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Background: rs13405728 was identified as one of the most prevalent susceptibility
loci for polycystic ovary syndrome (PCOS) in Han Chinese and Caucasian women.
However, the target genes and potential mechanisms of the rs13405728 locus remain
to be determined.

Methods: Three-dimensional (3D) genome interactions from the ovary tissue were
characterized via high-through chromosome conformation capture (Hi-C) and Capture
Hi-C technologies to identify putative targets at the rs13405728 locus. Combined
analyses of eQTL, RNA-Seq, DNase-Seq, ChIP-Seq, and sing-cell sequencing were
performed to explore the molecular roles of these target genes in PCOS. PCOS-like mice
were applied to verify the expression patterns.

Results: Generally, STON1 and FSHR were identified as potential targets of the
rs13405728 locus in 3D genomic interactions with epigenomic regulatory peaks, with
STON1 (P=0.0423) and FSHR (P=0.0013) being highly expressed in PCOS patients.
STON1 co-expressed genes were associated with metabolic processes (P=0.0008) in
adipocytes (P=0.0001), which was validated in the fat tissue (P<0.0001) and ovary
(P=0.0035) from fat-diet mice. The immune system process (GO:0002376) was
enriched in FSHR co-expressed genes (P=0.0002) and PCOS patients (P=0.0002),
with CD4 high expression in PCOS patients (P=0.0316) and PCOS-like models
(P=0.0079). Meanwhile, FSHR expression was positively correlated with CD4
expression in PCOS patients (P=0.0252) and PCOS-like models (P=0.0178).
Furthermore, androgen receptor (AR) was identified as the common transcription factor
n.org June 2021 | Volume 12 | Article 6860541
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for STON1 and FSHR and positively correlated with the expression of STON1 (P=0.039)
and FSHR (P=4e-06) in ovary tissues and PCOS-like mice.

Conclusion: Overall, we identified STON1 and FSHR as potential targets for the
rs13405728 locus and their roles in the processes of adipocyte metabolism and CD4
immune expression in PCOS, which provides 3D genomic insight into the pathogenesis
of PCOS.
Keywords: PCOS, three-dimensional genome analysis, rs13405728 locus, STON1, FSHR, AR
INTRODUCTION

Polycystic ovary syndrome (PCOS) is a gynecological endocrine
disorder that has been one of the leading causes in female
infertility (1, 2). It is characterized by hormonal imbalance and
ovarian dysfunction, with symptoms of hyperandrogenism,
anovulation, and polycystic ovarian morphology (3). PCOS
occurs in 4-8% of women worldwide and affects 6-12%
(approximately 5 million) of reproductive age women in the
United States (4). Moreover, women with PCOS have been
reported to be at higher risk for hypertension, insulin
resistance (IR), diabetes, psychiatric disorders, dyslipidemia,
and cancers (4, 5).

The high heritability of PCOS as a genetic trait has been
reported to account for 70% of the incidence of the disorder (2).
The application of genome-wide association studies (GWAS) in
large case-control cohorts has successfully supported the
discovery and characterization of PCOS susceptibility loci.
Some loci are close to genes that play a role in reproductive
processes or metabolic dysfunction, such as rs13405728,
rs2268361, and rs2349415 to follicle stimulating hormone
receptor (FSHR), rs11031006 to FSHB, rs2059807 to INSR, and
rs2272046 to HMGA2 (6). The growing list of PCOS risk loci
contributes to the understanding of the etiological pathways and
processes of the syndrome and reveals the relative homology
genetic basis of PCOS (6, 7). However, over 95% of GWAS-
associated risk loci were found to be localized in the non-coding
regions (8), while long distances exist between risk loci and target
genes (9), making their pathological roles in PCOS unclear.
rs13405728 has been identified as the most susceptibility locus
for PCOS on 2p16.3 in Han Chinese women (7, 10) and
Caucasian women (11). However, the target genes of
rs13405728 and the roles of such risk locus in the development
of PCOS remain to be determined.

