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Abstract

Background Complexity analysis of glucose profile may provide valuable in-
formation about the gluco-regulatory system. We hypothesized that a com-
plexity metric (detrended fluctuation analysis, DFA) may have a prognostic
value for the development of type 2 diabetes in patients at risk.

Methods A total of 206 patients with any of the following risk factors (1) es-
sential hypertension, (2) obesity or (3) a first-degree relative with a diagnosis
of diabetes were included in a survival analysis study for a diagnosis of new
onset type 2 diabetes. At inclusion, a glucometry by means of a Continuous
Glucose Monitoring System was performed, and DFA was calculated for a
24-h glucose time series. Patients were then followed up every 6 months,
controlling for the development of diabetes.

Results In a median follow-up of 18 months, there were 18 new cases of
diabetes (58.5 cases/1000 patient-years). DFA was a significant predictor for
the development of diabetes, with ten events in the highest quartile versus
one in the lowest (log-rank test chi2=9, df=1, p=0.003), even after
adjusting for other relevant clinical and biochemical variables. In a Cox model,
the risk of diabetes development increased 2.8 times for every 0.1 DFA units. In
a multivariate analysis, only fasting glucose, HbA1c and DFA emerged as
significant factors.

Conclusions Detrended fluctuation analysis significantly performed as a har-
binger of type 2 diabetes development in a high-risk population. Complexity
analysis may help in targeting patients who could be candidates for intensified
treatment. Copyright © 2016 The Authors. Diabetes/Metabolism Research and
Reviews Published by John Wiley & Sons Ltd.
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Introduction

While diagnostic criteria for type 2 diabetes are well established [1], it is gen-
erally admitted that when these criteria are met, significant damage has al-
ready been done, and at diabetes diagnosis, pancreatic beta function has lost
50% of its capacity [2,3]. The fasting plasma glucose 126 mg/dL and glycosyl-
ated haemoglobin (HbA1c) 6.5% threshold were established based on the risk
of developing diabetic retinopathy, but insulin secretion and endothelium are
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known to be at risk long before this threshold is reached
[4]. Of course, changing the threshold is not the answer:
it would only increase the rate of false positives.

Furthermore, although two of the conventional criteria,
HbA1c and oral glucose tolerance test, somehow contemplate
the temporal dimension of the problem, the diagnosis of dia-
betes is mostly a categorical ‘yes/no’, snapshot-decision that
overlooks the essentially dynamic aspect of the question, in
two timescales:

• in the long term (months–years): diabetes is the end of
a process that often begins with some very prevalent
conditions (e.g. being overweight).

• in the short term (minutes–hours): arguably, the first
disturbance in gluco-regulation is the disruption in
the physiologic flux and reflux of glycolysis and gluco-
neogenesis that occur in the feeding and fasting cycle,
appearing first either as impaired fasting glucose or as
impaired glucose tolerance.

It would be of great interest to find an instrument that
could explore the short-term glucose dynamics and per-
haps provide a tool to follow quantitatively the evolution
from prediabetic conditions like the metabolic syndrome
and other phenotypes of increased diabetes risk to type
2 diabetes meeting current standard diagnostic criteria.

This has been tried through conventional variability
metrics for glucose time series, mostly derived from range
or standard deviation (SD). However, these approaches
have significant limitations, most importantly the fact that
they assume each measurement as an independent value,
which it obviously is not: the present level of glycaemia is
heavily conditioned by the previous. A consequence of this
limitation is the fact that the same set of glucose measure-
ments analysed in an orderly fashion or in a random order
will have the same (conventional) distribution, but obvi-
ously entirely different biological meaning because it does
not take into account an essential characteristic of a time
series, namely, its sequentially. There have been attempts
to consider this aspect, mainly by means of the mean am-
plitude of glycaemic excursions (MAGE) [5], but this met-
ric is hampered by an arbitrary definition of glycaemic
excursion (i.e. one SD of the time series under analysis)
and has not found generalized acceptance in diabetes.

