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In a typical single-molecule force spectroscopy experiment, the ends of the molecule of interest
are connected by long polymer linkers to a pair of mesoscopic beads trapped in the focus of two
laser beams. At constant force load, the total extension, i.e., the end-to-end distance of the molecule
plus linkers, is measured as a function of time. In the simplest systems, the measured extension
fluctuates about two values characteristic of folded and unfolded states, with occasional transitions
between them. We have recently shown that molecular (un)folding rates can be recovered from such
trajectories, with a small linker correction, as long as the characteristic time of the bead fluctua-
tions is shorter than the residence time in the unfolded (folded) state. Here, we show that accurate
measurements of the molecular transition path times require an even faster apparatus response.
Transition paths, the trajectory segments in which the molecule (un)folds, are properly resolved
only if the beads fluctuate more rapidly than the end-to-end distance of the molecule. Therefore,
over a wide regime, the measured rates may be meaningful but not the transition path times. Ana-
lytic expressions for the measured mean transition path times are obtained for systems diffusing
anisotropically on a two-dimensional free energy surface. The transition path times depend on the
properties both of the molecule and of the pulling device. © 2017 Author(s). All article content,
except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5004767

I. INTRODUCTION

Recently, we developed a quantitative theory of force
spectroscopy experiments that accounts for the effects of the
mesoscopic pulling device on the apparent rates of confor-
mational transitions.1 Here, we adapt this theoretical frame-
work to examine the effects of the measurement apparatus
on the apparent transition path times. Transition paths are
those segments of a trajectory where conformational tran-
sitions actually happen. The mean transition path time for
protein folding was first determined experimentally by Chung
and Eaton2,3 using single-molecule Förster resonance energy
transfer (FRET) measurements. Then, using single-molecule
force spectroscopy, Woodside and co-workers4–7 determined
not only the mean but also the distribution of the transition
path times. Motivated by the success of these experiments, we
concentrate on the effect of the measurement device on the
transition paths.

A schematic representation of a force spectroscopic exper-
iment using a laser tweezer is shown in Fig. 1(a). A molecule
(left) is attached via a soft polymer linker to a bead trapped in
the focus of a laser beam. In the presence of a constant force, the
molecule fluctuates between folded and unfolded conforma-
tions. The total measured extension q, of molecule plus linker,

a)Electronic mail: pilar.cossio@biophys.mpg.de
b)Electronic mail: gerhard.hummer@biophys.mpg.de
c)Electronic mail: attilas@nih.gov

is monitored and plotted as a function of time in Fig. 1(b).
In the folded (unfolded) state, the extension fluctuates about
a small (large) value. Occasionally, there are conformational
transitions, and the extension changes rapidly, as compared to
the time spent in a state, from one reference value to the other.
These transition paths are shown in purple in Fig. 1(b). Figure
1(c) zooms in on the transition paths, which have been aligned
to start at the same time. Because of microscopic reversibil-
ity, the transition path ensembles for folding and unfolding
are the same (i.e., if the direction of time is reversed, unfold-
ing transitions in the trajectory become folding transitions and
vice versa). For typical systems, transition path times are on
the microsecond time scale, whereas the residence times (i.e.,
the time spent in a state before a transition occurs) are on the
millisecond or slower time scale.

In this work, we study how the properties of the observed
transition paths depend on the relative time scales of the
fluctuations of molecular (x) and measured (q) extensions
[Fig. 1(a)]. We begin in Sec. II A by summarizing the prop-
erties of the transition paths in one dimension (1D). Then,
in Sec. II B, we consider the transition paths in two dimen-
sions (2D) within the framework of anisotropic diffusion on
a free energy surface that depends on both the molecular and
measured extensions. For the regime in which the diffusion
coefficient Dx of the molecular extension x is larger than the
diffusion coefficient Dq of the measured extension q, we derive
analytical expressions for the mean transition path time deter-
mined from the trajectories of the measured extension. We
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FIG. 1. Transition paths from force spectroscopy experiments. (a) Represen-
tation of an optical tweezer experiment at constant force when the populations
of the folded and unfolded states are equal. A molecular construct is attached
via a typically long and soft polymeric linker to a mesoscopic pulling device.
x is the end-to-end distance of the molecule, and q is the total measured exten-
sion. The fluctuations of the folded or unfolded molecule can be faster than
those of the bead. (b) Measured extension q as a function of time t for the con-
stant force experiments. The extension fluctuates about values characteristic
of the folded and unfolded states with fast transitions between these confor-
mational states. The transition paths (purple solid lines) pass directly between
pre-defined limits (red lines). (c) Zoom-in on the transition paths aligned to
start at the same time.

validate these expressions using Brownian dynamics simula-
tions and find that the mean transition path time is inversely
proportional to the “apparatus” diffusion coefficient Dq even in
the regime where the measured transition rate is similar to the
molecular rate. Finally, we discuss the implications of these
results for the analysis of the transition paths obtained using
single-molecule force spectroscopy.

II. THEORY
A. Transition paths for 1D diffusion

First, we summarize some results on the properties of tran-
sition paths for 1D diffusive dynamics. A transition path from
x = a to x = b is defined as a segment of a trajectory x(t) that
starts from a and reaches b directly, without first returning to
a. The average duration of such a path in the presence of a
potential G(x) is8

〈tTP(a↔ b)〉 =
∫ b

a
dx e−βG(x)φ(x)(1 − φ(x))dx

×

∫ b

a
dx′ eβG(x′)/D(x′), (1)

where D(x) is the position-dependent diffusion coefficient,
β = 1/kBT is the reciprocal temperature, kB is Boltzmann’s
constant, and φ(x) is the committor,

φ(x) =
∫

x
a dy eβG(y)/D(y)

∫
b

a dy eβG(y)/D(y)
, (2)

which is the probability of reaching b before a, starting
from x.