Comprehensive and direct long-range mapping of regulatory
elements and target genes is crucial to systematically understand
the transcriptional regulation of human diseases (12, 13). Since
researchers have provided insight into the three-dimensional
(3D) structural genome of disease by mapping the interactions
between baits and target genes using high-throughput and long-
range approaches, such as high-throughput chromosome
conformation capture (Hi-C), or Capture Hi-C (14, 15), it is
increasingly evident that alternative chromatin interactions are
responsible for the gene dysregulation and biological phenotype
in human disease or complex traits (13). For example, SNPs in
n.org 2
intron 19 of CLEC16A are associated with the expression of
DEXI (16), rs6927172 in region 6q23 in autoimmune diseases is
associated with the increased expression of IL20RA (17), and
rs9349379 in vascular diseases is associated with the expression
of EDN1 (18).

In this study, 3D structural genomic analysis from Hi-C and
Capture Hi-C, expression profiling of PCOS patients and PCOS-
like models, ChIP-Seq analysis of androgen receptor (AR) in
STON1 and FSHR, and single-cell sequencing of ovary tissue
were used to synthesize the 3D interactions, adipocyte
metabolism association with STON1, and CD4 immune
association with FSHR at the rs13405728 locus in PCOS.
MATERIAL AND METHODS

PCOS-Like Models and Mouse
Tissue Acquisition
The animal study (C57BL/6) was performed with the approval of
the Ethics Committee of the Peking University Shenzhen
Hospital (PKUSH) and performed in Shenzhen Peking
University-The Hong Kong University of Science (PKU-
HKUST) and Technology Medical Center. The PCOS-like
models (testosterone-treated and high-fat diet) of research
were followed by the previous studies (19–21). Fat mice were
treated with a fat diet (with 60% fat), while control mice were
treated with a normal diet. Testosterone-treated mice used
dihydrotestosterone release pellet (Dow Corning, Midland, MI,
USA, 10 mg, S4757, Selleck) with a hypodermic way for 90 days.
All performances were conducted under the Animal Welfare Act
(AWA) and the Administrative Procedure Act (APA)
Guidelines. Hematoxylin and eosin (H&E) staining of
representative ovaries and quantitative analysis of cystic
follicles were shown in Supplementary Figures 1A, B.

Immunohistochemistry (IHC)
Mouse tissue was prepared as formaldehyde-fixed and paraffin-
embedded (FFPE) after collection and rinse. 4 mm sections were
obtained from FFPE tissue with a microtome and then de-
paraffinization and antigen retrieval were completed. To
prevent background staining and false-positive results,
endogenous peroxidase was inactivated by 3% H2O2 and any
non-specific binding proteins were quenched by bovine serum
albumin (BSA, 5%, Servicebio). Primary antibody against FHSR
(A3172, ABclonal, 1:100), STON1 (PA5-75314, Invitrogen, 1:50)
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and AR (A19611, ABclonal, 1:100) was applied at 4°C overnight.
After rinsing, the samples were treated with biotinylated
secondary anti-rabbit immunoglobins and peroxidase-
conjugated streptavidin, incubating at room temperature for 1
hour. The score of results was evaluated via Image-Pro Plus.

Hi-C Maps and Virtual 4C Analysis
Hi-C experiments of ovary tissue were downloaded
from GSM2322546 (22), which were performed by HindIII
restriction enzyme using the Hi-C “dilution” protocol (9).
NHEK Hi-C data were downloaded from GSE63525 (23),
which were performed by MboI restriction enzyme using the
in situ Hi-C Protocol. Comparative Hi-C map between ovary
tissue and GM12878 (as control) was generated by 3DIV tool
(http://kobic.kr/3div), an online interaction viewer for Hi-C
interactions (24). Interaction genes of rs13405728 were shown
in Supplementary Table 1. rs13405728 was used as the bait with
a 500Kb interaction range on chromosome 2 (chr2: 48478159-
49478159). Virtual 4C map was generated from the ovary Hi-C
data with the viewpoint of chr2:47978158-49978158 via 3D
Genome Browser (http://3dgenome.org) (25), rs13405728 was
used as the bait with 500Kb interaction range. All data was
processed by a custom pipeline with the hg19 reference genomes.

