encoded by transposable elements (Figure 5).

Using FGENESH [33], we detected that the RAG1 core–like
open reading frame (ORF) in the contig 29068 forms a
terminal exon (positions 1154–2947) of an incomplete hypo-
thetical gene composed of two exons (internal and terminal;
see Figure S6). The 39 terminal portion of the internal exon
encodes a protein sequence that appears to be marginally
similar to an approximately 50-aa fragment of the RAG1 core
(positions 394–454 in human RAG1; Figure S5). The RAG1
core–like protein in whole genome shotgun (WGS) contig
12509 (Figure 5) also seems to be encoded by the last exon
starting at position 1650 of a hypothetical RAG1-like gene.
Although the two proteins are only 38% identical to each
other, they share common features: (1) their N-terminal
portions are missing and the RAG1-like sequences start at
positions 17 or 18; (2) in both proteins the first aa residue
overlaps with the acceptor splice site; and (3) their similarity
to RAG1 starts at positions corresponding to position 470 of
the human RAG1. Remarkably, the acceptor splice site
positions in the sea urchin RAG1 core–like proteins closely
correspond to those in RAG1 from teleosts (i.e., most of the
living ray-finned or bony fish), in which RAG1 is split by an
intron at position homologous to Gly460 in human RAG1 [34].

Using the same RAG1 query sequences in a TBLASTN
search against WGS trace sequences from the lancelet
(Branchiostoma floridae) genome recently sequenced at the Joint
Genome Institute (see Materials and Methods), we found that
the lancelet genome encodes protein sequences approxi-

mately 35% identical to the RAG1 core (Figure S5;
RAG1L_BF; BLASTP E-value is equal to 10�34). Again, as in
the case of the sea urchin sequences, the lancelet RAG1 core–
like elements show no hallmarks of transposons (data not
shown). However, unlike highly conserved RAG1 proteins, the
RAG1 core–like proteins are remarkably diverse (see Figure
2).
During the second review of the manuscript of this article,

we were kindly informed by Dr. Hervé Philippe of a RAG1
core–like sequence present the starlet sea anemone (Nem-
atostella vectensis). After that, we screened all available Trace
Archives (Materials and Methods) and detected additional
RAG1-like proteins. In starlet sea anemone, several approx-
imately 1000-bp WGS trace sequences were found (e.g.,
GenBank Trace Archive IDs 668021618, 558173651,
568641192, and 599572062), which encode protein, called
RAG1L_NV, that is approximately 30% identical to the
human RAG1 core (positions 284–802, TBLASTN, 10�26 , E
, 10�7). We also found several approximately 1000-bp WGS
trace sequences of Hydra magnipapillata (Trace Archive IDs
688654311, 647073738, 666995387, 687186526, 688683890,
and 688948453), coding for protein sequences 26%�30%
identical to the RAG1 core (positions 753�995, E-value is
approximately equal to 10�7 in a BLASTX search against
GenBank). Using these trace sequences, we partially as-
sembled a hydra gene, called RAG1L_NM, which encodes
the RAG1 core–like protein.
Remarkably, the hydra RAG1L_NM protein turned out to

be significantly similar to the Transib TPase (26% identity; E-
value is approximately equal to 10�14 in a BLASTX search
against GenBank proteins combined with the Transib TPase
sequences). Therefore, the hydra RAG1 core–like protein
provides the first direct link between the RAG1 core and
Transib TPase.

N-Terminal–Like Domain of RAG1 in the Sea Urchin,
Lancelet, Starlet Sea Anemone, and Hydra Genomes
A separate analysis of the assembled sea urchin sequences

yielded seven sequences encoding three diverse proteins that
were significantly similar to the 380-aa N-terminal domain of
RAG1 (BLASTX, E , 10�4), excluding the 100-aa N-terminus
(Figure 6). The first 305-aa protein is encoded by contig 1226,
and its recently duplicated copies are on contigs 1219 and

Table 2. Preferential Insertion of Transib transposons into GC-Rich Sites

Transib Family GC Content of

the Host

Genome (%)

GC Content of

35-bp

Insertion Sites (%)

GC Content of

15-bp

Insertion Sites (%)

GC Content of

5-bp TSDs (%)

Number of

Analyzed

Elements

TransibN1_AG 44 51 59 53 57

TransibN2_AG 44 50 55 49 89

TransibN3_AG 44 51 53 57 8

TransibN1_DM 42 56 60 70 8

Hopper 42 51 57 49 16

TransibN1_DP 46 56 64 65 15

TransibN1_SP 37 59 75 92 14

Average 53 60 62

Each of the 35-bp insertion sites corresponds to two 20-bp DNA fragments flanking a genomic Transib element at its 59 and 39 termini. One of the 5-bp TSDs flanking the 39 terminus of a Transib was excluded in each case. Analogously, the 15-

bp insertion sites were composed of two 10-bp flanking fragm

DOI: 10.1371/journal.pbio.0030181.t002
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1222 (approximately 95% identical to each other at the
protein level.) The second, 195-aa protein (contig 83099) is
the shortest. It is only approximately 26% identical to the
first protein and more than 90% identical at the DNA level to
its duplicate on contig 86231. We also found a third protein
on contig 768 that contains unique motifs in its N-terminal
regions that best match the homologous regions of RAG1.
Furthermore, we found that unassembled WGS trace sequen-
ces encode two other proteins, P4_SP and P5_SP, similar to
the N-terminal RAG1 domain (Figure 6).