For a harmonic barrier, G(x) = �κx2/2, and a constant dif-
fusion coefficient, D(x) = D, the mean duration of a transition
path between ±L obtained by evaluating the above integrals
for large L is9

〈tTP(−L ↔ L)〉 ≈
ln(eγ βκL2)

Dβκ
, (3)

where γ ≈ 0.5772 is the Euler-Mascheroni constant. The
free energy difference between x = ±L and the barrier top
is ∆G‡ = κL2/2. For fixed curvature κ, L can be eliminated
in favor of ∆G‡, yielding the more familiar form of this equa-
tion. Alternatively, for fixed L, κ can be eliminated in favor of
∆G‡.

As an aside, we note that for barriers that fall off more
steeply than harmonic, the average transition path times
approach a finite value as L, or∆G‡, go to infinity. For example,
for the quartic barrier G(x) = �κx4, one obtains

lim
L→∞
〈tTP(−L ↔ L)〉 =

3[Γ(5/4)]2

2D
√

2βκ
≈

0.8714

D
√
βκ

, (4)

where Γ(x) is the gamma function.
For a harmonic barrier, the distribution of transition

path times for sufficiently high ∆G‡ can be approximated
by10

pTP(t) ≈
βκD

√
β∆G‡

erfc(
√
β∆G‡)

e−β∆G‡ coth(βκDt/2)√
2π sinh(βκDt) sinh(βκDt/2)

, (5)

where erfc(x) is the complementary error function. The above
expression is exactly the distribution of conditional first pas-
sage times from x = �L to x = L with ∆G‡ = κL2/2. Thus
in this approximation, the system is allowed to recross the
starting point (x = �L) before reaching x = L. Indeed, the cor-
responding mean time (∫

∞
0 t pTP(t)dt) is always larger than

the exact mean transition path time. However, as ∆G‡ or
L→∞, such recrossings become negligible, and in this limit,
the mean time calculated using pTP(t) is exactly given by
Eq. (3). For low barriers, say ∆G‡ = 1 kBT, the mean tran-
sition path time obtained using Eq. (5) is about twice larger
than the exact value obtained from Eq. (1).

Recently, there has been considerable interest in the shape
of transition paths.11,12 For a harmonic barrier, starting with
the path integral representation of the propagator,13 it can be
shown that the most probable path between ±L of duration τ
is given by

x̄(t |τ) =
L sinh(βκD(t − τ/2))

sinh(βκDτ/2)
(6)

for 0 ≤ t ≤ τ. The most probable path of duration equal to
the mean transition path time is x̄(t |〈tTP(−L ↔ L)〉). Using
Eq. (3), this becomes
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FIG. 2. Example of two transition paths, A and B, aligned at �L. The first
transition path (A) crosses xo only once at time tA

1 ; the second transition path
(B) crosses xo multiple times at tB

1 , tB
2 , and tB

3 . The dashed line shows the

mirror-image path of transition path B between tB
1 and tB

3 .

x̄(t |〈tTP(−L ↔ L)〉) '
L(eβκDt − βκL2e−βκDt+γ)

βκL2eγ − 1
(7)

for large L (or ∆G‡).
To test the accuracy of this approximation, one needs

to average individual transition paths extracted, for example,
from a long simulation. For the sake of simplicity, consider
only two transition paths, A and B, that are aligned so that
both are at x = �L at t = 0 as shown in Fig. 2. Because all
paths have the same x range, but vary in their duration t, it is
easier to calculate 〈t(x)〉, i.e., the average time that is assigned
to position x. However, some care is required in defining this
average. For the example shown in Fig. 2, one could calcu-
late 〈t(xo)〉 by simply averaging all the time transition paths
A and B cross xo, i.e., (tA

1 + tB
1 + tB

2 + tB
3 )/4. However, this

procedure overestimates the contributions of transition path B
which crosses xo multiple times. The correct procedure is to
first determine the average time t(x) for each trajectory and
then average over all trajectories. For the example in Fig. 2,
we have 〈t(xo)〉 = 1

2 [t
A
(xo) + t

B
(xo)] = 1

2 [tA
1 + 1

3 (tB
1 + tB

2 + tB
3 )].

For a path that crosses xo at tB
1 , tB

2 , and tB
3 , because of the micro-

scopic reversibility and Markovian dynamics of x, there is a
“mirror-image” path that crosses xo at tB

1 , tB
2′ , and tB

3 (dashed
line in Fig. 2). The average value of t(xo) for these two paths
is (2tB

1 + 2tB
3 + tB

2 + tB
2′)/6. However, because of symmetry

tB
2 + tB

2′ = tB
1 + tB

3 and so 〈t(xo)〉 = (tB
1 + tB

3 )/2, and it is
sufficient to simply average the first and last crossing times.
Thus, because of microscopic time reversibility, for trajec-
tories that cross xo for the first time at tf and for the last
time at tl, 〈t(xo)〉 = 〈tf + tl〉/2 independent of the number
of crossings in between. Therefore, to derive a simple ana-
lytic expression for 〈t(x)〉, note that on average the first time
(tf ) a transition path crosses x starting at �L is 〈tf 〉 = 〈tTP(�L
↔ x)〉 since this segment of the trajectory is itself a transi-
tion path. Similarly 〈tl〉 = 〈tTP(�L ↔ L)〉 � 〈tTP(x ↔ L)〉, and
thus

〈t(x)〉 =
1
2

(〈tTP(−L ↔ L)〉 + 〈tTP(−L ↔ x)〉 − 〈tTP(x ↔ L)〉)

(8)

for �L ≤ x ≤ L. As to be expected, 〈t(�L)〉 = 0 and 〈t(L)〉
= 〈tTP(�L → L)〉. Equation (8) is equivalent to that proposed
by Makarov12 as a symmetrized version of the analytical
expression found by Kim and Netz.11

It might also be interesting to consider the velocity along
a transition path.12 For a transition path of duration τ, the most
probable velocity can be obtained from Eq. (6),

dx̄(t |τ)
dt

=
L βκD cosh(βκD(t − τ/2))

sinh(βκDτ/2)
. (9)

Substitution of τ = 〈tTP(�L↔ L)〉 in Eq. (1) gives the average
“velocity” of the most probable path.

