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The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible
for the current coronavirus disease 2019 (COVID-19) pandemic. Majority of COVID-19
patients have mild disease but about 20% of COVID-19 patients progress to severe
disease. These patients end up in the intensive care unit (ICU) with clinical manifestations
of acute respiratory distress syndrome (ARDS) and sepsis. The formation of neutrophil
extracellular traps (NETs) has also been associated with severe COVID-19. Understanding
of the immunopathology of COVID-19 is critical for the development of effective
therapeutics. In this article, we discuss evidence indicating that severe COVID-19 has
clinical presentations consistent with the definitions of viral sepsis. We highlight the role of
neutrophils and NETs formation in the pathogenesis of severe COVID-19. Finally, we
highlight the potential of therapies inhibiting NETs formation for the treatment of
COVID-19.

Keywords: cytokines, inflammation, lymphocyte, septic shock, homeostasis, acute respiratory distress syndrome,
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INTRODUCTION

Coronavirus disease 2019 (COVID-19) was first reported in the city of Wuhan, Hubei province in
mainland China in late 2019. The disease spread rapidly around the globe and was declared a
pandemic by the World Health Organization on March 11, 2020 (1). In 2021, at the peak of the
surge, COVID-19 was the number one cause of death in the United States (US) surpassing heart
disease and cancer with an average of more than 3000 deaths per day (2). In fact, COVID-19 has led
to the biggest drop in life expectancy in the US in more than seven decades (3). The successful
rollout of vaccines has significantly halted mortality from the disease in the US. However, the
emergence of more virulent strains of the virus remains a public health concern. As of January 2022,
COVID-19 resulted in more than 800,000 deaths in the US and more than five million deaths
globally with experts suggesting the number is significantly higher (4).

The causative agent is severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), whose
origin is unknown. The closest human coronavirus related to SARS-CoV-2 is SARS-CoV which
caused the SARS outbreak from 2002-2004 with 79% genetic similarity (5). However, SARS-CoV-2
bears the greatest genetic similarity to bat coronavirus RaTG13, with 96% similarity (6), fueling a
suspicion that the virus originated from bats.

Most patients with COVID-19 have mild disease. Roughly 20% of patients exhibit exaggerated
immune responses, including a hyper-inflammatory state and cytokine storm that leads to acute
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https://www.frontiersin.org/articles/10.3389/fimmu.2022.902206/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.902206/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.902206/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:okeke@fredonia.edu
https://doi.org/10.3389/fimmu.2022.902206
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.902206
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.902206&domain=pdf&date_stamp=2022-06-10


Ventura-Santana et al. Neutrophil Extracellular Traps in COVID-19
respiratory distress syndrome (ARDS) and eventually resulting
in multi-organ damage and death. Several clinical observations
indicate that severe COVID-19 meets the criteria to be classified
as viral sepsis (7).

Although the cause of aberrant host immune response in
severe COVID-19 is not completely understood, accumulating
evidence indicates that immune dysfunction contributes to
disease severity. The adaptive immune system plays a crucial
role in host defense following SARS-CoV-2 infection. Antigen
presenting cells (APCs) present viral antigens to CD4+ T cells
which induce robust neutralizing antibody responses by B cells
(8). In addition, CD8+ Cytotoxic T lymphocytes (CTLs) produce
perforins and granzymes which mediate killing of virally infected
cells and are important for antiviral immunity (9). Studies have
shown that severe COVID-19 is associated with significant
decrease in numbers of CD4+ T cells, CD8+ T cells and B cells
(10, 11). Severe SARS-CoV-2 infection is also associated with an
overwhelming inflammatory phenotype (12, 13). Inflammatory
CD4+ Th17 cells have been shown to mediate lung damage in
COVID-19 patients (14). Likewise, innate immune cells like
macrophages and neutrophils have been shown to be skewed
towards an inflammatory phenotype in SARS-CoV-2 infection
(15, 16). In particular, the production of neutrophil extracellular
traps has been shown to propagate severe COVID-19 (17–19).
The role of T and B cells in COVID-19 has been extensively
reviewed (8, 20, 21) and we will focus on the role of neutrophils
in the pathology of severe COVID-19.