By analyzing the lancelet WGS traces, we also found that
the lancelet genome encodes five different proteins similar to
the N-terminal domain of RAG1 (BLASTP E values in
searches against all GenBank proteins were in a range of
10�14–10�7). DNA sequences coding for these proteins,
P1_BF through P5_BF, were manually assembled from
overlapping WGS sequences (data available upon request).

The proteins detected in the sea urchin and lancelet
genome share a ring finger motif as well as two novel motifs
matching the N-terminal RAG1 domain (Figure 6) and
remotely resembling C-x2-C zinc finger motifs. The new
conserved motifs are H-x3-L-x3-C-R-x-C-G and D-x3-I-h-P-
x2-F-C-x2-C, and their function remains to be determined. It
is thought that the ring finger motif of RAG1 functions as a
zinc-binding domain, is involved in dimerization [30,35], and
acts as an E3 ligase in the ubiquitylation [36]. It also likely that
the N-terminal RAG1 and RAG1-like proteins share an

additional conservedmotifW-x-p-h-x(3–6)-C-x2-C that resides
between conserved motif 2 and the ring finger (Figure 6).
None of the sea urchin and lancelet proteins align to the

approximately 100-aa N-terminus of RAG1, which may
indicate that this portion is missing from the genome or
highly diverged and difficult to detect. It is also worth noting
that this portion corresponds to a separate exon in some
teleosts (see Discussion). The ring finger motif itself is also
present in several sea urchin proteins unrelated to RAG1 but
significantly similar to diverse proteins associated with
immune and developmental systems as well as regulation of
transcription. To test whether the reported sea urchin
sequences represent a true RAG1-like match, we cut off the
ring finger motif and repeated the BLASTP search against all
GenBank proteins. Even without the finger, the remaining
portions of the sea urchin sequences were significantly
similar to the corresponding portions of RAG1. BLASTP E-
values were 9310�9, 7310�5, and 10�3 for the P5_SP, P4_SP,
and 768_SP sequences, respectively; because both the low-
complexity filter and composition-based statistics were
applied, the corresponding E-values were estimated very
conservatively. BLASTP searches of the sea urchin sequences
against all GenBank proteins, excluding RAG1, detected only
the ring finger domain of the sea urchin sequences. E-values
of these matches were much higher than the E-values of
similarities to the RAG1 proteins (SP_768: 0.04 versus
7310�7; SP_86231: 3�10�4 versus 7310�7; SP_1226: 10�4

Figure 5. Schematic Structure of the Sea Urchin RAG1-Like Sequences

Contig accession numbers are shown in the left column. Inverted complement contigs are marked by ‘‘c’’ followed by the contig number. In each
contig, RAG1-like proteins (white rectangle) are schematically aligned with the human RAG1 core (top rectangle). Nucleotide positions of the
RAG1-like sequences are shown beneath the white rectangles. Three pairs of recently duplicated sequences (nucleotide identity is higher than
95%) are underlined by red, green, and black lines, respectively. Transposable and repetitive elements detected in the flanking regions are
marked by painted rectangles. Names of these elements are shown above the rectangles. Asterisks denote stop codons in the corresponding
RAG1-like sequences. BLASTP E-values characterizing similarities between the sea urchin and RAG1 proteins are shown above the white
rectangles. Multiple alignment of these protein sequences is reported in Figure S5.
DOI: 10.1371/journal.pbio.0030181.g005

PLoS Biology | www.plosbiology.org June 2005 | Volume 3 | Issue 6 | e1811005

V(D)J Recombination and Transib Transposons



Figure 6. Multiple Alignment of the RAG1 N-Terminal Domain and Sea Urchin Protein Sequences

RAG1_HS, RAG1_PD, RAG1_SS, RAG1_RM, and RAG1_LM mark the human (GenBank accession number NP_000439), lungfish
(AAS75810), pig (BAC54968), stripe-sided rhabdornis or Rhabdornis mysticalis bird (AAQ76078), and latimeria (AAS75807) proteins, respectively.
The sea urchin and lancelet proteins are marked by ‘‘_SP’’ and ‘‘_BF’’ following the identification numbers of the corresponding contigs.
Protein sequences assembled from the sea urchin and lancelet WGS Trace Archives are denoted as P4-P5_SP and P1-P5_BF, respectively. Three
conserved motifs are underlined and numbered. The third conserved motif is known as the ring finger. Distances from the protein N-termini are
indicated by numbers.
DOI: 10.1371/journal.pbio.0030181.g006
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versus 2310�7; P4_SP: 10 versus 2310�7; P5_SP does not
have ring finger and matches RAG1 only, E-value = 9310�7).