To test the above expressions for harmonic and anhar-
monic barriers, we performed Brownian dynamics simula-
tions on the matched-harmonic double-well potential shown in
Fig. 3(a) (see Sec. III) with two sets of boundaries for
the transition paths. The first set delimits the region where
the barrier is exactly harmonic, between �0.5 and 0.5, i.e.,
L = 0.5; in the second set, between �1 and 1 with L = 1,
the barrier also contains anharmonic segments [red and black
dashed lines, respectively, in Fig. 3(a)]. The activation barrier
∆G‡ that enters the above formulas is 4 kBT for L = 0.5 and
∆G‡ = 8 kBT for L = 1. The examples of transition paths are
shown in Fig. 3(b) for both sets. In Fig. 3(c), the distribution
of transition path times for L = 0.5 is compared with the pre-
diction of Eq. (5) evaluated for the same parameters used in
the simulations (red points and line, respectively). The good
agreement implies that ∆G‡ = 4 kBT is large enough for the
high barrier approximation to apply. For L = 1, the prediction
obtained from Eq. (5) with ∆G‡ = 8 kBT and the exact κ and
D is inaccurate [solid green line Fig. 3(c)], as to be expected,
since the transition path region is not harmonic. However, by
optimizing D, with κ and ∆G‡ fixed to the exact values, a good
fit can be obtained (dashed green line). The extracted D from
the fit of pTP(t) is about 45% smaller than the exact value.

In Fig. 3(d), the mean transition path shape for L = 0.5
obtained from the simulations (red points) is in excellent agree-
ment with the prediction of Eq. (7), and the prediction of
Eq. (8) is virtually indistinguishable. In Fig. 3(d), we also
show the mean transition path shape obtained for L = 1, the
prediction of Eq. (7) using the exact parameters (solid green
line), and the fit of Eq. (7) by optimizing D with κ fixed to
the exact value (dashed green line). The fit does not com-
pletely capture the data, and the extracted D is 34% smaller
than the exact D. By allowing also κ to float, the fit improves
(see the supplementary material, Fig. 1). However, the fitted
κ and D values are 98% and 73% lower than the exact val-
ues, respectively. Thus, if the barrier is exactly harmonic, the
analytical expressions match well the results of the Brownian
dynamics simulations; however, if this is not the case (here for
L = 1), care should be taken when extracting model
parameters.

B. Transition paths in two dimensions

Consider a constant force experiment shown schemati-
cally in Fig. 1(a). The simplest description of this system that

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-010898
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FIG. 3. Transition paths over a 1D barrier. (a) 1D matched-harmonic potential surface with activation barrier 8 kBT. The transition paths are defined between x
= �0.5 and 0.5 (L = 0.5) where the barrier is harmonic (vertical dashed red lines) and between the minima x = �1 and 1 (L = 1) where the barrier is anharmonic
(vertical dashed black lines). ∆G‡ that enters the various expressions is 4 kBT for L = 0.5 and 8 kBT for L = 1. (b) Transition paths from the Brownian dynamics
simulations on the matched-harmonic potential (see Sec. III) for L = 0.5 (red) and L = 1 (green). The time scales are the same. (c) Distribution of transition path
times for L = 0.5 and L = 1. The prediction from Eq. (5) with the exact κ and D is shown as the solid red line for L = 0.5 with ∆G‡ = 4 kBT and as the solid green
line for L = 1 with ∆G‡ = 8 kBT. The fit of Eq. (5) is shown as the dashed green line for L = 1 by optimizing D using the exact κ and ∆G‡ from the simulations.
(d) The mean transition path shapes (see Sec. III) for L = 0.5 and L = 1 are compared to the analytic prediction Eq. (7) for L = 0.5 (solid red line) and L = 1 (solid
green line). A fit of Eq. (7) with optimized D and exact κ is shown for L = 1 by the dashed green line.

takes into account the pulling device is diffusion on a 2D free
energy profile,1,14–16

G(x, q) = Go(x) +
κl

2
(x − q)2 − Fq, (10)

where x is the hidden molecular extension, q is the mea-
sured total extension [Fig. 4(a)], κl is the effective force
constant of the linker, Go(x) is the bistable free energy sur-
face of the molecule in the absence of force, and F is the
applied force. Dx is the diffusion coefficient that describes the
dynamics of x (which for the sake of simplicity is assumed
to be the same for the unfolded and folded states). Dq is the
diffusion coefficient along q which is essentially the diffusion
coefficient of the mesoscopic bead (or the tip of a cantilever
in an atomic force microscope) and therefore can be smaller
than Dx. The potential of mean force along q, GA(q), which
can be obtained by binning the measured trajectory, is given
by exp(�βGA(q)) ∝ ∫ exp(�βG(x, q))dx.

Using the recent multidimensional reaction rate theory of
Berezhkovskii et al.17 for large barriers and soft linkers, the
rate constant for a conformational transition, kMA, is given
by1,15

1
kMA

'
1
kL

+
1

kA
, (11)

where kL is the rate constant calculated using the Langer the-
ory18 that depends on both Dx and Dq, and kA is the Kramers
rate for diffusing on GA(q) with Dq. This expression is valid
for all Dx and Dq. For fixed Dx as Dq decreases, the Langer
rate reaches a plateau19 with kL ≈ kM(1− κl/|G′′o (x‡)|), where
G′′o (x‡) is the second derivative of the molecular free energy at

the barrier top x‡ and kM is the molecular transition rate for 1D
diffusion on the molecular free energy in the presence of force,
GM (x) = Go(x)−Fx, with Dx. In this plateau region, when Dq

is sufficiently large so that kA� kM, the measured rate constant
kMA is equal to the molecular rate constant kM times a linker
correction (1 − κl/|G′′o (x‡)|). When the linker is sufficiently
soft so that 1 � κl/|G′′o (x‡)| then kMA is essentially equal
to kM. Otherwise the linker correction is significant. In other
words, if the molecular barrier is sufficiently high, the mea-
sured rate kMA is independent of Dq over a wide range of Dq,
and, in this regime, kMA is equal to kM aside from a small linker
correction.