In this article, we highlight important observations which
indicate that severe COVID-19 has clinical presentations
consistent with the definitions of viral sepsis. We discuss the
significant contribution of neutrophils in driving disease
pathology following infection with SARS-CoV-2 via formation
of neutrophil extracellular traps (NETs). Furthermore, we
highlight the potential of therapies inhibiting NETs formation
for the treatment of severe COVID-19.
NETS AND INFLAMMATION

Polymorphonuclear neutrophils (PMNs) are the most abundant
white blood cells in circulation and are rapidly deployed to the
site of bacterial, fungal or viral infection as a critical part of host
defense (22, 23). The role of neutrophils in host defense is widely
appreciated and defective neutrophil function is associated with
recurrent infections or occurrence of rare diseases (24). For
several decades, neutrophils have been known to kill pathogens
through phagocytosis and oxidative burst accompanied by
granular release of potent antimicrobials (25). Recently,
neutrophils were shown to kill microbes through the release of
neutrophil extracellular traps (NETs). NETs are web-like
extrusions, composed of a DNA framework and decorated
with granular proteins like neutrophil elastase (NE) and
myeloperoxidase (MPO) (26).

The molecular mechanisms involved in NET formation is
incompletely understood and the processes that lead to the
release of DNA by neutrophils is still a subject of debate. It has
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been reported that neutrophils form NETs through a tightly
regulated cell death pathway called NETosis that involves
collapse of the nuclear envelope and rupture of the cytoplasmic
membrane (27). Studies have also shown that neutrophils release
NETs in the absence of cell death (28, 29). These discrepancies
may be due to the use of different stimulants for NET induction.
Nevertheless, the critical role of certain enzymes and molecules
in NET formation including NE, NADPH oxidase complex,
peptidylarginine deiminase 4 (PAD4) and the protein kinase C
(PKC) pathway have been highlighted and reviewed elsewhere
(30–32). NETs have been shown to kill bacteria, fungi, viruses,
and parasites (26, 33–35) and there is significant interest in the
role of NETs in SARS-CoV-2 infection.

Although NET formation is a mechanism of host defense,
excessive NET formation or defective clearance of NETs triggers
sustained inflammatory response that can lead to organ damage
and drive disease pathology. For example, histones released
during NET formation have been shown to be cytotoxic and
damage endothelial cells (36). NET formation leads to the
production of autoantibodies that damage important organs
(37) and inhibition of NETs formation has been shown to be
protective in several models of inflammatory diseases (38, 39).
Accumulating evidence indicates that NETs contributes to the
pathophysiology of severe COVID-19 (18, 19). The role of NETs
in the pathophysiology of COVID-19 constitutes a major focus
of this review and will be discussed in later sections.
VIRAL SEPSIS

Despite decades of research and treatment, sepsis still constitutes
a major challenge in modern medicine and is a leading cause of
death in the intensive care unit (ICU). Sepsis is a heterogeneous
and dynamic syndrome, due to a complex interplay between the
host immune response and the invading microbe. The Third
International Consensus Definitions Task Force defined sepsis as
life-threatening organ dysfunction caused by a dysregulated host
response to infection (40). This definition implies the general
notion that bacteria, fungi and viruses can equally cause sepsis.
However, there has been concerns that physicians are reluctant
to designate viral infections as a case of sepsis (7). Although,
bacteria accounts for more than 70% of documented sepsis (41,
42), the role of viruses in sepsis should not be ignored and this
knowledge is important to tailor adequate treatment to culture
negative patients.

The global burden of viral sepsis is huge with an estimated
occurrence of 200 million cases of viral community-acquired
pneumonia (CAP) each year (43). Pneumonia is the most
common clinical syndrome in patients with sepsis (41, 42).
Interestingly, studies have shown that viruses are the most
common causes of CAP (44, 45). Therefore, the strict
association of sepsis with bacterial infection can be costly given
that early antiviral therapy is associated with better outcome in
viral sepsis (46). It is also concerning that antibiotics have been
administered in culture negative cases of pneumonia (47)
indicating the bias of physicians to ignore viruses as a veritable
June 2022 | Volume 13 | Article 902206
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cause of sepsis. It must be stated that the presence of a virus is not
sufficient for the diagnosis of viral sepsis. This is due to the
possibility of bacterial co-infection or bacterial sepsis resulting
from virus-induced immunosuppression. However, among
patients with a diagnosis of pure viral CAP, 61% and 7%
presented with sepsis and septic shock respectively upon
admission to the clinic (47).

Several viruses have been reported to cause sepsis including
influenza viruses, rhinoviruses, respiratory syncytial viruses,
adenoviruses, herpes simplex viruses, human enteroviruses,
dengue viruses and coronaviruses (7, 47). Importantly, the
betacoronaviruses – Middle East respiratory syndrome
coronavirus (MERS-CoV), SARS-CoV, and SARS-CoV-2 that
threaten global health have also been known to cause sepsis. For
example, patients with severe COVID-19 have clinical symptoms
of viral sepsis. In one study, 59% of patients with COVID-19
were diagnosed with sepsis (48). Importantly, 76% of COVID-19
patients diagnosed with sepsis were negative for bacterial or
fungal infections (48). Another study diagnosed sepsis in 100%
of patients who died of COVID-19 (49). More studies are
required for the diagnosis of sepsis in critically ill patients with
COVID-19. However, taking into consideration several clinical
observations and the above definition of sepsis, the authors agree
that severe COVID-19 is a typical case of dysregulated host
response to infection and therefore qualifies as sepsis caused by
SARS-CoV-2 infection.
PATHOPHYSIOLOGY OF SEPSIS