Capture Hi-C and DHS Linkage Analysis
Capture Hi-C data of the ovary tissue were downloaded from
GSM2322546 (22). Capture Hi-C analysis was performed by 3D
Genome Browser (http://3dgenome.org) with the default settings
(25). rs13405728 was used as the bait with a 500Kb interaction
range on chromosome 2. DNase hypersensitive site (DHS)-
linkage profiling was performed as described previously (26),
which was performed by 3D Genome Browser (http://3dgenome.
org) with the default settings (25). DHS-linkage computed the
Pearson correlation coefficients for all distal DHSs with gene
proximal DHS, which was based on the tissue-specificity (25).

Compartment A/B Analysis
A/B compartment of cells (Normal cervical cells and cervical
carcinoma) was downloaded from Genome Sequence Archive
(GSA, http://bigd.big.ac.cn/gsa/), with the link number
CRA001401. A Compartment matrix was performed as
described previously (27). A/B compartment matrix was
constructed using Integrative Genomics Viewer (v2.5.0), with
region chr2: 47978158-49978158 (GRCh37/hg19).

Chromatin Immunoprecipitation
Sequencing (ChIP-Seq) Analysis
ChIP-Seq (H3K36me3, H3K4me1, H3K9me3, and H3K27ac) of
the ovary was explored in Roadmap Epigenomics Project (http://
www.roadmapepigenomics.org/data/), an online public resource
of epigenomic maps for primary ex vivo tissues (release 9). Peak
annotation of H3K36me3, H3K4me1, H3K9me3, and H3K27ac
were integrated from adult human ovaries. Genome region were
chr2:48478158-49478158 (GRCh37/hg19). ChIP-Seq data AR of
primary tissues were downloaded from androgen receptor
programming of human tissue (GSE56288 and GSE70079).
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The ChIP-Seq results were viewed using the UCSC
Genome Browser.

Data for Single-Cell Sequencing
Single-cell sequencing data of mouse ovary was downloaded from
Mouse Cell Atlas (MCA) (28), which were performed by
following the Microwell-seq protocol. The pooled data of
mouse tissue included embryo, brain, heart, intestine, kidney,
liver, lung, pancreas, stomach, testis, uterus, bladder, spleen,
thymus, and prostate, and the cells were mapped into 99
clusters in tSNE plot. 4363 cells of adult mouse ovary were
sequenced to analyze the expression of different cells. All these
cells were clustered into 14 types with the tSNE dimension
reduction method. The heatmap of cell types was conducted by
Mouse Cell Atlas (MCA2.0, http://bis.zju.edu.cn/MCA/index.
html). The expression of Fshr was explored in different cell
types, with the mean expression of the cluster. The results were
read by transcripts per kilobase of exon model per million
mapped reads (TPM, Supplementary Table 1).

Expression Data Acquisition and
Correlation Analysis
Expression data (GSE156895, GSE145461, GSE114419,
GSE138518, GSE8157, GSE124707, GSE135917, and GSE43322
profiling data, Supplementary Table 2) were downloaded from
the Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.
gov/geo). RNA-seq data of ovary tissue was downloaded
from the Roadmap Epigenomics Project (http://www.
roadmapepigenomics.org/data/). In GSE135917 and GSE43322,
STON1 probe expressions were extracted and analyzed for
Pearson’s correlation with BMI of samples in different groups.
In GSE8157 and GSE124707, STON1 expression signals were
extracted and performed for Pearson’s correlation with CD4
expression signals in different groups. Correlation analyses of
STON1 and AR, FSHR and AR were performed in Gene
Expression Profiling Interactive Analysis (GEPIA, http://gepia.
cancer-pku.cn/index.html) using the ovary tissue data from
Genotype-Tissue Expression (GTEx) project. Data of PCOS
patients were from Chinese infertility women (GSE145461,
GSE114419), Han Chinese infertility women (GSE138518), and
Caucasian infertility women (GSE8157). The race of PCOS
patients used to explore phenotype was consistent with the
population of rs13405728 locus. In addition, the main
phenotypes of the four data were listed in Supplementary
Table 3, including age, BMI (Kg/m2), LH(IU/L), FSH(IU/L),
testosterone (ng/dL), and so on.