The dynamics simplifies when the pulling device relaxes
slowly. When Dq is sufficiently small so that kL becomes
independent of Dq, Berezhkovskii and Zitserman20 showed
that, for high barriers, the diffusive dynamics on the 2D
free energy surface can be described by a pair of coupled
reaction diffusion equations (Fig. 4). The dynamics on these
surfaces is determined only by Dq, whereas the “hopping”
rate constants depend only on Dx. The relevance of this
model for single-molecule force spectroscopy was pointed
out in Ref. 14. In the regime where the hopping descrip-
tion is valid, the observed potential of mean force along
the measured extension q contains very little information
about the barrier region of the molecular potential surface
along x.

Let p1(q, t) and p2(q, t) be the probabilities that the
folded and unfolded states have total extension q at time
t, respectively. These satisfy the coupled reaction diffusion
equations,14,20
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FIG. 4. Surface hopping model. (a)
Representation of the bistable 2D free
energy surface as a function of the mea-
sured q and molecular x extensions.
Green and brown surfaces represent
conformational states 1 and 2, respec-
tively. (b) Contour lines (black) of the
free energy surface in the plane of x and
q, together with two trajectory segments
showing the surface hopping events at q
≈ q1 and q2, from state 1 (bottom, green)
to state 2 (top, brown) and from state 2 to
state 1, respectively. (c) Free energy pro-
files Gi(q) obtained by integrating x over
states i = 1 and 2. The dynamics on these
1D profiles is governed only by Dq. The
vertical arrows indicate the surface hop-
ping transitions with rates k1→2(q) and
k2→1(q), which are proportional to Dx .

∂p1

∂t
= −k1→2(q)p1 + k2→1(q)p2 + Dq

∂

∂q
e−βG1(q) ∂

∂q
eβG1(q)p1,

(12a)

∂p2

∂t
= k1→2(q)p1 − k2→1(q)p2 + Dq

∂

∂q
e−βG2(q) ∂

∂q
eβG2(q)p2,

(12b)

where exp(�βGi(q)) ∝ ∫i exp(�βG(x, q))dx with the integra-
tion being over the ith basin (i = 1, 2).

When the free energy, G(x, q), along x for fixed q
has a double well shape, the hopping rates, k1→2(q) and
k2→1(q), are calculated using Kramers theory for fixed q,
e.g., 1/k1→2(q) = ∫1 dxe−βG(x,q)

∫‡ dx′eβG(x′,q)/Dx, where “1”
and “‡” indicate integration over the well of surface 1 and
the barrier region, respectively. To evaluate these integrals
for high barriers, we expand the 2D free energy to second
order about the extrema and evaluate the resulting Gaussian
integrals from x = �∞ to x = ∞. In this way, we find that
exp(−βGi(q)) ∝ (2π/(β(G′′o (xi) + κl)))1/2 exp(−βGM (xi)
− βκi(q − xi − F/κl)2/2), where xi is the location of the ith
minimum (i = 1, 2) of GM (x), and 1/κi = 1/G′′o (xi) + 1/κl. The
hopping rate is given by

k1→2(q) =
βDx

2π

√
(κl + G′′o (x1))|κl + G′′o (x‡)|

× e
−β[∆G‡M+ κ‡

2 (q−x‡− F
κl

)2−
κ1
2 (q−x1−

F
κl

)2], (13)

where x‡ is the saddle point on GM (x) between x1 and x2,
∆G‡M is the molecular activation free energy in the presence
of force for well 1, and 1/κ‡ = 1/G′′o (x‡) + 1/κl. k2→1(q)
is given by flipping indices 1 and 2 in the above expression
and replacing ∆G‡M by the molecular activation barrier in the
presence of force for well 2. It can be shown that the rates
ki→j(q) in Eq. (13) are independent of F and satisfy detailed
balance with k1→2(q) exp(�βG1(q)) = k2→1(q) exp(�βG2(q)).

In general, to find the overall transition rates, Eqs. (12a)
and (12b) must be solved numerically or equivalently, the
corresponding stochastic equations must be simulated (see

Sec. III). However, the problem simplifies when the hop-
ping rates between surfaces (which are proportional to Dx)
are either much faster or much slower than the relaxation
times on the two surfaces (which are inversely proportional
to Dq). When the hopping rates are so small that the sys-
tem relaxes to local equilibrium before a jump occurs, the
dynamics can be described by a two-state kinetic model with
rates

〈ki→j〉 =
∫ ki→j(q)e−βGi(q)dq

∫ e−βGi(q)dq
, (14)

which depend only on Dx. It has been shown20 that for high
barriers and soft linkers, this rate is equal to the Langer rate in
the limit that Dq → 0. In the opposite limit, when the hop-
ping rates are much faster than the relaxation on the two
free energy surfaces, the reaction diffusion equations, Eqs.
(12a) and (12b), reduce to a 1D diffusion equation involv-
ing the potential of mean force βGA(q) = �ln(exp(�βG1(q))
+ exp(�βG2(q))). Therefore, in the Dq → ∞ limit, the rates
can be obtained using the Kramers theory for diffusion along
q with diffusion coefficient Dq and potential of mean force
GA(q).