The normal immune response to microbial invasion leads to the
activation of host defense mechanisms to counter the microbe
and prevent colonization of the host by the microbe. This
involves cellular activation, vasodilation, leukocyte recruitment
and increased endothelial permeability (50, 51). This complex
and well-choreographed mechanism of immune activation
describes the inflammatory response. Overwhelming infection
caused by a virulent microbe or dysregulated immune response
to an infection can lead to an overtly exaggerated immune
activation or hyper-inflammatory state causing tissue injury
and collateral damage to the host.

Innate immune cells like neutrophils and macrophages
express molecular receptors called pattern recognition
receptors (PRRs) that recognize pathogen-associated molecular
patterns (PAMPs) on microbes (52). Several PRRs have been
described and among them, TLRs are the most studied.

SARS-CoV-2 is an enveloped virus, with a single-stranded,
positive-sense RNA genome (53). During replication, RNA
viruses produce double-stranded RNA (dsRNA) as an
intermediate (53). Both ssRNA and dsRNA can activate TLRs
leading to the production of proinflammatory cytokines via
MyD88 and NFk-B activation (54, 55).

Innate immune cells also play a role in the maintenance of
antiviral state by the activation of Stimulator of Interferon Genes
(STING) pathway (56–58). Upon activation, STING recruits
TANK binding kinase 1 (TBK1) and the STING-TBK1
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complex subsequently phosphorylates Interferon Regulatory
Factor 3 (IRF3) (58). STING can also stimulate IKK leading to
NF-kB activation (58). The transcription factors, IRF3 and NF-
kB induce the production of type I IFNs and other pro-
inflammatory cytokines important for antiviral immunity (58).
For example, activation of STING pathway has been shown to
block human coronavirus infection (59) and defective type I IFN
production is associated with severe COVID-19 (60, 61).

The production of cytokines via NF-kB activation is an
important step for the recruitment of neutrophils and other
immune cells. However, a major hallmark of sepsis and severe
COVID-19 is the excessive production of pro-inflammatory
cytokines termed cytokine storm (CS) (7, 49). Cytokines like
tumor necrosis factor (TNF), Interleukin (IL)-1, IL-6, IL-8, IL-12
and IL-17 propagate the inflammatory response through
leukocyte recruitment, release of secondary inflammatory
mediators, endothelial dysfunction and NETs formation (7,
18). For example, TNF and IL-1 induce vasodilation, facilitate
the release of secondary mediators such as nitric oxide (NO),
platelet activation factor (PAF), prostaglandins, leukotrienes and
the activation of the complement system (62). Indeed, CS has
been implicated in the pathogenesis of sepsis, viral diseases,
autoimmune diseases, cancer and COVID-19 (18, 62–65).

CS also promotes leukocyte recruitment and endothelial
permeability in the pulmonary capillaries resulting in lung
injury and acute respiratory distress syndrome (ARDS) (64).
Microbes associated with pulmonary infection will induce
neutrophil migration to the lungs. The lumen of the
pulmonary capillaries are more narrow and this leads to
extended transit time along the pulmonary endothelium.
Neutrophil accumulation and sequestration in the lungs leads
to prolonged release of proteolytic enzymes that results in acute
lung injury (ALI) and ARDS (66). Sepsis is the most common
cause of ARDS and sepsis-related ARDS is associated with
overall higher disease severity, longer ICU stays and mortality
(67, 68).

Additionally, cytokine activity also activates the coagulation
pathway, which can lead to disseminated intravascular
coagulation (DIC) and/or coagulopathy which is a hallmark of
sepsis (62). Aberrant activation of the coagulation pathway leads
to capillary microthrombi, tissue hypoperfusion and end-organ
ischemia (69).

Overall, there is consensus that sepsis is driven by the host
immune response to infection rather than the pathogen itself
(63). However, several clinical trials of therapies targeting
important steps in the host immune response during sepsis
have not been successful (62). We anticipate that advances in
technology will increase our knowledge of sepsis pathogenesis
leading to more novel therapeutic interventions.
NETs, SEPSIS AND SEVERE COVID-19

Neutrophils are the first immune cells to arrive at the site of
bacterial infection and play an important role in host defense.
These cells are equipped with antimicrobial granular content that
June 2022 | Volume 13 | Article 902206
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is rapidly deployed to eliminate the invading microbe. However,
there is unequivocal experimental evidence that neutrophils
contribute to sepsis pathology by release of cytolytic granular
content, vaso-occlusion, and NET formation (66, 70).