Based on the same approach, our study found that the
starlet sea anemone and hydra genomes also encode several
families of the N-terminal RAG1 domain that appear to be
separate from the RAG1 core–like proteins (data not shown).
The only exception was the already mentioned sea anemone
RAG1 core–like sequence. The approximately 90-aa N-
terminus of the latter sequence is the ring finger (E , 10�7,
multiple BLASTP matches against known ring fingers in
GenBank).

Discussion

The significant similarity between the Transib TPases and
RAG1 core, the common structure of the Transib TIRs and
RSSs, as well as the similar size of TSDs characterizing
transpositions of Transib transposons and transpositions
catalyzed by RAG1 and RAG2, directly support the 25-year-
old hypothesis of a transposon-related origin of the V(D)J
machinery. Previously, the ‘‘RAG transposon’’ hypothesis was
open to challenge by alternative models of convergent
evolution. Because there were no known TPases similar to
RAG1, it could be argued that RAG1 independently devel-
oped some TPase-like properties, rather than deriving them
from a TE-encoded TPase [24]. These arguments can now be
put to rest.

As shown in this paper, the RAG1 core was derived from a
Transib TPase, but given the low identity between the Transib
TPase and the RAG1 core (14%–17%) it is not clear whether
the ancestral transposon was a member of the group of
canonical Transib transposons preserved in modern genomes
of insects, hydra, and sea urchin (see Figure 1), or a member
of an unknown group of Transib transposons that encoded a
TPase that was more similar to RAG1 core than to the
canonical TPase from the currently known Transib trans-
posons. Furthermore, after its recruitment, the RAG1 core
most likely went through a period of intensive transforma-
tions due to diversifying/positive selection, which further
decreased its similarity to Transib TPase. Afterwards, the
RAG1 genes continued to evolve at a slow and steady pace
under stabilizing selection, as indicated by the observed
conservation of the RAG1 core (79% identity between sharks
and mammals).

Some of the intermediate stages of RAG1 evolution can be
inferred from analysis of the sea urchin in which RAG1-like
proteins were recently observed [37], and from analysis of the
lancelet, starlet sea anemone, and hydra genomes. Based on
the presence of stop codons disrupting some of the RAG1-
like sequences, it has been suggested [37] that the sea urchin
sequences represent remnants of transposable elements.
Typically, TPase-coding autonomous DNA transposons are
present in only a few complete copies per genome. At the
same time, sequences homologous to their terminal portions,
including specific TIRs, are usually abundant due to the
proliferation of nonautonomous DNA transposons fueled by
the TPase expressed by the corresponding low-copy auton-
omous elements. Therefore, even if only 30% of the sea
urchin genome has been sequenced to date, it is expected that
the regions flanking the TPase portions of potential
autonomous elements should be similar to numerous non-
autonomous elements. So far, we have found no evidence of

such similarities. Detailed analysis of regions flanking the sea
urchin RAG1-like DNA coding sequences revealed a variety of
different transposable elements inserted in the proximity of
the coding sequences (see Figure 5). Nevertheless, based on
the orientations and relative positions of these transposons,
none of them appears to be associated with the RAG1-like
sequences (see Figure 5). We also could not identify the 5-bp
TSDs and TIRs characteristic of the Transib superfamily. Still,
given that only one third of the sea urchin genome is
currently assembled as a set of contigs longer than several
thousand nucleotides (the remaining portion is represented
by short WGS sequences), we cannot rule out the possibility
that the sea urchin RAG1-like proteins are remnants of an
unknown branch of Transib transposons. Given that the
genomes of lancelet, hydra, and starlet sea anemone are
currently available only as unassembled WGS traces, the
question whether the corresponding RAG1-like sequences are
remnants of transposons or genes/pseudogenes must be left
open.
The alternative possibility is that the sea urchin RAG1