We now turn to the calculation of the mean transition path
time between q = a on surface 1 and q = b on surface 2 in
these two limits. When the hopping rates are fast, we can sim-
ply use Eq. (3) with G(x)→GA(q) and D→Dq. In the opposite
limit, when Eq. (14) holds and the system is in the Langer
plateau region (see Fig. 3 in Ref. 1), where the rate kMA is
essentially independent of Dq, a transition path between a on
surface 1 and b on surface 2 involves just a single hop (i.e.,
one can ignore repeated crossings). Let us assume that only
a negligible number of transitions occur outside the interval
[a, b]. Imagine that the system has jumped at q from surface 1
to surface 2 [e.g., Fig. 4(c) for q = q1]. When the hopping rates
are so slow that the system will not jump back to surface 1
before reaching q = b, then the duration of this fragment of the
trajectory is just the mean first passage time to reach b from
q on surface 2, i.e., 〈t(2)

MFPT(q → b)〉, where the superscript
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indicates surface 2. Similarly if the system jumps from sur-
face 2 to surface 1 and does not jump back before reaching
q = a, then the mean duration of this segment is
〈t(1)

MFPT(q → a)〉. Now, due to microscopic reversibility, the
duration of a transition path from a to b is the same as from b
to a so that the average duration of a path from q = a on surface
1 to q = b on surface 2 that crosses between the two surfaces
only once at q is 〈t(1)

MFPT(q → a)〉 + 〈t(2)
MFPT(q → b)〉. Here we

implicitly assumed that the paths between a and b remaining
on the same surface are not considered to be the transition paths
and, hence, not counted as such. When the hopping rates are
very slow, the probability that a jump occurs at q in either
direction is p(q) = k1→2(q)e−βG1(q)/ ∫

b
a k1→2(q)e−βG1(q)dq

= k2→1(q)e−βG2(q)/ ∫
b

a k2→1(q)e−βG2(q)dq. Thus, in the regime
that kMA is independent of Dq, the mean transition path time
measured along q is

〈tTP(a↔ b)〉MA ≈

∫ b

a
p(q)

[
〈t(1)

MFPT(q → a)〉

+ 〈t(2)
MFPT(q → b)〉

]
dq

=
1

Dq

∫ b

a
p(q)

[∫ q

a
eβG1(y)dy

∫ ∞
y

e−βG1(z)dz

+
∫ b

q
eβG2(y)dy

∫ y

−∞

e−βG2(z)dz

]
dq, (15)

which is inversely proportional to Dq. This result means that
for Dq < Dx, there exists a regime of diffusion anisotropy
where, aside from a small linker correction, the measured
overall transition rate is the same as the molecular one (i.e.,
proportional to Dx) but the transition paths along q are not the
same as the molecular ones because they are determined by
the diffusion coefficient Dq of the apparatus and not that of
the molecule, Dx. This point is consistent with our previous
simulations (see the inset of Fig. 3 in Ref. 1). It is also sup-
ported by the recent work of Makarov,21 which showed that
for a 2D surface with an entropic barrier, a 1D projection can
give the correct transition rate but an incorrect transition path
ensemble.

III. METHODS
A. 1D Brownian dynamics simulations

To validate the analytical expressions of Sec. II A, we
performed Brownian dynamics simulations by numerically
solving the 1D overdamped Langevin equation, xn+1 = xn

� ∆tDβG′(xn) + (2D∆t)1/2R(n), where D is the diffusion coef-
ficient, G′(x) is the derivative of the 1D free energy surface,
∆t is the time step, and R(n) is an uncorrelated Gaussian ran-
dom number with zero mean and unit variance. The free energy
surface is the bistable matched-harmonic potential with βG(x)
=�16x2 + 8 for 0≤ |x|≤ 1/2, and 16(|x|� 1)2 for 1/2< |x|, which
corresponds to a barrier height of 8 kBT. The time step was
∆t = 5 × 10�6/D.

B. 2D Brownian dynamics simulations

We performed 2D Brownian dynamics simulations by
numerically solving the 2D overdamped Langevin equation
using the free energy surface given in Eq. (10), similarly as in

Ref. 1. A constant force F1/2 is applied to make the populations
of the folded and unfolded states equal. The molecular free
energy surface is chosen to be the bistable matched-harmonic
with Go(x) − F1/2x = ∆G‡M f

(
x/∆x‡

)
, where f (x) = �2x2 for

0 ≤ |x| ≤ 1/2 and f (x) = 2(|x| � 1)2
� 1 for 1/2 < |x|.

∆G‡M = 8.1 kBT is the activation barrier of the molecule in the
presence of a force F1/2, and ∆x‡ = 3/2 is the distance to the
transition state at F1/2. The molecule is coupled to the appara-
tus through a harmonic linker κl = 2.6 kBT /[x2] (where [x2] are
units of distance squared), and the ratio of the linker and the
molecular force-constants is κl/|G′′o (x‡)| ≈ 1/6. These param-
eters are chosen similar to those found for the 20TS06/T4
DNA hairpin.16 Simulations were also performed for the free
energy surface used in Ref. 1, which has a larger activation
barrier ∆G‡M = 16 kBT , and for κl/|G′′o (x‡)| = 1/8. The time
step was ∆t = 5 × 10�4/Dx. Approximately 7000 transition
paths each were produced for a series of Dx/Dq ratios.

C. Hopping simulations

We simulated trajectories corresponding to coupled reac-
tion diffusion equations, Eqs. (12a) and (12b), using a
hybrid Brownian dynamics/Monte Carlo algorithm.14 The
positions on each surface were determined by a 1D over-
damped Langevin equation qn+1 = qn − ∆tDq βGi′(qn)
+ (2Dq∆t)1/2R(n), where i = 1, 2 indexes the potential sur-
face, ∆t is the time step, and R(n) is an uncorrelated Gaus-
sian random number with zero mean and unit variance. The
trajectory stays on surface i at qn+1 with probability p = 1
� exp(�(ki→j(qn) + ki→j(qn+1))∆t/2) and jumps to surface j at
qn+1 with probability 1�p. The time step was∆t = 5×10�4/Dx.
The surface hopping rates, Eq. (13), were calculated for
the parameters of the corresponding 2D Brownian dynam-
ics model. Approximately 7000 transition paths each were
produced for a series of Dx/Dq ratios.