The discovery of the process of NET formation by neutrophils
highlighted a novel mechanism of innate immune defense
against microbes. NETs have been shown to trap and kill a
wide range of microbes including bacteria, fungi and viruses (26,
33–35). NETs formation can be beneficial during sepsis because
NETs spatially restrict the dissemination of microbes during
infection (26). To prevent physical containment by NETs, some
bacteria have evolved to degrade NETs and NET degradation
promotes bacterial virulence (71). Patients with chronic
granulomatous disease (CGD) caused by mutations in genes
encoding NADPH oxidase subunits do not make NETs and are
susceptible to recurrent life-threatening infections (72). Gene
therapy in a CGD patient restored NET forming ability of
neutrophils resulting in clearance of refractory fungal infection
(72). Additionally, NET proteins like histones, NE, MPO and
proteinase 3 (PR3) have potent antimicrobial properties and help
in bacterial killing (73).

However, accumulating evidence suggests that NETs
formation is a double-edged sword (74) that contributes to the
pathogenesis of several diseases including sepsis (70), rheumatoid
arthritis (75), vasculitis (76), diabetes (77), lupus (78), cancer (79)
and COVID-19 (18, 80). For example, studies have shown that
levels of circulating cell-free DNA that are released during NET
formation is a strong predictor of sepsis mortality (81). Also,
histones which are the most abundant proteins in NETs (82) are
cytotoxic towards epithelial and endothelial cells (36, 83). Histone
administration to mice resulted in neutrophil accumulation in the
lungs, microvascular thrombosis and death (83). Additionally, in
non-human primates challenged with lethal concentration of
E. coli, histone levels correlate with onset of renal failure.
Furthermore, using three different models of sepsis: injection
of LPS, injection of TNF, and CLP, the authors showed that
antibodies against H4 improved animal survival (83). Consistent
with this, we recently showed that inhibition of NE produced
during NET formation reduced lung neutrophil accumulation,
systemic levels of proinflammatory cytokines and improved
survival in a mouse model of endotoxic shock (38).

A major complication attributed to NETs formation is
thrombosis resulting in multi-organ failure (84–87). Due to
their ability to form scaffolds, NETs can occlude blood vessels
and cause thrombosis. NET scaffolds also promote adhesion of
platelets leading to thrombus formation (85, 86). Importantly,
serine proteases released by NETs like neutrophil elastase
enhance tissue factor and factor XII dependent coagulation
thereby leading to intravascular thrombus formation (88).
Histones produced by NETs can promote platelet aggregation
and thrombin generation via toll-like receptor (TLR) 2 and 4
(89). Interestingly, activated platelets have been shown to induce
de novo NETs formation thereby propagating the vicious circle
of platelet-neutrophil interaction in coagulopathy (90–92).
Indeed, dysregulated NETs formation is associated with
coagulopathy in sepsis and severe COVID-19 (80, 92–95).
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We have drawn comparisons between sepsis and severe
COVID-19 and conclude that the clinical presentations of
sepsis and severe COVID-19 intersect at so many levels. Sepsis
and severe COVID-19 commonly affect the pulmonary,
cardiovascular, and renal systems. Many patients with severe
COVID-19 exhibited clinical manifestations of shock-like cold
extremities, weak peripheral pulses, dysfunction in
microcirculation and organ damage notably in the lungs,
kidney and liver (96). Like sepsis, ARDS and respiratory failure
is the most common cause of death in COVID-19 patients (49,
97). Additionally, like sepsis, mortality in severe COVID-19 is
driven by risk factors like age and presence of predisposing
conditions (49). Severe COVID-19 is also characterized by
excessive inflammatory cytokine production (19, 98, 99).
Moreover, C-reactive protein, a biomarker for sepsis severity
has also been shown to predict poor prognosis in COVID-19
(100). Furthermore, similar to sepsis, patients with severe
COVID-19 show evidence of coagulopathy and dysregulated
thrombus formation (80, 101). Indeed, one study showed that
100% of patients who died from COVID-19 were diagnosed with
sepsis (49). In line with the evidence given above, we argue that
severe COVID-19 is a typical case of viral sepsis.