core–like sequences represent diverse genes and pseudogenes
that belong to a rapidly evolving multigene family. This opens
the tantalizing possibility that the RAG1 core was recruited
from a Transib TPase in a common ancestor of Bilaterians and
Cnidarians, and subsequently lost in nematodes, insects, and
sea squirts (see Figure 1). Furthermore, given that the sea
urchin, lancelet, hydra, and starlet sea anemone genomes
harbor several highly divergent N-terminal–like domains,
separate from the RAG1 core–like sequences and known
transposable elements, it is very likely that the N-terminal–
like domains of RAG1 also form a multigene family that can
be traced back to a common ancestor of Deuterostomes (see
Figure 1). If so, then both N-terminal and core domains of
RAG1 might have been derived from different genes present
in a common ancestor of Deuterostomes. Alternatively, the
N-terminal domain of RAG1 might have been derived from a
separate, unknown transposon. The N-terminal domain of
RAG1 has long been viewed as distinct from the core domain
due to its lack of direct involvement in the V(D)J recombi-
nation reaction. In the sea urchin, lancelet, hydra, and starlet
sea anemone genomes, the RAG1 core–like sequences and the
N-terminal domain–like sequences do not appear to be
linked to each other or to any other proteins. The only
notable exception is the anemone RAG1 core–like protein
sequence, which is capped by the 90-aa ring finger motif.
Taken together with the fact that only the RAG1 core is
significantly similar to Transib TPase, the data suggest that the
vertebrate RAG1 represents a fusion of once separate
proteins. This is consistent with the observation that in
teleosts, (bony fish) the RAG1 gene is divided into exons by
either one or two introns. As a result, the RAG1 core is split
into separate exons at the aa position that corresponds to
position 460 in the human RAG1gene [29,34,38]. The core-
like sequences encoded by the sea urchin WGS sequence
contigs 29068 and 12509 correspond to either the second or
third RAG1 exon in teleosts (depending on the number of
introns), which is remarkably consistent with the fusion
model. The same model predicts that the N-terminal domain
of RAG1 could also be assembled from two separate domains
based on the presence of the second intron in some teleosts,
splitting the N-terminal domain into the 102-aa N-terminal
subdomain and the rest [34]. As indicated above, this
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subdomain, corresponding to the first exon in the genes split
by two introns, appears to be missing in the sea urchin,
lancelet, hydra, and starlet sea anemone N-terminal–like
proteins. It may be encoded by a separate exon that is
difficult to detect given its short length and the high level of
sequence divergence between these species and vertebrates,
or it might have been added in vertebrates. Similarly, the
RAG1 core–like protein in the sea urchin genome is shorter
in its N-terminal part than the core domain in vertebrates
and the corresponding Transib TPase. Again, it is unclear if
this part is not present in sea urchins or simply undetectable
due to its small size and the high sequence divergence.

It is currently believed that both RAG1 and RAG2 proteins
were originally encoded by the same transposon recruited in
a common ancestor of jawed vertebrates [3,12,13,16]. How-
ever, none of the Transib transposons identified so far encode
any proteins other than the Transib/RAG TPase. Also, we
could not find any RAG2-like sequences in the recently
sequenced sea urchin, lancelet, hydra, and sea anemone
genomes, which encode RAG1-like sequences. Autonomous
DNA transposons from the MuDR, Harbinger, and En/Spm
superfamilies are each known to encode a second regulatory
protein [23,24], whereas some transposons from these super-
families encode the TPase only. Therefore, it is in principle
possible that an ancient vertebrate Transib that was a direct
ancestor of the RAG1 core also encoded a second protein, the
direct ancestor of RAG2. Nevertheless, the apparent lack of
RAG2-like proteins in the sequenced portion of the sea
urchin, lancelet, hydra, and sea anemone genomes, as well as
in Transib transposons suggests that RAG2 was introduced in
a separate event in jawless vertebrates. However, given the
low 30% identity between the RAG1 and sea urchin/lancelet/
sea squirt RAG1-like proteins, we cannot exclude the
possibility that the ancestral RAG2 protein went through a
period of strong diversification driven by positive selection,
and it can no longer be identified by sequence comparisons
but may still be present in invertebrates. In any case, the
origin of the V(D)J recombination system in jawless verte-
brates appears to be a culmination of earlier evolutionary
processes rather than an isolated event associated with
insertion of a single transposon. If so, detailed studies of
individual components, including active Transib transposons
and invertebrate proteins homologous to RAG1 elements can
bring new breakthroughs in our understanding of evolu-
tionary and mechanistic aspects of V(D)J recombination.

The observed sequence similarity between the RAG1 and
Transib TPase protein can help to identify aa residues in the
TPase that are crucial for transposition of Transib trans-
posons. For instance, on the basis of the TPase comparison to
RAG1 (see Figures S1 and S3), we were able to identify correct
positions of the last two aa residues in the DDE catalytic triad
(see Figure 2 in [17]), missed in our previous study due to
insufficient data. Interestingly, only two cysteines of the zinc
finger B (ZFB) C2H2 motif in RAG1 (residues 695–761)
involved in its binding to RAG2 [30,31] are perfectly
conserved in the Transib TPases (motif 7; see Figures 3 and
S3). The remaining portion of the ZFB motif was probably
lost in TPases of insect Transib transposons, which do not
encode RAG2-like proteins. Notably, two ZFB cysteines are
part of the conserved SxxCxxC motif, and mutations of the
serine from the same motif cause severe defects in RAG1
transpositions in vitro [32]. Therefore, the presence of serine