Complexity analysis of time series is a set of techniques
derived from non-linear dynamics that may provide a use-
ful insight into this issue. A full discussion on complexity
analysis falls out of the scope of the present article, but in
essence, these methods explore the informational content
(≈ entropy) of a time series analysing the rate at which
details are lost as the time window increases (and thus
the description becomes less meticulous). A more specific
description of detrended fluctuation analysis (DFA; the tool
used in this study) is offered in the Methods section, and a

brief elementary description can be found in http://www.
complexity-at-the-bedside.org/complexity/tutorials/. The
main idea is that the more complex a time series, the more
its description will depend on the small details. If one
builds a ‘map’ of a time series through a set of linear
segments of varying sizes (time windows) and measures
the gap between the ‘map’ (the linear segments) and the
‘territory’ (the time series) (Figure 1), it is apparent that
the larger the time windows, the larger the ‘map-to-territory
gap’. DFA measures the rate at which this gap increases as
the time windows enlarge. A more complex series will
have proportionally more of its information codified in
the small windows, so a sizable rise in the map-to-
territory gap will occur in the small windows. Conversely,
a less complex series will have more information codified
in the large windows, and therefore the map-to-territory
gap will increase steadily well into larger time windows.
This is displayed as a higher DFA (i.e. DFA increases as
the complexity decreases).

An almost ubiquitous finding in complex systems is the
‘de-complexification’ of their output as the system decays.
This has been observed in heart rhythm, thermoregula-
tion, ageing or neurologic disorders [6–10], among
others, and it is often one of the earliest signs of disease.

Gluco-regulation is a paradigmatic example of a com-
plex system, with several overlapping feedback and feed
forward loops, and therefore it would be reasonable to ex-
pect a loss of complexity in its output as an early symptom
of dysfunction. In fact, several publications have reported
such a loss both in type 1 diabetes and type 2 diabetes,
and there seems to be a relation between loss of complex-
ity and progression in dysglycaemia [11–18].

Our present study examines whether complexity analysis
of glucose time series may provide more information, over
and above that supplied by conventional variables (fasting
glucose, HbA1c, etc.), on the decay of gluco-regulation and
namely if it can help in predicting which patients at risk will
eventually run the whole way to diabetes. We present a
prospective survival analysis of the incidence of diabetes in
a population with high risk of developing this disease.

Material and methods

Patients

The study targeted at patients considered at increased risk
of developing diabetes. This was defined as complying
with at least one of the following conditions:

a essential hypertension,
b BMI≥30 kg/m2,
c a first-degree relative diagnosed of diabetes.
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A total of 262 patients were finally recruited from the
General Internal Medicine outpatient clinic and the Hy-
pertension Unit of the Mostoles University Hospital from
January 2012 to December 2014.

Patients under 25 or over 85 years old were excluded,
as were those with a previous diagnosis of diabetes, taking
anti-diabetic drugs or on treatments that could affect
gluco-regulation (e.g. glucocorticoids).

At admission, patients underwent a general history,
physical exam and routine biochemical tests (including
fasting glucose, lipid profile, HbA1c, fasting insulin, ho-
meostasis model assessment-insulin resistance index, se-
rum cystatin C and albuminuria).

Then a glucometry was performed by means of a
continuous glucose monitoring system. After that, pa-
tients were reviewed every 6 months (general

examination and biochemical tests) until the end of
the study.

An event (diagnosis of diabetes) was considered when
a patient had either the following:

• fasting glucose≥126 mg/dL,
• HbA1c≥6.5%,
• started on anti-diabetic drugs.

When the results of two different tests (e.g. fasting glu-
cose and HbA1c), available for the same patient, resulted
both above the diagnostic thresholds, the diagnosis of di-
abetes was made. Otherwise, the diagnosis was confirmed
on a second test.

The study protocol was approved by the Hospital’s Eth-
ical Committee, and a written informed consent was ob-
tained from each patient.