Since NETs have been shown to contribute to sepsis pathology,
it is conceivable that NETs may contribute to the pathogenesis of
severe COVID-19 (Figure 1). Indeed, several studies have
implicated NETs in the pathogenesis of severe COVID-19. For
example, it was shown that SARS-CoV-2 replicates in neutrophils
and triggers NETosis which contributes to COVID-19 pathology
by killing lung epithelial cells (102). Sera from patients with
COVID-19 have elevated levels of markers of NET formation
including cell-free DNA, MPO-DNA, citrullinated histone H3,
and neutrophil elastase (Table 1) and these markers are associated
with disease severity (18, 111–113). Neutrophilia and NETosis is a
major cause of ARDS and lung injury in severe COVID-19 (80,
114, 115). NETs formation is associated with systemic
inflammation and cytokine storm which contributes to mortality
in severe COVID-19 (116, 117). Additionally, dysregulated
thrombus formation which contributes to mortality in severe
COVID-19 has been associated with NET formation (80, 118,
119). Furthermore, COVID-19 has been shown to induce the
production of autoantibodies associated with NET production
(101). These observations have led to an overwhelming scientific
support for targeting NETs formation as a veritable approach for
the treatment of severe COVID-19 (19, 120, 121).
TARGETING NETs IN COVID-19

Recently, there has been concerted efforts to develop therapies
targeting NETs in several diseases. Therapies targeting NETs have
shown excellent success in mitigating lung inflammation and
ARDS in preclinical models (19, 38). Since ARDS is the major
cause of death in COVID-19, we advocate for the investigation of
NET therapies in the treatment of COVID-19 patients. Different
approaches to targeting NETs have shown remarkable success in
preclinical models. Such approaches include dissolving NET
June 2022 | Volume 13 | Article 902206
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backbone, for example using DNAse (122), blocking molecules
relevant in NET formation for example ROS, PAD4 and
gasdermin D (39, 123) or blocking the activity of NET proteins
like neutrophil elastase (38). Some of these NET therapeutics are
currently available in the clinic and should be considered for the
Frontiers in Immunology | www.frontiersin.org 5
treatment of patients critically ill with COVID-19. For example,
DNAse treatment is used in the clinic for patients with cystic
fibrosis and the NE inhibitor sivelestat is clinically approved for
the treatment of ARDS in Japan and South Korea (124, 125).
Indeed, clinical trials of several NET inhibitors are underway for
the treatment of COVID-19 (Table 2) and some of them have
already been adopted as the standard of care for COVID-19
patients. For example, glucocorticoid therapy which is one of the
earliest anti-inflammatory treatments available for sepsis patients
has been shown to be beneficial for COVID-19 patients and
dexamethasone is routinely given to COVID-19 patients (133).
Importantly, dexamethasone has been shown to reduce NETs
formation (134). Heparin, another NET inhibitor has also been
shown to be beneficial for the treatment of COVID-19 patients
(135, 136).

Anti-inflammatory therapies and anti-cytokine therapies can
also be beneficial in reducing neutrophilia, NETs formation and
NET-induced thrombosis. For example, elevated levels of IL-6 has
been associated with severe COVID-19 thereby highlighting IL-6
FIGURE 1 | SARS-CoV-2 infection induces neutrophil extracellular traps. SARS-CoV-2 replicates in neutrophils and induces the formation of NETs which leads to
the release of inflammatory cytokines and several proteins that damage lung epithelium resulting in acute lung injury and acute respiratory distress syndrome (ARDS).
TABLE 1 | NET proteins associated with severe COVID-19.

NET COMPONENT REFERENCE

DNA (18, 103)
Elastase (104)
Myeloperoxidase (18, 105)
Proteinase 3 (105, 106)
Histone 3 (18, 103)
Cathepsin G (104, 107)
Azurocidin (108)
Transketolase (104, 109)
Alpha-defensins (110)
Calprotectin (110)
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as a therapeutic target. IL-6 signaling has been shown to promote
NET formation and lung inflammation (137). We recently
showed that inhibition of NETs formation led to decrease in
systemic levels of IL-6 and improved survival in a mouse model of
endotoxic shock (38). Indeed, Tocilizumab, a recombinant
humanized monoclonal anti-IL-6 antibody targeting the human
IL-6 receptor was recently approved for the treatment of COVID-
19 (138). Previous studies showed that Tocilizumab is also
associated with decrease in NET formation (139).

As our understanding of the molecular mechanisms of NET
formation increases, more therapies targeting NETs will become
available and may hold promise for the effective treatment of
severe COVID-19.
CONCLUDING REMARKS

The management of sepsis has been a challenge in modern
medicine and the launch of surviving sepsis campaign was
aimed to curtail the unacceptably high mortality of sepsis
patients in the ICU (40). The mortality induced by the novel
SARS-CoV-2 responsible for the current global pandemic has
been attributed to sepsis (49). In this regard, biomarkers used for
sepsis can be used for the early identification of COVID-19
patients that are at risk of progressing to severe disease. There is
consensus that mortality in sepsis and COVID-19 is due to host
immune response. Hence, modulating dysfunctional immune
response in COVID-19 is critical for improving survival.