in this motif is expected to be crucial to Transib trans-
positions.
After submission of our manuscript, additional biochem-

ical evidence favoring evolution of V(D)J recombination from
transposable elements was reported [25]. Analogously to
V(D)J recombination, transposition of the fly Hermes trans-
poson, which belongs to the hAT superfamily, is also
characterized by a double-strand break via hairpin formation
on flanking DNA and 39 OH joining to the target DNA [25].
However, although the observed biochemical relationship
between the hAT TPase and V(D)J recombination is a step
forward in our understanding of transposition reaction,
several arguments strongly suggest that V(D)J machinery
evolved from a Transib rather than from hAT transposon.
First, as we mentioned previously, there is no significant
sequence identity between hAT TPases and RAG1, even if one
employs a PSI-BLAST search with most relaxed parameters
(i.e., E , 10, no filters, no composition-based statistics).
Second, although RAG1/2-mediated transpositions are char-
acterized by 5-bp (sometimes 4-bp) TSDs, all known hAT
transposons are characterized by 8-bp TSDs. Third, unlike in
the case of Transib transposons, TIRs of hAT transposons are
different from RSS both in terms of DNA sequence
similarities and their conservation patterns (Figure S7).
Fourth, hAT- and RAG1/2-mediated transpositions differ
dramatically in terms of the GC content of their target sites:
Unlike Transib transposons and RAG1 transpositions occur-
ring in GC-rich DNA, hAT transposons tend to be integrated
into AT-rich regions (Table S2). All four arguments strongly
favor evolution of V(D)J machinery from a Transib trans-
poson. Most likely, the Transib transpositions are also
characterized by hairpin intermediates formed by the ends
of the donor DNA double-strand breaks, as observed during
V(D)J recombination and hAT transposition.

Materials and Methods

DNA and protein sequences. Assembled D. pseudoobscura sequences
were downloaded from the Human Genome Sequencing Center at
Baylor College of Medicine through the Web site at http://
hgsc.bcm.tmc.edu/projects/drosophila/ on 2 March 2004. Preliminary
A. aegypti sequence data were obtained from The Institute for
Genomic Research through the Web site at http://www.tigr.org on 4
March 2004. Assembled D. melanogaster sequences were downloaded
from the Berkeley Drosophila Genome Project at http://www.fruitfly.
org/sequence/download.html on 17 February 2004. Partially as-
sembled S. purpuratus contig sequences were downloaded on 12
August 2004 from the Baylor College of Medicine through the Web
site at ftp://ftp.hgsc.bcm.tmc.edu/pub/data/Spurpuratus/blast/
Spur20030922-genome. In addition to the assembled contigs, Baylor
College of Medicine, Human Genome Sequencing Center (http://
www.hgsc.bcm.tmc.edu) produced an approximately 8-Gb set of short
unassembled WGS sequences, called ‘‘traces’’, which cover nearly the
entire sea urchin genome. We downloaded these sequences from the
GenBank Trace Archive at the National Center for Biotechnology
Information (NCBI; ftp: / / f tp .ncbi .nih.gov/pub/TraceDB/
strongylocentrotus_purpuratus/) on 17 November 2004. Also, we
downloaded an approximately 5-Gb set of unassembled traces that
cover almost completely the 600-Mb genome of Florida lancelet (ftp://
ftp.ncbi.nih.gov/pub/TraceDB/branchiostoma_floridae/; 3 December
2004). These sequences were produced and deposited in the GenBank
Trace Archive by Department of Energy Joint Genomic Institute
(http://www.jgi.doe.gov/). All other DNA and protein sequences were
accessed from GenBank (NCBI) through the server at http://
www.ncbi.nih.gov/Genbank/ and from Ensembl (EMBL-EBI and
Sanger Institute) via the server at http://www.ensembl.org. Sequences
of the Transib1 through Transib4 and Transib1_AG through Tran-
sib3_AG transposons [17] were obtained from the D. melanogaster
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(drorep.ref) and A. gambiae (angrep.ref) sections of Repbase Update
[39] at Genetic Information Research Institute (http://www.girinst.
org).

Sequence analysis. Computer-assisted identification and recon-
struction of the Transib transposons was done as described previously
[17,40–42]. DNA sequence analysis including local sequence align-
ments, multiple alignments, and reconstruction of the Transib
consensus sequences was done using software developed at Genetic
Information Research Institute (available upon request) and WU-
BLASTN 2.0 (http://blast.wustl.edu). To avoid background noise
introduced by mutations, Transib relics, whose TPase-coding regions
contained numerous stop codons and indels, were ignored unless
several copies were available. (We included in the analysis incomplete
relics of the Transib2–5_AA TPases represented by single DNA
copies). Prediction of putative exons and introns encoded by the
Transib consensus sequences was done with FGENESH [33] (at http://
www.softberry.com). Multiple alignments of distantly related RAG1
and Transib TPase protein sequences were created by T-Coffee [40].
Shading and minor manual refinements of the aligned sequences
were done using Genedoc [43]. Phylogenetic trees were produced by
using MEGA3 [44]. Some of the sea urchin sequences encoding the
RAG1 N-terminal domain were assembled from traces based on the
Baylor BAC-Fisher server at http://www.hgsc.bcm.tmc.edu/BAC-Fish-
er/ (the results of assembly were verified manually).