Expression Quantitative Trait Loci
(eQTL) Analysis
eQTL analysis was performed in QTLbase (http://mulinlab.org/
qtlbase/index.html) and GTExPortal (https://gtexportal.org/
home/). To investigate the effect of rs13405728 locus candidate
on target gene expression, eQTL analysis was performed via
GTEx project for single-tissue eQTL and QTLbase for Cis-eQTL,
which were used to evaluate the expression changes and
understand the biological function of genetic polymorphism.
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Co-Expression Networks
Co-expression networks of STON1 and FSHR were performed in
GeneMANIA (29) (http://genemania.org), an online tool
including 2277 associated networks mapped to 163599 genes
from 9 organisms. STON1 (ENSG00000243244) and FSHR
(ENSG00000170820) were used as input genes. Co-expression
networks of STON1 and FSHR were explored in humans (Homo
sapiens) with the default settings. Co-expression networks
included physical interactions, co-expression, predicted
interactions, co-localization, pathway interactions, genetic
interactions, and shared protein domains.

Gene Set Enrichment Analysis and
Enrichment Analysis in PaGenBase
Gene Ontology (GO) analysis was performed to annotate the gene
function and biological characteristics in interaction networks using
Gene Ontology consortium (http://www.geneontology.org/).
GO analysis of co-expression genes and differentially expressed
genes (DEGs) in PCOS was performed by Metascape (30) (https://
metascape.org). Gene lists of co-expressed genes of STON1 and
FSHR were analyzed in Metascape (https://metascape.org) via the
PaGenBase tool, which was a pattern gene database for
understanding the gene function (31).

Transcription Factor (TF) Analysis
An online pipeline for TF analysis, Toolkit for Cistrome Data
Browser (32) (http://dbtoolkit.cistrome.org/), was used to
construct the hierarchical TFs of STON1 and FSHR. Genome
used the human/hg38, the half-decay distance to the
transcription start site was 10kb, and data type in Cistrome
was transcription factor and chromatin regulator. STON1
(chr2:48530168-48598514, NM_001198595) and FSHR
(chr2:48953160-49154526, XM_011532734) were used as the
input genes. The top 20 factors are shown in the plot.
Regulatory potential (RP) represented the score to estimate
how possible the TF could regulate the gene. Y-axis is the RP
score, X-axis is different factors. Dots in the X-axis represent the
same factors.

Statistical Analysis
Data were presented as mean ± standard deviation (SD). All
statistical analyses were performed on the statistical package of
GraphPad Prism 6 (v6.02). Pearson’s correlation coefficient was
used for the evaluation of the correlation between FSHR and
CD4, STON1 and BMI, AR and STON1, AR and FSHR. The
Student’s t-test was used for the assessment of the difference
among different groups. All the parameters would be considered
statistically significant with a P-value<0.05.
RESULTS

Hi-C Maps and Epigenomic Peaks in the
Region of the rs13405728 Locus
We explored Hi-C interactions of ovary tissue (Supplementary
Table 3) and performed a comparative Hi-C map between ovary
Frontiers in Endocrinology | www.frontiersin.org 4
tissue and GM12878 (as control) (Figure 1A), finding that
FOXN2, STON1-GTF2A1L, STON1, GTF2A1L, and FSHR were
the putative targets of the rs13405728 (Chr2:48978158) locus
with interaction arcs in ovary tissue (Figure 1B). We then
explored Hi-C maps and TADs of ovary tissue and NHEK
cells (normal epithelium) in the region of rs13405728
(Supplementary Figures 2A, B) and found that rs13405728,
STON1, LHCGR, STON1-GTF2A1L, and FSHR tended to be in
the same TAD. In addition, such domain of rs13405728 was
identified as B compartment in Hi-C data of different cells
(Supplementary Figure 2C).