D. Transition paths from simulations

The 1D Brownian dynamics simulations were analyzed
by monitoring the x coordinate. The trajectories from the 2D
Brownian dynamics and surface hopping simulations were
analyzed by monitoring the measured extension q alone. Simi-
lar to experimental traces, the trajectories from the simulations
were averaged over a short time window of 60∆t. We found
it particularly useful to smooth the traces from the 2D and
hopping simulations that had a fast Dq (i.e., Dq � Dx) and
showed large fluctuations about the mean (see the supple-
mentary material, Fig. 2). For the 2D and hopping models,
transition paths were defined as those parts of the smoothed
trajectories that started from q = �L and crossed q = L before
returning back to �L. The transition path time is the duration
of each path, i.e., the time it takes to reach directly L starting
from �L. The mean transition path time is the average duration
of all paths. To calculate the mean transition path shape, we
aligned the transition paths at the lower limit and discretized
them along the extension. To avoid overweighting the contri-
butions of each individual trajectory, due to recrossing at xo

(Fig. 2), we calculated for each transition path the mean time
at xo, t̄(xo). For example in Fig. 2, t̄(xo) is tA

1 for transition path

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-010898
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-010898
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A and (tB
1 + tB

2 + tB
3 )/3 for transition path B. The mean time

assigned to xo is 〈t(xo)〉 =
∑

j t̄j(xo)/N , where the index j runs
over the transition paths and N is the total number of transition
paths.

IV. RESULTS AND DISCUSSION

We verified that the 2D and surface hopping simulation
results (see Sec. III) are equivalent in the regime of slow appa-
ratus diffusion, Dx > Dq. In Fig. 5(a), we compare a trajectory
from the 2D model (blue) to the one from the surface hop-
ping model (purple). The ratio of the molecular and apparatus
diffusion coefficients is Dx/Dq = 10. The trajectories from the
2D and hopping simulations are qualitatively similar. In Fig.
5(b), we show the potential of mean force along q, GA(q), for
both models. Notwithstanding that a Gaussian integral approx-
imation has been used for Gi(q) in the hopping model, the
potentials of mean force are remarkably similar. The transition
path limits are shown as the dashed red lines. In Fig. 5(c), we
show the examples of transition paths from the simulations for

the 2D and surface hopping models. Qualitatively the sets of
transition paths seem indistinguishable, and their equivalence
is confirmed by comparing the distribution of transition path
times, shown in Fig. 5(d). Although Eq. (5) for pTP(t) is not
expected to be valid here, since the system is not diffusing on a
1D profile, it is of interest to use this expression to fit the data by
varying κD and ∆G‡. The fits are remarkably good [Fig. 5(d)],
but the extracted parameters are different from those of the
molecule and similar to those that describe transition paths on
the potential of mean force along q [i.e., (∆G‡)fit ≈ 2 kBT and
(κD)fit ≈ 0.02|G′′o (x‡)|Dx ≈ 1.06|G′′A (q‡)|Dq where |G′′A (q‡)|
is the barrier stiffness of GA(q)]. The barrier thus matches that
of GA(q) in Fig. 5(b) and (κD)fit matches |G′′A (q‡)|Dq, i.e., the
fits report primarily on the apparatus dynamics, not on the
transition dynamics of the molecule. If we compare the mean
transition path time for both models [vertical lines in Fig. 5(d)]
to the molecular mean transition path time along x, we find that
the mean transition path times for the 2D and hopping mod-
els are about an order of magnitude larger than that of the
molecule.

FIG. 5. Comparison of the 2D Brownian dynamics and surface hopping models. (a) Typical q(t) trajectories from simulations with Dx /Dq = 10 of 2D Brownian
dynamics (blue) and of the surface hopping dynamics (purple), using free energy parameters that are similar to those of the DNA hairpin 20TS06/T416 (see Sec.
III for details). The molecular barrier height is 8.1 kBT. (b) Potential of mean force along the measured extension q, GA(q). The barrier height along q is 1.9
kBT. The limits of the transition paths are shown as dashed red lines. (c) Zoom-in on the transition paths with examples for the 2D (blue) and hopping (purple)
transition paths aligned at the lower limit. (d) Distribution of the transition path times (symbols) together with fits of Eq. (5) and mean transition path time
(vertical lines). (e) Mean transition path shape from the simulations with fits of Eq. (7) for the 2D Brownian dynamics (blue) and the surface hopping dynamics
(purple).

FIG. 6. Results from the 2D model and surface hopping simulations when the diffusion coefficients of molecule and apparatus are equal, Dx /Dq = 1. (a)
Transition paths from the 2D (blue) and hopping (purple) simulations. The dashed red lines are the transition path limits. (b) Distribution of transition path times
together with fits of Eq. (5) and mean transition path time (vertical lines). (c) The mean transition path shape with fits of Eq. (7) shown for both simulations.
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In Fig. 5(e), we show the mean transition path shape
for both simulations with fits of the analytical expression
[Eq. (7)]. The mean shapes for the hopping and 2D mod-
els are practically indistinguishable, and the analytic expres-
sion fits the data well. However, the fits reveal that the
extracted parameters κ and D are again similar to those of the
apparatus.