All GenBank proteins were downloaded from ftp://ftp.ncbi.nih.gov/
blast/DB/fasta/nr (February 2004) and were combined into a single set
with the identified Transib TPases. No Transib TPases had been
deposited or annotated previously in GenBank, except for two short
hypothetical proteins predicted automatically during annotation of
the D. melanogaster genome: 151-aa gi:30923617 and 123-aa
gi:30923765. These proteins are apparent fragments of Transib TPases
encoded by relics of Transib transposons, including Transib5_DM.

A standalone 2001 version of PSI (Position-Specific Iterating)-
BLAST [18,45] was used for detection of proteins that were
significantly similar to TPases encoded by Transib and other super-
families of DNA transposons. The PSI-BLAST program [18,45] is
much more sensitive than a regular BLAST search due to the use of
PSSM) PSI-BLAST first performs a standard BLASTP search of a
protein query against a protein database and constructs a multiple
alignment of matches exceeding a certain E-value threshold (called Ei
value for the inclusion of sequences into PSI-BLAST iterations). From
this alignment, a PSSM is constructed. The PSSM is a weight matrix
indicating the relative occurrence of each of the 20 aa at each
position in the alignment. This new PSSM is used as the score matrix
for a new BLAST search in a second iteration. The process is repeated
for a specific number of iterations or until convergence, when no
additional proteins are added on successive iterations. The use of a
PSSM in place of a fixed generic substitution matrix such as
BLOSUM62 results in a much more sensitive BLAST search [18,45].
Important practical aspects of using PSI-BLAST were recently
described [46].

To ensure that a conservation profile for the Transib TPases and
RAG1 proteins was not produced by a systematic error, we employed
a procedure of ‘‘step-wise’’ PSI-BLAST iterations. In this procedure
we studied dependence of Ei values on the number of the Transib
TPases combined with the GenBank proteins. The following protocol
describes the procedure: (1) Use a GenBank set combined with N
number of Transib TPases (in our studies, N was equal to 7, 13, and
18), (2) run PSI-BLAST against GenBank combined with TPases using
each TPase as a query or seed, (3) select only Transib TPase sequences
with E-values less than 10�5 to define the PSSM, (4) take the best E-
value (Ei) obtained by PSI-BLAST for RAG1s when PSSM is
constructed without RAG1, then (5) repeat these operations for
different numbers (N) of TPases.

Significant convergence of RAG1 and Transib TPases was observed
to be independent of the particular type of substitution matrix (the
same result was observed for both BLOSUM62 and PAM70 matrixes).
To avoid detection of false similarities caused by simple repeats and
coiled coils, the PSI-BLAST search was performed using stringent
conditions with the SEG [47] and COILS [48] filters masking all low-
complexity regions and coiled coils, respectively; composition-based
statistics [45] were also employed.

The probability P1 that the 59 terminus of a transposon from a
particular Transib family would match by chance an RSS at its most
conserved positions (positions 1�3 in the RSS heptamer, and
positions 5 and 6 in the RSS nonamer) was estimated based on the
following formula: P1 = fC 3 fA 3 fC 3 fA 3 fA, where fC (0.2) and fA
(0.3) are frequencies of C and A in a set of 38-bp 59 termini of Transib
transposons from 21 families (see Figure 4). The value of P1 is 0.001,
indicating a significant similarity between Transib TIRs and RSS.

Indeed, given that these five positions conserved in RSS are conserved
in all TIRs from 21 families of Transib transposons, and the average
identity between these 38-bp TIRs is only 49%, the chance of
randomly matching these positions in TIRs from all 21 families is
extremely small.

TBLASTN searches against the Trace Archive were performed by
using the BLAST client (blastcl3 or netblast at ftp://ftp.ncbi.nlm.nih.
gov/blast/executables/LATEST/), which accesses the NCBI BLAST
search engine. Names of all available Trace Databases were taken
from a list of databases at http://www.ncbi.nlm.nih.gov/blast/mmtrace.
shtml.

Supporting Information

Figure S1. Similarity between C-Terminal Portions of the Transi-
b2_AG TPase and RAG1

Two examples extracted from the NCBI BLASTP output illustrate
similarity between the approximately 60-aa C-terminal portions of
the Transib2_AG TPase (which we used as a query in a BLASTP
search against all GenBank proteins) and the RAG1 core.