The formation of neutrophil extracellular traps has emerged
as a contributing factor to the pathogenesis of COVID-19 (102).
Importantly, SARS-CoV-2 has been shown to infect neutrophils
and promote NETosis (102). Understanding of the role of NETs
in the pathogenesis of severe COVID-19 holds potential for
improving survival of patients. NET biomarkers can be easily
detected in the blood and has been shown to indicate disease
severity in COVID-19 (18). Hence, biomarkers of NET
formation can be used to stratify COVID-19 patients at risk of
progressing to severe disease. Since therapies targeting NETs
have shown success in experimental models of ARDS, we
propose that therapies targeting NETs have great potential for
the treatment of COVID-19.

While we have focused on the role of extracellular traps
produced by neutrophils in this review, macrophages also
Frontiers in Immunology | www.frontiersin.org 6
produce macrophage extracellular traps (METs) which
propagate inflammation (140, 141). Interestingly, macrophages
have been shown to contribute to inflammation in COVID-19
(12). Moreover, neutrophil extracellular traps from COVID-19
patients induce a proinflammatory response in monocyte-
derived macrophages thereby linking NET formation to
inflammatory macrophage activity (17). It is worthy of note
that similar to neutrophils, macrophages also release elastase,
histones and MPO during MET formation (142, 143). Hence, it
is conceivable that mechanisms inhibiting the formation of
NETs as highlighted here will also inhibit the formation
of METs. Studies investigating the role of macrophage
extracellular traps in severe COVID-19 will help unravel its
role in the condition.

As with the case in sepsis, it is likely that one drug may not be
sufficient to improve survival in COVID-19. Rather, a
combinatorial approach may be necessary to reverse mortality
in COVID-19. For example, the recently approved Tocilizumab
showed benefit for COVID-19 patients who received it in
conjunction with corticosteroids (144). We advocate for
clinical trials investigating such combinations of NET
therapeutics for the treatment of COVID-19. As another
example, although sivelestat did not improve mortality in
patients with ARDS (145), combination of sivelestat with
antiviral therapy or another NET inhibitor may be beneficial
for COVID-19 patients.

The intelligent design of clinical trials of therapies targeting
NETs is essential and several factors including timing of
intervention is critical for success. For example, there are
concerns that DNase may enhance the dispersal of free
histones and promote inflammation thereby leading to worse
outcome in sepsis. In line with this, Meng et al, showed that early
administration of DNase led to hyper-susceptibility to
polymicrobial sepsis in mice (146). In a follow-up study, Mai
et al showed that delayed administration of DNase is necessary
for improved outcome in sepsis (147).

More research is needed to understand neutrophil behavior
during SARS-CoV-2 infection. For example, an interesting
question is whether different viral strains that have varying
degrees of immunogenicity differ in their degree of NET
induction, and this remains an important subject of
investigation in our laboratory. Increase in our knowledge and
understanding of the pathogenesis of COVID-19 will widen the
TABLE 2 | Clinical trials of NET inhibitors for COVID-19 Treatment.

NET INHIBITOR MOLECULAR TARGET/FUNCTION COVID TRIAL

Pulmozyme
(dornase alfa) (126)

Recombinant DNase that improves lung function by thinning
sputum.

NCT04359654
NCT04409925

Brensocatib (127) Inhibits dipeptidyl peptidase 1 and neutrophil proteases NCT04817332
Anakinra (128) Interleukin-1 Receptor antagonist NCT04594356
Glucocorticoid
(methylprednisolone)
(129)

Immunosuppressive treatment NCT04244591

Hydroxychloroquine (130) Reduces activity of immune system by disrupting lysosomal stability NCT04332991
Colchicine (131) Anti-inflammatory NCT04326790
Alvelestat (132) Neutrophil Elastase inhibitor NCT00769119
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availability of molecular targets that will yield the desired
therapeutic benefit. With concerted research efforts, the
menace of severe COVID-19 in the ICU will be curtailed.
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Carrillo-Vázquez DA, Maravillas-Montero JL, et al. Neutrophil
Extracellular Traps Contribute to COVID-19 Hyperinflammation and
Humoral Autoimmunity. Cells (2021) 10:2545. doi : 10.3390/
CELLS10102545/S1

18. Zuo Y, Yalavarthi S, Shi H, Gockman K, Zuo M, Madison JA, et al.
Neutrophil Extracellular Traps in COVID-19. JCI Insight (2020) 5:
e138999. doi: 10.1172/JCI.INSIGHT.138999