Virtual 4C signal of ovary tissue was used to analyze the
interactions between rs13405728 and target genes (Figure 1C).
DNase-Seq, ChIP-Seq of H3K36me3, H3K4me1, H3K9me3, and
A

B

D

C

FIGURE 1 | Hi-C maps and epigenomic peaks in the region of the
rs13405728 locus. (A) Comparative Hi-C map between ovary tissue and
GM12878 in the Chr2:48478159-49478159 region with the rs13405728 locus
labeled. (B) Interaction frequency and interaction arcs of the rs13405728 locus
from ovary tissue and GM12878. (C) Virtual 4C interactions of the ovary in the
Chr2:48478159-49478159 region. (D) DNase-Seq, ChIP-Seq (H3K36me3,
H3K4me1, H3K9me3, and H3K27ac), and RNA-Seq peaks of the ovary.
Reference genes and the rs13405728 locus are shown. Hi-C high-through
chromosome conformation capture.
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H3K27ac and mRNA data were characterized to identify the
epigenomic modulation of ovary tissue. We found the
epigenomic peaks and expression peaks in FOXN2, STON1,
STON1-GTF2A1L, GTF2A1L, and FSHR (Figure 1D).

Expression Analysis Between the
rs13405728 Locus and Potential
Target Genes
To further explore the molecular patterns between rs13405728
and target genes, we conducted Cis-eQTL analysis around the
rs13405728 locus region (+/- 10Mb region) from 12 tissues
(Figure 2A). We further investigated whether these genes were
changed in PCOS patients from GEO datasets, comparing with
normal patients. PPP1R21, STON1, and LHCGR were found to
be associated with SNP of rs13405728. In PCOS from the
GSE145461 dataset, only STON1 (P = 0.0423) was elevated in
PCOS patients, with non-significance in PPP1R21, LHCGR,
FOXN2, STON1-GTF2A1L, and GTF2A1L (Figure 2B and
Supplementary Figure 3A). Although LHCGR was reputed as
Frontiers in Endocrinology | www.frontiersin.org 5
target gene for rs13405728 locus, there was no expression
differences in PCOS patients. Additionally, STON1 was
identified as the target gene in Capture Hi-C interactions in
ovary tissue, which was not found in blood control cells (CD4+ T
cells and CD8+ T cells, B cells as control cells, Supplementary
Figure 3B).

When comparing the expression of FSHR in human tissues
(Supplementary Figure 3C), FSHR expression was specific to
the ovary and testis. Single-cell sequencing data of ovary tissue
was then mapped and found that FSHR highly expressed in
Cumulus cell_Ube2c high cluster (P = 2.3293e-19), Granulosa
cell_Inhba high cluster, and Cumulus cell_Car14 high cluster
(Figure 2C). Such expression patterns were validated in mouse
ovary tissues (Figure 2D). In ovarian granulosa cells of patients,
the expression of FSHR was found to be higher in PCOS patients
than normal patients, with GSE114419 (P = 0.0232) and
GSE138518 (P = 0.0013) datasets (Figure 2E). In addition, we
performed single-tissue eQTL analysis of STON1, FSHR, and
rs13405728 SNP in ovary tissue (Figure 2F).
A B

D

E
F

C

FIGURE 2 | Expression analysis between the rs13405728 locus and potential target genes. (A) Cis-eQTL analysis of potential target genes around the rs13405728
locus region (+/- 10Mb region) from 12 tissues, the color bar is shown. (B) Gene expression in PCOS patients and normal patients from the GSE145461 dataset.
(C) Fshr expression in ovarian cell clusters from ovary single-cell sequencing data. 14 clusters are shown. (D) IHC staining of Fshr in C57BL/6 ovary tissue. (E) Fshr
expression of ovarian granulosa cells in PCOS patients and normal patients from GSE114419 and GSE138518 datasets. (F) Single-tissue eQTL analysis of STON1
and FSHR at the rs13405728 locus from normal ovary tissue. PCOS, polycystic ovary syndrome; eQTL, expression quantitative trait loci.
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STON1 Was Associated With Metabolic
Processes in Adipocytes and Highly
Expressed in Mouse Fat and Ovary
Tissue From Fat-Diet Mice
Since the biological roles of STON1 in PCOS were unclear, we
performed co-expression networks of STON1 in the public
Frontiers in Endocrinology | www.frontiersin.org 6
dataset to analyze the molecular function of STON1 in cells
(Figure 3A). GO biological process analysis demonstrated that
co-expressed genes of STON1 were associated with metabolic
processes (GO:0008152, P = 0.0008), cellular component
organization or biogenesis (P = 0.001), and localization (P =
0.007) (Figure 3B). Enrichment analysis in PaGenBase showed
A