Figure 1. The gap between the regression line(s) and the glucose curve is calculated for different time-window sizes:

Fn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

∑
N

k¼1
y kð Þ � yn kð Þ½ �2

s
;

where N is the number of point in the time series, y(k) is the value of the time series at time k and yn(k) is the value of the linear
regression at time k. In our series, N=288, corresponding to a glucose measurement every 5 min for 24 h. The time windows used
went from one 24-h time window (288 points) to ninety-six 15′ windows (three points in each window). (A) It displays Fn for
time-windows size of 288 points (one 24-h window), 144 (two 12-h window), 96 (8 h), 72 (6 h) and 48 (4 h). Fn is calculated for
progressively smaller time windows, to a limit of 15 min. (B) If the series has a fractal structure, a regression model can be built
for log(Fn) ~ log(time-window size). Detrended fluctuation analysis is the slope of this regression line
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Glucometry

At admission to the study, every patient underwent a
glucometry (iPro; Medtronics MiniMed, Northridge, CA,
USA) for 3 days, while the patient followed his normal life
(including normal diet). This technique allows determin-
ing glucose in interstitial fluid every 5′. Once
downloaded, the time series was revised, and a clean
24-h segment was selected for analysis. Whenever possi-
ble, the selected 24 h started at 08.00 h on day 2 (to avoid
the stressful hours in hospital). However, complexity anal-
ysis ideally requires a complete time series, with no inter-
ruptions, which occasionally is not possible. If the time
series had missing values, they were calculated by inter-
polation, as long as the missing string was <3 consecutive
values. If there were three or more consecutive missing
values, the time series was considered inadequate, and
another 24-h period was selected from the same
glucometry. If no adequate 24-h period was found, the
glucometry was considered unsuitable and was discarded.

Complexity analysis

Complexity analysis was performed by means of DFA. A
full description of DFA can be found in [19], and a basic
introductory video can be seen at http://www.complex-
ity-at-the-bedside.org/complexity/tutorials/. Basically,
DFA explores the complexity of a time series analysing
the rate of information loss as the ‘graining’ of the descrip-
tion becomes coarser. The central idea is that complex se-
ries will have a greater amount of information in the small
details, and consequently, their description will become
rapidly more and more inaccurate as the graining (time-
window size) increases, while less complex time series
will retain a more accurate description well into coarser
graining. The algorithm proceeds as follows:

1 The series is divided into W equally distributed time
windows, with a window size.

n ¼ total number of lectures = W

2 A linear regression is calculated for each window.
3 The ‘error’ (area between the curve and the linear re-

gression) is measured for the whole series.

Formally,

Fn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

∑
N

k¼1
y kð Þ � yn kð Þ½ �2

s
;

where Fn is the measure of the difference between the
curve and the regression line, N is the total number of
data points, y(k) is the value of the curve at each point
and yn(k) is the value of the regression line at that point.

This area (Fn) can be interpreted as the gap between
the ‘territory’ (the time series) and the ‘map’ (the linear
regression).

4. The process is repeated for a set of different time win-
dows, and Fn is found for each n (Figure 1A).

5. In complex systems deploying fractal characteristics,
there is an exponential relation between Fn and the
time-window size (Fn na). Consequently, there will
be a linear relation between log(Fn) and log(n).

DFA (a) is the slope of the relation: log(Fn) a · log(n)
(Figure 1B).
Complex time series will quickly increase their ‘map ver-

sus territory gap’ as the ‘graining’ (time-window size) in-
creases, therefore displaying proportionally higher Fn
values in small windows, while less complex series will
keep this gap proportionally small until larger time-
window sizes. Consequently, complex series will have a
less steep log(Fn) log(n) slope and a lower DFA
(Figure 1B).

It should be noted that, while most articles applying DFA
to biological signals integrate the time series before the
detrending, (including our previous articles) [11,17,18],
we now omit this pretreatment. Integrating the time series
is used in long, noisy, non-stationary time series, converting
them into a random-walk model, and thus allowing the use
of all the mathematical tools developed for this model. Most
notably, this establishes the threshold or DFA=1.5, for a
random series. Therefore, DFA>1.5 denotes a positive cor-
relation, while DFA<1.5 indicates an anti-correlated time
series. However, our time series is short (288 points) and
fairly stationary, and ‘smoothing’ them through integration
arguably erases valuable information. Admittedly, omitting
the initial integration precludes the conventional ‘random-
walk’ interpretation of DFA. However, this metric remains
a solid probe to explore the ‘map–territory gap’ enlargement
as the time windows increase and thus provides a useful
measure of the time series’ entropy.