Found at DOI: 10.1371/journal.pbio.0030181.sg001 (751 KB EPS).

Figure S2. Multiple Alignment of Transib TPases

The catalytic DDE triad is marked by black rectangles. Amino acids
are shaded on the basis of their physiochemical properties according
to the color scheme implemented in Genedoc [43]: Black shading
marks hydrophobic residues, blue indicates charged (white font),
positively charged (red font), and negatively charged (green font); red
indicates proline (blue font) and glycine (green font); gray indicates
aliphatic (red font) and aromatic (blue font); green indicates polar
(black font) and amphoteric (red font); yellow indicates tiny (blue
font) and small (green font). The species abbreviations are as follows:
SP, sea urchin; DP, D. pseudoobscura fruit fly; AG, African malaria
mosquito; AA, yellow fever mosquito. Transib1 through Transib5 are
from the D. melanogaster fruit fly genome.

Found at DOI: 10.1371/journal.pbio.0030181.sg002 (3 MB EPS).

Figure S3. Multiple Alignment of the RAG1 Core and Transib TPase
Proteins

The shading scheme is the same as in Figure S2. The catalytic DDE
triad is marked by black rectangles. RAG1 aa whose replacements
resulted in previously detected defects of V(D)J recombination [31]
are marked by color rectangles indicated below the alignment blocks;
red indicates DNA binding defect; green indicates nicking defect;
cyan indicates hairpin defect; blue indicates joining mutants; yellow
indicates catalytic mutants; gray indicates joining/transposition.
Presence and absence of corresponding residues in the Transib
TPases are indicated by þ and �, respectively. Conserved motifs are
marked by lines numbered from 1 to 10. The species abbreviations
are as follows: DP, D. pseudoobscura fruit fly; AG, African malaria
mosquito; AA, yellow fever mosquito; GG, chicken; HS, human; XL,
frog; CL, bull shark; FR, fugu fish.

Found at DOI: 10.1371/journal.pbio.0030181.sg003 (3 MB EPS).

Figure S4. TSDs in Transposons from Different Transib Families

For each family, DNA copies of transposons are aligned to the
corresponding consensus sequence. The consensus sequence is shown
in the top line. Dots indicate nucleotide identity with the consensus
sequence; hyphens represent alignment gaps. Internal portions of
transposons are not shown and are marked by xxx. TSDs are
highlighted. Coordinates of the reported elements are shown in the
first two columns (sequence name, beginning to end).
(A) TransibN1_AG family from mosquito.
(B) TransibN2_AG family from mosquito.
(C) TransibN3_AG family from mosquito.
(D) TransibN1_DP family from fruit fly.
(E) Hopper family from fruit fly.
(F) TransibN1_DM family from fruit fly.
(G) TransibN1_SP family from sea urchin.

Found at DOI: 10.1371/journal.pbio.0030181.sg004 (179 KB PDF).

Figure S5. Multiple Alignment of the RAG1 Core and RAG1 Core–
Like Proteins Encoded by the Sea Urchin and Lancelet Genomes

The shading scheme is the same as in Figures S2 and S3. The species
abbreviations are as follows: SP, sea urchin; BF, lancelet; HS, human;
CL, bull shark; GG, chicken; XL, frog; FR, fugu fish. The lancelet
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RAG1L_BF protein is encoded by several overlapping WGS trace
sequences (for example, GenBank Trace Archive identification
numbers 543943730, 538583629).

Found at DOI: 10.1371/journal.pbio.0030181.sg005 (2.8 MB EPS).

Figure S6. RAG1-Like Protein SP_29068 in the Sea Urchin Contig
29068

(A) Exon/intron structure of the SP_29068 gene is reported based on
the FGENESH prediction.
(B) Alignment of the predicted protein and human RAG1 (29%
identity, E = 10�43. The intron in SP_29068 is inserted between
residues shaded in green and red. Gly460 that harbors the intron in
the teleost RAG1 is shaded in black.

Found at DOI: 10.1371/journal.pbio.0030181.sg006 (1.5 MB EPS).