B

D E

F G

C

FIGURE 3 | STON1 was associated with metabolic processes in adipocytes and highly expressed in mouse fat and ovary tissue from fat-diet mice. (A) Co-
expression networks of STON1, co-expressed genes and interactions are indicated. (B) GO enrichment analysis of STON1 co-expressed genes. (C) Cell-specific
analysis of STON1 co-expressed genes from PaGenBase. (D) tSNE map of STON1 in pooled mouse tissues from mouse single-cell sequencing data (Han et al.,
2018), STON1 expression is shown with cluster labeled. (E) Correlation analysis between STON1 expression and BMI in males and females from GSE135917
dataset. IHC staining (F) and staining score (G) of STON1 in fat tissue and ovary tissue from fat-diet mice. GO, Gene Ontology; tSNE, t-distributed stochastic
neighbor embedding; BMI, body mass index; IHC, immunohistochemistry.
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that cell-specific enrichment of the networks was in adipocytes
(P = 0.0001, Figure 3C).

To further explore the expression of STON1 in the single-cell
pattern, we performed the single-cell transcriptional analysis in
the pooled data with 15 mouse tissues (see Methods). STON1 was
found in the reproductive gland (Cluster5, Cluster6, Cluster13,
Cluster21, Cluster38) and stromal cells (Cluster9) (Figure 3D
and Supplementary Figures 4A, B). In the GSE135917 dataset,
the correlation tendency between STON1 expression of
subcutaneous fat and body mass index (BMI, kg/m2) was
contrary between males and females (Figure 3E). In
GSE155489, the expression of STON1 was higher in PCOS
than in normal control (Supplementary Figure 4C, P =
0.0391). Importantly, IHC staining of STON1 was higher in fat
diet mice, both in fat tissue (P < 0.0001) and ovary tissue (P =
0.0035), than normal diet mice (Figures 3F, G).

FSHR Was Associated With The Immune
System Processes And Positively
Correlated With CD4 Expression in PCOS
Patients and PCOS-Like Models
To evaluate the molecular basis of FSHR in PCOS, we firstly
performed co-expression networks of FSHR (Figure 4A). GO
enrichment analysis demonstrated that co-expressed genes of
FSHR were associated with the reproductive process
(GO:0022414, P = 0.0002) and the immune system process
(GO:0002376, P = 0.0002) (Figure 4B). The immune system
process (GO:0002376, P = 0.0002) was found to be enriched in
the differential expressed genes (DEGs) of follicular fluid between
PCOS and normal patients (Figures 4C, D).

The hyperandrogenic phenotype was reported to be an
important molecular mechanism of PCOS (33), thus prenatally
androgenized (PNA) mice were conducted to analyze the DEGs
between PCOS-like mice and normal control (Figure 4E). High
expression of CD4 et al. was found in both PCOS patients (P =
0.0316) and PCOS-like mice (P = 0.0079) (Figures 4F–H).
Furthermore, FSHR was found to be positively correlated (P =
0.0252, r = 0.6967) with CD4 expression in PCOS patients
(Figure 4I), and in PCOS-like (Macaca mulatta) model (P =
0.0178, r = 0.8889, Figure 4J).

AR Was Identified as the Common
Transcription Factor of STON1 and FSHR
and Positively Correlated With STON1 and
FSHR Expression in Ovary Tissues
Given the increased expression of STON1 and FSHR in PCOS
patients and PCOS-like models, we hypothesized a potential role of
STON1 and FSHR in PCOS and explored the high expression
mechanism underlying PCOS. We then performed transcription
factors (TFs) analysis in the region of the rs13405728 locus (Chr2:
48478159-49478159) and gene regions of STON1 and FSHR
(Figures 5A–C and Supplementary Tables 4–6). AR was the
only TF among them, AR and FOXA1 were found to be the same
TFs of STON1 and FSHR (Supplementary Figure 5A), Further
ChIP-Seq analysis of STON1 and FSHR showed the modulation
peaks of AR in primary tissues (Figures 5D, E). Moreover, the
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expression of AR was found to be positively correlated with the
expression of STON1 (P = 0.039, r = 0.22) and FSHR (P = 4e-06, r =
0.47) in normal ovary tissues (Figure 5F). However, the correlations
were not found in FOXA1 (Supplementary Figure 5B). Meanwhile,
the expression of Ar, Fshr, and STON1 were elevated in
testosterone-treated and high-fat diet mice than normal mice
(Supplementary Figure 5C), and their expression showed
positive correlations (Figure 5G).
DISCUSSION