19. Barnes BJ, Adrover JM, Baxter-Stoltzfus A, Borczuk A, Cools-Lartigue J,
Crawford JM, et al. Targeting Potential Drivers of COVID-19: Neutrophil
Extracellular Traps. J Exp Med (2020) 217:e20200652. doi: 10.1084/
JEM.20200652/151683

20. Sette A, Crotty S. Adaptive Immunity to SARS-CoV-2 and COVID-19. Cell
(2021) 184:861. doi: 10.1016/J.CELL.2021.01.007

21. Chen Z, John Wherry E. T Cell Responses in Patients With COVID-19. Nat
Rev Immunol (2020) 20:529–36. doi: 10.1038/s41577-020-0402-6

22. Bardoel BW, Kenny EF, Sollberger G, Zychlinsky A. The Balancing Act of
Neutrophils. Cell Host Microbe (2014) 15:526–36. doi: 10.1016/
j.chom.2014.04.011

23. Ley K, Hoffman HM, Kubes P, Cassatella MA, Zychlinsky A, Hedrick CC,
et al. Neutrophils: New Insights and Open Questions. Sci Immunol (2018) 3:
eaat4579. doi: 10.1126/SCIIMMUNOL.AAT4579

24. Klein C. Genetic Defects in Severe Congenital Neutropenia: Emerging
Insights Into Life and Death of Human Neutrophil Granulocytes. Annu
Rev Immunol (2011) 29:399–413. doi: 10.1146/ANNUREV-IMMUNOL-
030409-101259

25. Nathan C. Neutrophils and Immunity: Challenges and Opportunities. Nat
Rev Immunol (2006) 6:173–82. doi: 10.1038/nri1785

26. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS,
et al. Neutrophil Extracellular Traps Kill Bacteria. Science (2004) 303:1532–5.
doi: 10.1126/science.1092385

27. Fuchs TA, Abed U, Goosmann C, Hurwitz R, Schulze I, Wahn V, et al. Novel
Cell Death Program Leads to Neutrophil Extracellular Traps. J Cell Biol
(2007) 176:231–41. doi: 10.1083/JCB.200606027

28. Yousefi S, Mihalache C, Kozlowski E, Schmid I, Simon HU. Viable
Neutrophils Release Mitochondrial DNA to Form Neutrophil Extracellular
Traps. Cell Death Differ (2009) 16:1438–44. doi: 10.1038/cdd.2009.96

29. Amini P, Stojkov D, Felser A, Jackson CB, Courage C, Schaller A, et al.
Neutrophil Extracellular Trap Formation Requires OPA1-Dependent
Glycolytic ATP Production. Nat Commun (2018) 9:2958. doi: 10.1038/
S41467-018-05387-Y

30. Brinkmann V, Zychlinsky A. Neutrophil Extracellular Traps: Is Immunity
the Second Function of Chromatin? J Cell Biol (2012) 198:773–83.
doi: 10.1083/JCB.201203170

31. Papayannopoulos V, Metzler KD, Hakkim A, Zychlinsky A. Neutrophil
Elastase and Myeloperoxidase Regulate the Formation of Neutrophil
Extracellular Traps. J Cell Biol (2010) 191:677–91. doi: 10.1083/
jcb.201006052

32. Hakkim A, Fuchs TA, Martinez NE, Hess S, Prinz H, Zychlinsky A, et al.
Activation of the Raf-MEK-ERK Pathway is Required for Neutrophil
June 2022 | Volume 13 | Article 902206