In Fig. 6, we compare the results from the 2D and hop-
ping simulations when the diffusion coefficient of the molecule
is equal to that of the apparatus, Dx/Dq = 1. Qualitatively, the
transition paths from both models are similar [Fig. 6(a)]. How-
ever, the probability distribution of transition path times and
its mean [Fig. 6(b)] show small differences. The mean transi-
tion path time for the hopping model is slightly faster than that
for the 2D Brownian dynamics simulations. However, if we
compare the mean transition path time for the 2D and hopping
models to the mean molecular transition path time along x,
we find that these are 3.7 and 3.2 times greater, respectively.
The mean transition path shape, shown in Fig. 6(c), confirms
that the transition paths for the hopping model are slightly
faster than those for the 2D model. These results show that the
surface hopping and 2D models exhibit essentially the same
dynamics even when Dx = Dq.

For slow apparatus dynamics, Dq < Dx, the mean time of
transition paths monitored along q, 〈tTP〉MA, depends strongly
on the apparatus dynamics. We find that 〈tTP〉MA is accurately
given by Eq. (15) and grows as the reciprocal of the appara-
tus diffusion coefficient, 1/Dq (Fig. 7, left axis). The analytic
expression [Eq. (15)] provides an excellent estimate of 〈tTP〉MA

both for the hopping model and for 2D diffusion for Dq < Dx.
We also show the ratio of the measured and molecular tran-
sition rates, kMA/kM, as a function of Dx/Dq (Fig. 7, right
axis). We find that the transition rates for both simulations
are within computational error for Dx/Dq ≥ 1 and the hopping
model accurately captures the 2D model results. Therefore, we
recover the Langer plateau described in Ref. 1, in which the
measured rate kMA does not significantly depend on Dq. By
contrast, in this regime, 〈tTP〉MA is almost linearly dependent
on D−1

q and independent of Dx. These results do not change
significantly for a higher molecular barrier of 16 kBT instead
of 8.1 kBT [Fig. 7(b)].

If the diffusion coefficient of the apparatus becomes faster
than that of the molecule, the transition path times obtained
from observed q trajectories become quantitatively correct
(Fig. 7). One may ask why for Dq > Dx, we obtained estimates
of the transition path time from the q trajectories of the 2D
simulations that agree quite well with those from the hidden
molecular transitions along x. This behavior is expected theo-
retically because, in this regime, the 2D diffusion equation is
reduced to quasi-1D diffusion along x that involves the molec-
ular potential of mean force. In practice, we need to average
the q trajectories over multiple time frames, as is often done
also with experimental trajectories. This averaging removes
fast q dynamics (see the supplementary material, Fig. 2) and
produces a smooth trajectory q = q(x(t)) that is conditioned
on the comparably slow x. In this fast q regime, one can thus
resolve transition events by averaging away fast q fluctuations.

The fundamental reason for why it is difficult to obtain
the transition path times and molecular free energy barriers for

FIG. 7. The mean observed transition path time depends on the apparatus
diffusion coefficient. (Left axis; green; logarithmic scale) The open square
symbols show the mean measured transition path time along q, 〈tTP〉MA, nor-
malized by the mean molecular transition path time along x, 〈tTP〉M, as a
function of the ratio of molecular and apparatus diffusion coefficients Dx /Dq
for the 2D (blue) and hopping (purple) simulations. The analytic prediction
equation (15) is shown as a dashed green line. The horizontal dashed red line
indicates that 〈tTP〉MA and 〈tTP〉M are equal. (Right axis; black; linear scale)
Ratio of the measured and molecular transition rates, kMA/kM, for the 2D and
hopping models, together with the prediction from Eq. (11) and the Langer
theory (solid and dashed black lines, respectively). The transition rates and
mean transition path times for the 2D and hopping simulations are similar
for Dx /Dq ≥ 1. In this regime, the prediction of Eq. (15) coincides with the
results from the simulations. The transition path times and rates are shown (a)
for the potential surface parameters chosen to be similar to those of the DNA
hairpin 20TS06/T416 and (b) for a higher barrier of 16 kBT and a softer linker
κl/ |G′′o (x‡) | = 1/8.

Dq < Dx is the same: the measured extension q is an imperfect
estimator of the molecular extension x. This problem is illus-
trated in Fig. 8, which compares the true 2D transition paths
from the 2D Brownian dynamics simulations for Dx = Dq (red
lines) to the transition paths that were identified solely from the
q dynamics (blue squares). As shown, the overlap of the true
and estimated transition paths is poor because the boundaries
along q (dashed vertical blue lines) invariably cut through the
populated regions in both states. In other words, if one only
knows q, it is difficult to decide when a transition path starts
and when it ends.

It should be emphasized that the examples in Fig. 7 were
chosen to reflect scenarios in which the influence of the appa-
ratus is relatively small. For stiffer linkers and lower activation

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-010898
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FIG. 8. Examples of 2D transition paths (solid red lines) from the 2D Brow-
nian dynamics simulations with Dx /Dq = 1 as a function of the total measured
extension q and the molecular extension x. The blue squares indicate the
transition paths selected by analyzing the dynamics only along the measured
extension q. Blue and purple dashed lines indicate the transition path limits
along q and x, respectively. Note that in the top left panel, the q transition path
(blue) has little to do with crossing the saddle but reflects the relaxation of the
total extension after a molecular transition has taken place.

energies, the situation deteriorates because the Langer plateau
(where the rate is essentially independent of Dq) becomes nar-
rower. For example, when ∆G‡M = 4 kBT (a relatively fast
folder), the plateau essentially disappears,17 and when Dx/Dq

= 10, one cannot even extract an accurate molecular transition
rate from the observed trajectories. In this case, both the mea-
sured transition paths and rates are well described by a model
where the system diffuses on the measured potential of mean
force [i.e., GA(q)] with Dq and, thus, one learns almost nothing
about the dynamics of the molecule of interest.