Both complexity analysis and statistical analysis were
performed in R (http://cran.r-project.org/). Normality
was analysed by means of the Shapiro–Wilk test. Principal
component analysis was calculated by means of the corre-
lation matrix (principal {psyche} cran.r-project.org/web/
packages/psych/psych.pdf), with factors selected accord-
ing to the Kaiser–Meyer–Olkin criterion (eigenvalue>1).

Significance was defined by a two-tailed p<0.05.

Results

Initially, 262 patients were recruited. From this cohort, 40
were excluded because their glucometries were
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considered unsuitable for complexity analysis. A total of
15 patients had no follow-up, and one patient was ex-
cluded because she started on high-dose corticosteroids
because of a facial palsy. The remaining 206 patients are
the object of the present analysis.

Except for a slightly lower diastolic blood pressure
(73.9 mmHg versus 78.1 mmHg, p=0.01) and a tendency
towards higher triglycerides levels (110 mg/dL versus
123 mg/dL, p=0.09), there were no significant differ-
ences between included and excluded patients regarding
gender, age, body mass index, abdominal circumference,
systolic blood pressures, fasting glucose, HbA1c, high-
density lipoprotein (HDL)-cholesterol, renal function, al-
buminuria or number of Adult Treatment Panel-III meta-
bolic syndrome defining criteria (data not shown).
Therefore, exclusion does not seem to carry any bias.

The principal clinical characteristics of the finally in-
cluded population are shown in Table 1.

Correlations within variables at entry

Complexity showed a significant negative correlation
(positive correlation with DFA) with several variables
known to be risk factors for the development of diabetes,
namely, the abdominal circumference, fasting glucose,
HbA1c, the number of metabolic syndrome-defining
criteria and MAGE (Table 2). There was also a (paradoxi-
cal) negative correlation between diastolic blood pressure
and DFA, but it disappeared when adjusted by the vari-
able of being on antihypertensive drugs treatment (either
as a qualitative variable or as the number of antihyperten-
sive drugs taken by the patient).

Events

During a median follow-up of 17.5 months, 18 events were
recorded: four (22%) because of fasting glucose ≥126 mg/
dL, three (17%) because of HbA1c ≥6.5%, ten (56%) because
of both criteria and one patient because she was started (in
another centre) on anti-diabetic drugs. This represents an
event-ratio of 58.25 cases/1000 patient-years.

Survival analysis

A univariate Cox proportional hazard model for diabetes
development was built for different variables (Table 3).

In addition to several conventional variables (abdomi-
nal circumference, fasting glucose, HbA1c, HDL-
cholesterol, number of Adult Treatment Panel-III
metabolic-syndrome defining criteria and MAGE), DFA
had a significant influence on the hazard ratio of diabetes

development (beta=11.434). This implies that the odds-
ratio of developing diabetes increases 3.14 times for each
0.1 unit of increase in DFA.

In the log rank test, there was one event in the lowest
DFA quartile versus ten in the highest (chi-square 9
(df=1), p=0.003).

Table 1. Clinical variables of study population at entry

All: 206

Age (years)
Median (IQR) 61 (13)

Gender
Female/male 101/105

Relatives with diabetes (%) 55 (28)
Obesity (BMI ≥ 30) (%) 95 (46)
Essential hypertension (%) 189 (92)
Systolic BP (mmHg)
Median (IQR) 133.5 (19.25)

Diastolic BP (mmHg)
Mean (SD) 78.2 (9.0)

BMI (Kg/m2)
Median (IQR) 30 (6)

Abdominal circumference (cm)
Men
Mean (SD) 104.5 (10.1)

Women
Mean (SD) 99.2 (12.1)

Fasting glucose (mg/dL)
Mean (SD) 100.18 (11.17)