https://doi.org/10.23750/ABM.V91I1.9397
https://doi.org/10.1001/JAMA.2020.24865
https://doi.org/10.1001/JAMA.2020.24865
https://doi.org/10.1136/BMJ.N1873
https://covid.cdc.gov/covid-data-tracker/#datatracker-home
https://covid.cdc.gov/covid-data-tracker/#datatracker-home
https://doi.org/10.1038/S41564-020-0695-Z
https://doi.org/10.1038/S41586-020-2012-7
https://doi.org/10.3389/FIMMU.2018.02147
https://doi.org/10.3389/FIMMU.2018.02147
https://doi.org/10.1038/s41577-020-00436-4
https://doi.org/10.1126/SCIIMMUNOL.ABG5669/SUPPL_FILE/SCIIMMUNOL.ABG5669_MDAR_CHECKLIST.ZIP
https://doi.org/10.1126/SCIIMMUNOL.ABG5669/SUPPL_FILE/SCIIMMUNOL.ABG5669_MDAR_CHECKLIST.ZIP
https://doi.org/10.1172/JCI137244
https://doi.org/10.3389/FIMMU.2020.00827
https://doi.org/10.3389/FIMMU.2020.00827
https://doi.org/10.1038/S41577-020-0353-Y
https://doi.org/10.1038/S41577-020-0353-Y
https://doi.org/10.3389/FIMMU.2020.01648/BIBTEX
https://doi.org/10.1126/SCIIMMUNOL.ABF6692
https://doi.org/10.1126/SCIIMMUNOL.ABF6692
https://doi.org/10.1038/S41421-020-0168-9
https://doi.org/10.3390/CELLS9112374
https://doi.org/10.3390/CELLS9112374
https://doi.org/10.3390/CELLS10102545/S1
https://doi.org/10.3390/CELLS10102545/S1
https://doi.org/10.1172/JCI.INSIGHT.138999
https://doi.org/10.1084/JEM.20200652/151683
https://doi.org/10.1084/JEM.20200652/151683
https://doi.org/10.1016/J.CELL.2021.01.007
https://doi.org/10.1038/s41577-020-0402-6
https://doi.org/10.1016/j.chom.2014.04.011
https://doi.org/10.1016/j.chom.2014.04.011
https://doi.org/10.1126/SCIIMMUNOL.AAT4579
https://doi.org/10.1146/ANNUREV-IMMUNOL-030409-101259
https://doi.org/10.1146/ANNUREV-IMMUNOL-030409-101259
https://doi.org/10.1038/nri1785
https://doi.org/10.1126/science.1092385
https://doi.org/10.1083/JCB.200606027
https://doi.org/10.1038/cdd.2009.96
https://doi.org/10.1038/S41467-018-05387-Y
https://doi.org/10.1038/S41467-018-05387-Y
https://doi.org/10.1083/JCB.201203170
https://doi.org/10.1083/jcb.201006052
https://doi.org/10.1083/jcb.201006052
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Ventura-Santana et al. Neutrophil Extracellular Traps in COVID-19
Extracellular Trap Formation. Nat Chem Biol (2011) 7:75–7. doi: 10.1038/
nchembio.496

33. Urban CF, Reichard U, Brinkmann V, Zychlinsky A. Neutrophil
Extracellular Traps Capture and Kill Candida Albicans Yeast and Hyphal
Forms. Cell Microbiol (2006) 8:668–76. doi: 10.1111/J.1462-5822.
2005.00659.X

34. Guimarães-Costa AB, Nascimento MTC, Froment GS, Soares RPP, Morgado
FN, Conceição-Silva F, et al. Leishmania Amazonensis Promastigotes Induce
and are Killed by Neutrophil Extracellular Traps. Proc Natl Acad Sci USA
(2009) 106:6748–53. doi: 10.1073/PNAS.0900226106

35. Saitoh T, Komano J, Saitoh Y, Misawa T, Takahama M, Kozaki T, et al.
Neutrophil Extracellular Traps Mediate a Host Defense Response to Human
Immunodeficiency Virus-1. Cell Host Microbe (2012) 12:109–16.
doi: 10.1016/J.CHOM.2012.05.015

36. Saffarzadeh M, Juenemann C, Queisser MA, Lochnit G, Barreto G, Galuska
SP, et al. Neutrophil Extracellular Traps Directly Induce Epithelial and
Endothelial Cell Death: A Predominant Role of Histones. PLoS One (2012) 7:
e32366. doi: 10.1371/journal.pone.0032366

37. Khandpur R, Carmona-Rivera C, Vivekanandan-Giri A, Gizinski A, Yalavarthi
S, Knight JS, et al. NETs are a Source of Citrullinated Autoantigens and
Stimulate Inflammatory Responses in Rheumatoid Arthritis. Sci Transl Med
(2013) 5:178ra40. doi: 10.1126/scitranslmed.3005580

38. Okeke EB, Louttit C, Fry C, Najafabadi AH, Han K, Nemzek J, et al.
Inhibition of Neutrophil Elastase Prevents Neutrophil Extracellular Trap
Formation and Rescues Mice From Endotoxic Shock. Biomaterials (2020)
238:119836. doi: 10.1016/j.biomaterials.2020.119836

39. Knight JS, Zhao W, Luo W, Subramanian V, O’Dell AA, Yalavarthi S, et al.
Peptidylarginine Deiminase Inhibition is Immunomodulatory and
Vasculoprotective in Murine Lupus. J Clin Invest (2013) 123:2981–93.
doi: 10.1172/JCI67390

40. Singer M, Deutschman CS, Seymour C, Shankar-Hari M, Annane D, Bauer
M, et al. The Third International Consensus Definitions for Sepsis and Septic
Shock (Sepsis-3). JAMA (2016) 315:801–10. doi: 10.1001/JAMA.2016.0287

41. Zahar JR, Timsit JF, Garrouste-Orgeas M, Français A, Vesim A, Descorps-
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