V. CONCLUSIONS

Single-molecule force spectroscopy experiments are now
able to probe the transitions of individual biomolecules over
high activation barriers, making it possible to characterize
transition paths and transition states in protein and nucleic
acid folding.6,7 As we showed earlier for high barriers and
soft linkers, the molecular transition rates can be estimated
quite accurately over a relatively wide dynamic range,1 before

slow apparatus response eventually dominates the apparent
transition rate.

Transition paths are more sensitive to the apparatus
dynamics in force spectroscopy experiments than transition
rates. In the framework of a 2D model with anisotropic diffu-
sion, we showed here that a mesoscopic pulling device attached
to a rapidly relaxing molecule affects the observed transi-
tion paths even in the regime where the rates are accurate.
In the limit of a slow apparatus coupled to a fast molecule,
the 2D model can be reduced to a surface hopping model
described by a set of coupled-reaction diffusion equations,
Eqs. (12a) and (12b). This reduced model captures the physics
of mesoscopic cantilevers (or beads) pulling molecular con-
structs via flexible polymeric linkers. The Brownian dynamics
simulations showed that in this regime the full and reduced
models are equivalent (as predicted by Berezhkovskii and Zit-
serman20) with the transition rates, distribution of transition
path times, and mean transition path shape being the same
within computational error.

Within the framework of a surface hopping model, we
derived an analytic expression [Eq. (15)] for the transition
path time. Importantly, this expression explicitly depends on
the diffusion of the apparatus, Dq, but is independent of the
molecular diffusion coefficient, Dx. By contrast, the molecu-
lar transition path time depends on Dx, not on Dq. In the limit
of a slow apparatus, Dx ≥ Dq, the predictions of the analytic
expression agree well with the results from the simulations,
with the mean transition path time, having an almost linear
dependence on the size of the pulling device (or equivalently
D−1

q ). In this regime, the diffusion constant extracted from the
transition paths along the measured extension q is practically
that of the apparatus (i.e., Dq). A related problem is that, when
the surface hopping model is valid, q trajectories contain little
information about the rarely visited barrier region along the
molecular extension x and one cannot reliably deconvolve the
measured free energy profiles to obtain the molecular potential
surface in the barrier region.14

The range of validity of the measured rates and transi-
tion path times depends on the properties of the apparatus, the
linkers, and the molecule of interest, even when the observed
trajectory of the total extension clearly indicates the pres-
ence of two or more well-defined states. The linkers should
be soft in the sense that the ratio of the linker and molecu-
lar barrier stiffness is less than unity, a condition easily met.
When the response of the apparatus is faster than that of the
molecule, both the rates and transition path times are meaning-
ful. When this is not the case, the measured transition paths do
not accurately reflect the molecular ones. However, the rates
can still be correct over a range of slow apparatus response
when the molecular activation barrier in the presence of force
is sufficiently large (greater than about 4 kBT ).

Estimating the ratio Dx/Dq is not entirely trivial. The
experimentally accessible time scale of the fluctuations of the
total extension q in the folded or unfolded states depends on
both Dq and Dx. The relaxation or correlation time of q in
state i is defined by τi

A = ∫
∞

0 〈δq(t)δq(0)〉idt/〈δq2〉i, where
δq = q � 〈δq〉i. For the 2D model, it can be shown that
τi

A/〈δq2〉i = 1/Dq + 1/(Dx(1 + G′′o (xi)/κl)2). For soft linkers,
when the hopping model is valid, Dq � Dx(1 + G′′o (xi)/κl)2,
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and thus Dq can be determined1 as Dq = 〈δq2〉i/τ
i
A. In the

opposite limit, if one can estimate Dq from the damped motion
of the pulling apparatus without load (ignoring the effects of
the linker), then Dx can be estimated using the above relax-
ation. Alternatively, if one is in the regime where molecular
and observed rates are essentially equal and if one can obtain
the free energy profile along x by deconvolution, then one can
estimate5 Dx by equating the measured rate to the Kramers
rate (assuming that the molecular extension is a good reaction
coordinate). In any case, the direct experimental determina-
tion of Dx is difficult because Dx is an effective diffusion
coefficient not given simply by the diffusion coefficient of the
free polymer ends in the case of force-induced unfolding or
rupture of compact molecular constructs. In simulations of a
coarse-grained model of a small protein, the effective diffusion
coefficient Dx for the end-to-end motion of the peptide chain
was found to be slower by nearly a factor 100 in the folded
state compared to that in the unfolded state.22 Using the Stokes-
Einstein relation, a correction factor of 100 would bring the
effective diffusion coefficient Dx for ∼1 nm sized amino acids
into the range of the diffusion coefficient Dq of ∼0.1 µm-sized
beads. These simulations22 also suggest that the dynamics
along x would be better described with a position-dependent
diffusion coefficient, which is a further complication largely
ignored here.

As a practical test to assess whether the measured quan-
tities are suspect, one can use as a reference the apparatus-
dominated 1D diffusion model along q. Both the diffusion
coefficient Dq and the 1D free energy surface along q are
experimentally accessible, the former from the q-fluctuations
or damping coefficient and the latter from the q histogram
(i.e., without deconvolution). One can then calculate the the-
oretical rates and transition path times for the 1D q-diffusion
model. Agreement with the measured values indicates that the
dynamic properties are strongly influenced by the apparatus
and do not reflect those of the molecule.

We conclude that in typical force spectroscopy experi-
ments the slow response of the apparatus affects the mea-
sured transition paths much more significantly than the tran-
sition rates. The distribution of transition path times, the
mean transition path time, and the mean transition path
shape strongly depend on the diffusion coefficient of the
apparatus, even in a regime where the rates do not. Thus,
extracting microscopic molecular properties from measured
transition paths is challenging because the properties of the

small molecule can be masked by the slow response of the
pulling device.

SUPPLEMENTARY MATERIAL

See supplementary material for the fit of the mean tran-
sition path shape for the 1D case allowing both κ and D to
float and for an example of a time-averaged trajectory along
the measured extension q.
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