Since the rs13405728 locus has been identified as a common risk
locus of PCOS (Supplementary Figure 6) in Han Chinese
women (7, 10) and Caucasian women (11), it was necessary to
identify target genes at the rs13405728 locus based on alternative
genome conformation in the development of PCOS. We mapped
Hi-C interactions, Capture Hi-C interactions, and virtual 4C
interactions from the ovary tissue, and identified the potential
targets at the rs13405728 locus. In addition, we explored the
changes in expression of potential targets in PCOS patients and
PCOS-like models, comparing with the normal patients and
normal control, and identified STON1 and FSHR as the most
functional targets at the rs13405728 locus in PCOS. The Hi-C
approach holds the advantages of capturing long-range
interactions across the whole human genome (9), which is
entirely useful for understanding the genetic trait with high
heritability in the development of PCOS (2).

STON1 has been reported to be involved in spermatogenesis of
the mouse models (34), in accordance with our findings that
STON1 expressed in the reproductive gland and stromal cells in
single-cell sequencing patterns, which was validated in adipocytes
and ovaries of the high-fat diet mouse models. Our results found
an opposite tendency of correlations between STON1 and BMI in
male and female adipocytes. In male adipocytes, BMI was
positively correlated with STON1 expression. In PCOS, high
BMI is a common characteristic and was a predictor of
hyperandrogenism (35), consisting of the findings that STON1
was highly expressed in PCOS and PCOS-like models. These
results suggested that high STON1 expression may be responsible
for the hyperandrogenic phenotype in PCOS patients with
dysregulated metabolic phenotypes.

Currently, PCOS is also reputed as an autoimmune disorder
with high autoantibodies recorded in long-term clinical
management (36). In our findings, the immune system
processes were enriched in PCOS patients, with a high CD4
expression phenotype in PCOS patients and PCOS-like models.
In addition, FSHR, a receptor for FSH, plays a role in the
development of follicles, maturation of the oocyte, and
regulation of steroidogenesis and may be an important
candidate gene for PCOS (37). However, the role of FSHR in
the development of PCOS is unclear. Here, we showed an
enrichment of the immune system processes and reproductive
processes in FSHR co-expressed genes, following a positive
correlation between CD4 and FSHR both in PCOS patients and
PCOS-like models. These results are supported by the findings
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that PCOS had lower global DNA methylation in monocytes, T
helper cells, T cytotoxic cells, and B cells (38).

The biochemical and clinical changes of hyperandrogenism
(high levels of androgen) are important phenotypes of PCOS,
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which was associated with anovulation and menstrual
dysfunction (3). Therefore. prenatally androgenized (PNA)
models (39) or testosterone-treated models (20) were used as
PCOS-like models for hyperandrogenism basis, which would
A

B
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E

F

G

I

H

J

C

FIGURE 4 | FSHR was associated with the immune system processes and positively correlated with CD4 expression in PCOS patients and PCOS-like models.
(A) Co-expression networks of FSHR, co-expressed genes and interactions are indicated. (B) GO enrichment analysis of FSHR co-expressed genes. Heatmaps of
DEGs (C) and GO enrichment analysis of upregulation DEGs (D) in the GSE145461 dataset. (E) Volcano plot of DEGs between the two groups of samples in
GSE156895 dataset. Red spots indicate the up-regulated genes, blue spots indicate the down-regulated genes. (F) Venn diagram of upregulation DEGs between
GSE145461 and GSE156895 datasets. Bar chart of CD4 expression between the two sets of samples in GSE145461 (G) and GSE156895 (H). Correlation analysis
of FSHR expression with CD4 expression in GSE8157 (I) and GSE124707 (J). DEGs, differentially expressed genes; PNA mice, prenatally androgenized mice;
H, high-fat diet; T, testosterone-treated. * < 0.05; ns, no significance.
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highly increase the expression of AR (40). In our findings, AR
was identified as the common TF of STON1 and FSHR and
positively correlated with their expression in ovary tissues.
These results suggested the underlying interactions of
hyperandrogenism, AR, STON1, and FSHR in the development
of PCOS.