HbA1c (%)
Median (IQR) 5.8 (0.29)

IFG (%) 105 (51%)
HbA1c ≥ 5.7 (%) 129 (66%)
HDL-cholesterol (mg/dL)
Men
Median (IQR) 43.8 (13.5)

Women
Median (IQR) 57.9 (12.3)

Triglycerides (mg/dL)
Median (IQR) 110 (62.8)

EPI-GFR (mL/min/1.73 m2)
Mean (SD) 93.0 (9.5)

Insulin (pmol/L)
Median (IQR) 70.2 (57)

HOMA-index
Median (IQR) 3.06 (2.27)

Albuminuria (mg/g creatinine)
Median (IQR) 2.78 (6.15)

Number of ATP-III MS defining criteria
Median (IQR) 2 (1)

Number of patients complying with the ATP-III MS
definition (≥3 criteria)

100 (49%)

Smoking habit (%) 23 (11%)
CV (%) glucose time series
Median (IQR) 14.2 (6.7)

MAGE (mg/dL)
Median (IQR) 2.02 (1,27)

DFA
Mean (SD) 0.90 (0.09)

BP, blood pressure; BMI, body mass index; IFG, impaired fasting
glucose (fasting glucose ≥ 100 mg/dL); EPI-GFR, estimated glomer-
ular filtration rate (EPI-creatinine equation); HOMA, homeostasis
model assessment; MS, metabolic syndrome; CV, coefficient varia-
tion; MAGE, mean average glucose excursions; DFA, detrended
fluctuation analysis; IQR, interquartile range; SD, standard devia-
tion; ATP, Adult Treatment Panel.
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Multivariate models

A multivariate Cox survival model for diabetes was built,
including as independent variables, MAGE, DFA and all
clinically relevant variables (fasting glucose, HbA1c, age,
gender, relatives with diabetes diagnosis, smoking habit,
body mass index, abdominal circumference, systolic blood
pressure, HDL-cholesterol and triglycerides). In such a
model, only fasting glucose HbA1c and DFA emerged as
significant (Table 4).

Principal component analysis

We were interested in studying how the variables strictly
related with glucose levels (fasting glucose and HbA1c)
and the variables related with glucose dynamics (MAGE
and DFA) interacted in the evolution to diabetes. To do
so, we tried building a multivariate Cox proportional haz-
ard model including all these variables as independent
factors. However, because of the high degree of

multicollinearity, all four variables and each and every
one of their interactions were significant (data not
shown), giving rise to results that were uninterpretable.
To face this problem, we performed a principal compo-
nent analysis with varimax rotation. Following the
Kaiser–Meyer–Olkin criterion (eigenvalue>1), two prin-
cipal components were selected, capturing 0.75 of the to-
tal variance, and quite adequately representing the
variables related with glucose levels (RC2, ‘glycaemia var-
iables’) and glucose dynamics (RC1, ‘dynamic variables’)
(Figure 2). Loadings of principal components analysis
were as follows: for DFA, RC1=0.90 and RC2=0.15;
for MAGE, RC1=0.90 and RC2=0.09; for basal
glycaemia, RC1=0.03 and RC2=0.84; and for HbA1c,
RC1=0.18 and RC2=0.78.

In a Cox survival analysis, both factors were significant:
for RC1 (‘dynamic variables’), beta=0.972 (ef-
fect=2.646, p<0.0001) and for RC2 (‘glycaemic vari-
ables’), beta=2.023 (effect=7.565, p<0.001).

Table 3. Cox survival univariate analysis

Independent variable a Coefficient Effect p

DBP 0.057 1.059 0.04
Fasting glucose 0.160 1.174 <0.001
HbA1c 5.755 316 <0.001
MS 2.300 9.965 0.002
MS-glucose criteria 2.436 11.433 0.001
MS-HDL-Chol- criteria 1.518 4.564 0.002
MS-triglycerides-criteria 2.101 8.172 <0.001
MS-number criteria 1.091 2.977 <0.001
IFG 2.174 8.796 0.004
MAGE 0.0194 1.0196 <0.001
DFA 11.434 92375 <0.001

Dependent variable: development of diabetes.
DBP, diastolic blood pressure; MS, metabolic syndrome; IFG, im-
paired fasting glucose (fasting glucose ≥ 100 mg/dL); MAGE, mean
average glucose excursions; DFA, detrended fluctuation analysis;
HDL, high-density lipoprotein.
aAt entry. Only variables with statistical signification are shown.