Figure S7. Structure of hAT 59 Termini

Non-gapped alignment of consensus sequences of 59 termini of
transposons from 22 different families is shown beneath the RSS23
consensus sequence, composed of the RSS heptamer and nonamer.
The most conserved nucleotides in the heptamer and nonamer, which
are necessary for efficient V(D)J recombination, are highlighted.
Among the necessary RSS nucleotides, only one, marked by a þ
corresponds to a nucleotide that is 100% conserved in hAT
transposons. The critical third nucleotide of the hAT 59 termini is
always G, as opposed to C in the RSS heptamer. It is also clear from
the alignment that the hAT termini do not have any second conserved
block, which is expected to be preserved if RSSs have evolved from
hAT termini. Hobo (GenBank number X04705), Homer (AF110403),
Hermes (L34807), Ac9 (K01904), Tam3_AM (X55078), TAG1 (L12220),
Pegasus (U47019) are active hAT transposons from fruit fly, Queens-
land fruit fly, house fly, maize, snapdragon, thale-cress, and African
malaria mosquito, respectively. HOPPER_BD is from oriental fruit
fly (GenBank AF486809). The consensus sequences of hAT-1N_DP
and hAT-1N_DP (nonautonomous transposons from fruit fly, D.
pseudoobscura); HAT1N_DR, hAT-2n1_DR, and hAT-N19_DR (non-
autonomous transposons from zebrafish); CHARLIE1A and CHESH-
IRE (human); hAT-N1_SP (sea urchin); ATHAT1, ATHAT7, and
ATHAT10 (thale-cress); PegasusA, HATN4_AG, and hAT-2N_AG
(African malaria mosquito) were reported in Repbase Update.

Found at DOI: 10.1371/journal.pbio.0030181.sg007 (775 KB EPS).

Table S1. Transib TPase in Eukaryotes

Columns 1 and 2 list common and Latin names of species whose
genomes contain Transib TPase sequences. Column 3 shows GenBank
sections collecting corresponding sequences: "NR", "WGS", "EST",
and "HTGS" are names of GenBank sections; "tr" stands for ‘‘Trace
Archives.’’ Column 4 shows a range of E-values of matches between
the sea urchin Transib TPase (Transib1_SP) and TPases encoded by
the listed species that were detected in TBLASTN searches against
corresponding sections of GenBank. Matches to the Transib TPase
observed for Oryza sativa indica (seven sequences from Trace Archives,
10�48 , E , 10�13) were discarded as a likely sequencing
contamination, based on the fact that these sequences were over
80% identical to Hydra magnipapillata traces (the hydra Trace Archive
dataset contains over 100 sequences matching the TPase, and hydra
Transib TPase sequences are also present in the dbEST section of
GenBank). Analogously, matches to the Transib TPase detected in the
AC011430 HTGs and AADC01054609 WGS GenBank sequences,
which were annotated as portions of the human genome, were
discarded as products of contamination (these sequences contain

100% identical copies of the non-long terminal repeat (LTR)
retrotransposon G2_DM [17] from D. melanogaster).
Found at DOI: 10.1371/journal.pbio.0030181.st001 (27 KB DOC).

Table S2. GC Content of Target Sites for hAT Transposons

The table shows that hAT transposons are inserted preferentially into
GC-rich sites. Each of the 35-bp insertion sites corresponds to two 14-
bp and 13-bp DNA fragments flanking a genomic hAT element at its
59 and 39 termini; one of the 8-bp TSDs (flanking the 39 terminus of a
transposon) was excluded in each case. Analogously, the 15-bp
insertion sites were composed of two 4-bp and 3-bp flanking
fragments. (1) GenBank accession number U47019; (2) Repbase
Update, the angrep.ref section; (3) GenBank X04705; (4) Repbase
Update, the drorep.ref section; (5) Repbase Update, spurep.ref;
(6)Repbase Updates, the zebrep.ref section. Copies of Pegasus,
HATN4_AG, and HAT2N_AG were identified in the mosquito A.
gambiae genome; Hobo and hAT-1N_DP in the D. melanogaster and D.
pseudoobscura fruit fly genomes, respectively; HAT-1N_SP in the sea
urchin genome; and HAT1N_DR, HAT-2N1_DR, and HAT-N19_DR
in the zebrafish genome.

Found at DOI: 10.1371/journal.pbio.0030181.st002 (27 KB DOC).

Accession Numbers

The sea urchin Transib1_SP transposon, RAG1L_HM, RAG1L_BF,
RAG1L_NV, 81978_SP, 12509_SP, 6797–1_SP, 6797–2_SP, 6797–
3_SP, 8813_SP, 71716_SP, and 29068_SP genes/pseudogenes have
been deposited on our website (http://girinst.org/server/publ/
PLOS.2005) and in the Third Party Annotation (TPA) database of
GenBank (http://www.ncbi.nih.gov/Genbank/TPA.html); accession
numbers are pending. The Transib1, Transib2, Transib3, Transib4,
Transib1_AG, Transib2_AG, Transib3_AG, Transib1_DP, Tran-
sib2_DP, Transib3_DP, Transib4_DP, Transib1_AA, Transib2_AA,
Transib3_AA, Transib4_AA, Transib5_AA, Transib1_SP, Tran-
sibN1_SP, TransibN1_AG, TransibN2_AG, TransibN3_AG, Tran-
sibN1_DM, TransibN1_DP, TransibN2_DP, TransibN3_DP,
TransibN4_DP, and TransibN5_DP transposons are deposited in
the drorep (D. melanogaster), angrep (A. gambiae), spurep (S. purpuratus),
and invrep (invertebrates) sections of Repbase Update (http://
www.girinst.org/Repbase_Update.html).
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