Insulin resistance is reputed as a key element contributing
to the pathogenesis of PCOS patients (41). Recent studies
have identified some candidate genes related to PCOS
susceptibilities, such as the processes of insulin secretion
and action in cells (42, 43). Therefore, we analyzed the
expression levels of candidate genes in PCOS patients and
PCOS-like models compared with normal patients and
control. IGF1 and IGF1R showed differential expression
between PCOS and normal patients (Supplementary Figure
7A). Igf1, Igfbp1, Pparg, and Shbg were down-regulated in
PCOS-like mouse models (Supplementary Figure 7B). In
addition, we analyzed the inter-chromosomal interactions
between candidate genes and rs13405728 locus with Hi-C
data. Although these candidate genes have been shown the
association with PCOS, no single candidate gene showed
inter-chromosomal interactions with rs13405728 locus
Frontiers in Endocrinology | www.frontiersin.org 9
(Supplementary Figure 7C). This may be attributed to the
disease heterogeneity observed in PCOS (44). Since fat tissue
is the target of insulin resistance and metabolic disorder in
PCOS (45), we explored the expression levels of these
candidate genes in adipose tissue of Macaca mulatta
(macaque) among normal diet, testosterone treatment,
western-style diet, and the combination of testosterone
treatment and western-style diet groups from GSE124707.
IRS1 was up-regulated after testosterone treatment. Although
these candidate genes showed slight expression differences
compared to the normal diet group, no single gene showed
statistical significance (Supplementary Figure 8).

The current data did not show an eQTL correlation at
rs13405728 locus for STON1 and FSHR. It is possible that the
effects of the risk variants for STON1 and FSHRwere not validated
in the PCOS cohort and hence not detected in this study. Although
the data presented herein provided statistical differences between
PCOS and normal controls, and the gene nearby the locus may be
the potential candidates for PCOS, particularly concerning
adipocyte metabolic and CD4 immunological processes, further
studies should be performed to determine the roles of the
rs13405728 locus, STON1, and FSHR in the pathogenesis of PCOS.
A B

D E F

G

C

FIGURE 5 | AR was identified as the common transcription factor of STON1 and FSHR and positively correlated with STON1 and FSHR expression in ovary tissues.
The top 20 transcription factors for the region of the rs13405728 locus (Chr2: 48478159-49478159) (A) STON1 (B) and FSHR (C), regulatory potential (RP)
represented the score to estimate how likely the TF could regulate the gene. Y-axis is the RP score, X-axis is different factors. Dots in the X-axis represent the same
factors. ChIP-Seq peaks of AR in STON1 (D) and FSHR (E) from androgen receptor programming of human tissues (GSE56288 and GSE70079). Correlation
analysis between the expression of AR and STON1, AR and FSHR (F) in ovary tissues from GTEx dataset. (G) IHC staining of Ar, Fshr, and STON1 in normal mice
and high-fat diet and testosterone-treated mice. AR, androgen receptor; GTEx, Genotype-Tissue Expression; H+T, high-fat diet and testosterone-treated.
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In summary, 3D genomic interactions in primary ovary tissue
identified the interaction genes at the rs13405728 locus as
STON1 and FSHR, which were highly expressed in PCOS
patients. Further analysis showed the adipocyte metabolism
roles of STON1, which was validated in the adipose tissue and
ovaries of the fat-diet mice. In addition, immune system
processes were enriched in PCOS, with CD4 high expression in
PCOS patients and PCOS-like models, which was consistent with
the CD4 immunological correlation of FHSR in PCOS patients
and PCOS-like models. Furthermore, we found that AR was the
common transcription factor for STON1 and FSHR and
positively correlated with STON1 and FSHR expression in
ovary tissues. Overall, we identified STON1 and FSHR as
potential targets of rs13405728 locus in adipocyte metabolism
and immune processes in the pathogenesis of PCOS.
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