Table 4. Cox survival analysis, including DFA and all clinically
relevant variables

Beta Effect p

Fasting glucose 0.0958 1.101 0.005
HbA1c 4.342 7.683 0.005
DFA 8.607 5.472 0.008

The rest of included variables (age, gender, relatives with a diabe-
tes diagnosis, smoking habit, body mass index, abdominal circum-
ference, systolic blood pressure, HDL-cholesterol and triglycerides)
resulted excluded in the final model.
DFA, detrended fluctuation analysis.

Table 2. DFA: correlations with clinical variables (with statisti-
cal signification)

Correlation a p

Abdominal circumference (cm) 0.144 0.04
Fasting glucose (mg/dL) 0.153 0.03
HbA1c (%) 0.290 <0.001
Number of MS defining criteria 0.161 b 0.02
CV glucose time series 0.62 b <0.001
MAGE (mg/dL) 0.746 b <0.001
Diastolic blood pressure �0.165 0.02

MS, metabolic syndrome; CV, coefficient variation; MAGE, mean
average glucose excursions; DFA, detrended fluctuation analysis.
aPearson’s r, unless stated otherwise.
bSpearman’s rho.

Figure 2. Principal component analysis: biplot representation.
RC1: DFA and MAGE (glucose dynamics components). RC2:
fasting glucose and HbA1c (glucose level components). DFA,
detrended fluctuation analysis; MAGE, mean average glucose ex-
cursions; T2DM, type 2 diabetes mellitus
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Discussion

In our population, the complexity of glucose time series,
measured by DFA, was an independent predictor of diabe-
tes development. In a univariate analysis, the probability
of diabetes development increased more than three times
for each 0.1 unit of increase in DFA (lesser complexity), so
that there were ten events in the highest DFA quartile
versus one event in the lowest.

Both variables measuring the ‘dynamical characteris-
tics’ of the time series (DFA and MAGE) were independent
predictors of diabetes development; however, in a head-
to-head bivariate comparison, only DFA remained signifi-
cant, suggesting a better discriminant capacity.

While at first glance the inverse correlation between
complexity and variability (i.e. direct correlation between
DFA and MAGE) may seem counter-intuitive, it is just
what one would expect. A healthy regulatory system
should be able to detect and correct minor departures
from ‘normality’, displaying a ‘ragged’ output, with nu-
merous small ‘ups-and-downs’ (high complexity). A fail-
ing system would show a decreased sensitivity and/or a
slower and/or less efficient response, allowing for larger
oscillations (higher variability).

Detrended fluctuation analysis remains as a significant
predictor of diabetes development in a multivariate model
including all the other clinical variables. Furthermore, by
means of principal component analysis, we were able to
separate the factors mainly related to glucose levels
(fasting glucose and HbA1c) from those related to glucose
dynamics (DFA and MAGE), and both proved to have sig-
nificant influence on diabetes development. The
‘glycaemic factors’ had a stronger weight in the model
than the ‘dynamic’ elements, but this may be heavily influ-
enced by the fact that ‘glycaemic variables’ are precisely
the (future) event-defining items.

As we have commented previously, we omit in the pres-
ent analysis the integration of the glucose time series be-
fore detrending. However, we performed the same
statistical analysis with this preprocessing and obtained
very similar results (integrated DFA was a significant pre-
dictor of diabetes it correlated with MAGE, etc.), but the
predictive power (beta) was significantly smaller. There-
fore, we decided to omit the initial integration, and use
DFA as a blind metric, without assuming the conceptual
background supplied by the random-walk model. This ex-
plains the considerably lower DFA values of our series
(mean 0.899, SD 0.087). When integrated, our results
are similar to other studies (mean 1.415, SD 0.093).

Several authors have emphasized the influence of dy-
namic aspects of glycaemia on the development of diabe-
tes and its complications, not just because of the risk of
hypoglycaemia but mainly through the oxidative stress
induced by acute glucose swings [20–24]. However,

this hypothesis is not uniformly accepted [25], and the
question of which metrics should be used is still under
debate [26].

In a previous cross-sectional study [11], we observed
that the complexity of glycaemic profile decreased from
healthy individuals, through the metabolic syndrome, to
early diabetes. In the present survival analysis, we tease-
out the influence of glucose levels from that of glucose
dynamics, proving their relative influence on the develop-
ment of diabetes, thus supporting the importance of
variability and complexity in the study of glucose
dysregulation.

In the last years, continuous glucose monitoring system
is becoming a common tool in type 2 diabetes [12–16].
Kohnert K-D et al. [13] described that, in patients with di-
abetes without anti-diabetic drug treatment, decreasing
complexity and increasing variability are associated with
declining beta-cell reserve and worsening glycaemic con-
trol. Ogata et al. [12] reported significant correlations be-
tween HbA1c, glycated albumin and the long-range scaling
DFA exponent, suggesting that an increase in this parame-
ter reflects clinically relevant abnormalities in average
glycaemic control. Costa et al. [16] performed continuous
glucose monitoring (CGM) in a group of elderly subjects
and concluded that the dynamics of glucose fluctuations
from healthy subjects are more complex than those from
patients with diabetes over time scales ranging from about
5 min to 5 h. Chen et al. [27] compared the complexity of
glucose dynamics in patients with diabetes (including type
1 and type 2 diabetes) with controls and also reported a
decreased complexity (assessed by multiscale entropy
analysis) in patients with type 2 diabetes.

Continuous glucose monitoring system technology is
also being increasingly used in prediabetic conditions,
mainly to assess glycaemic variability [28–33]: Chen
et al. [31] and Wang et al. [32] report a progressive in-
crease in 24-h mean basal glucose and MAGE from normal
glucose regulation, throughout impaired glucose toler-
ance to diabetes. In both studies, the diagnosis was made
by means of 2-h oral glucose tolerance test. However,
these studies use conventional statistics such as SD, coef-
ficient of variability or MAGE, which we would suggest
are not as sensitive or robust as complexity metrics.
Yamamoto et al. [33] classified in these same three cate-
gories of glucose derangement according to CGM data
(which is not a fully validated clinical method) and found
a progressive loss of complexity (measured by DFA) in the
glycaemic profile with the progression from normal glu-
cose metabolism to the diabetes state.

To the best of our knowledge, this is the first prospective
analysis demonstrating the influence of glucose complexity
on the development of diabetes. The incidence of diabetes
in our sample (58.25 cases/1000 person-years) is compara-
ble with that reported in similar cohorts [34–36], and
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therefore our methodology and conclusionsmay be extensi-
ble to other populations.

Now that new treatments to delay or prevent the progres-
sion of prediabetes to diabetes are available [37–41], screen-
ing high-risk patients for early diagnosis and management of
glycaemic abnormalities becomes ever more important.

In our opinion, the present findings raise the question
of whether complexity analysis of glucose–time series ob-
tained by CGM in prediabetic patients can help in the risk
assessment of progression to diabetes.

Our study has several limitations. We could not
compare the prognostic value of DFA with HbA1c and
basal glucose for the risk assessment of cardiovascular
complications because of the small number of these
events during the follow-up. Another limitation was
the lack of a basal oral glucose tolerance test for a bet-
ter classification of the glucose metabolism disruption
(e.g. impaired glucose tolerance). However, no patient
had diabetes (defined as any postprandial glucose

≥200 mg/dL during the whole register) on the CGM time
series.

In conclusion, in our population, complexity of
glycaemic profile measured by DFA was an independent
predictor of diabetes development. Performing a CGM
that includes DFA assessment could be a useful tool in
diabetes-risk evaluation in this kind of patients.
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