
STATISTICS IN BIOPHARMACEUTICAL RESEARCH
2020, VOL. 12, NO. 4, 461–477
https://doi.org/10.1080/19466315.2020.1799857

Clinical Trials Impacted by the COVID-19 Pandemic: Adaptive Designs to the Rescue?

Cornelia Ursula Kunz∗a , Silke Jörgens∗b, Frank Bretzc,d, Nigel Stallarde, Kelly Van Lanckerf, Dong Xig, Sarah Zoharh,
Christoph Gerlinger∗ i,j, and Tim Friede∗k,l

aBoehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany; bJanssen-Cilag GmbH, Neuss, Germany; cNovartis Pharma AG, Basel, Switzerland;
dSection for Medical Statistics, Medical University of Vienna, Vienna, Austria; eDivision of Health Sciences, Warwick Medical School, The University of
Warwick, Coventry, UK; fDepartment of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium; gNovartis Pharmaceu-
ticals, East Hanover, NJ; hINSERM, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France; iStatistics and Data Insights,
Bayer AG, Berlin, Germany; jDepartment of Gynecology, Obstetrics and Reproductive Medicine, University Medical School of Saarland, Homburg/Saar,
Germany; kDepartment of Medical Statistics, University Medical Center Göttingen, Göttingen, Germany; lDZHK (German Center for Cardiovascular
Research), Partner Site Göttingen, Göttingen, Germany

ABSTRACT
Very recently the new pathogen severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was identi-
fied and the coronavirus disease 2019 (COVID-19) declared a pandemic by the World Health Organization.
The pandemic has a number of consequences for ongoing clinical trials in non-COVID-19 conditions.
Motivated by four current clinical trials in a variety of disease areas we illustrate the challenges faced by
the pandemic and sketch out possible solutions including adaptive designs. Guidance is provided on (i)
where blinded adaptations can help; (ii) how to achieve Type I error rate control, if required; (iii) how to
deal with potential treatment effect heterogeneity; (iv) how to use early read-outs; and (v) how to use
Bayesian techniques. In more detail approaches to resizing a trial affected by the pandemic are developed
including considerations to stop a trial early, the use of group-sequential designs or sample size adjustment.
All methods considered are implemented in a freely available R shiny app. Furthermore, regulatory and
operational issues including the role of data monitoring committees are discussed.

ARTICLE HISTORY
Received May 2020
Accepted July 2020

KEYWORDS
Design changes;
Heterogeneity; Interim
analysis; SARS-CoV-2

1. Introduction

In Wuhan, China pneumonia cases of a new pathogen, which
was subsequently named severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), were identified in December 2019
(Guan et al. 2020). Coronavirus disease 2019 (COVID-19) was
declared a pandemic by the World Health Organization (WHO).
At the time of writing (end of May 2020), more than 5 million
cases were confirmed worldwide according to the COVID-19
Dashboard by the Center for Systems Science and Engineering
at Johns Hopkins University (https://coronavirus.jhu.edu/map.
html). To fight the COVID-19 pandemic, a number of clinical
trials were initiated or are being planned to investigate novel
therapies, diagnostics, and vaccines. Some of these make use
of novel, efficient trial designs including platform trials and
adaptive group-sequential designs. An overview and recom-
mendations are provided by Stallard et al. (2020).

While considerable efforts have been made to set up trials
in COVID-19, the vast majority of ongoing trials continue to
be in other disease areas. To effectively protect patient safety in
these trials during the COVID-19 pandemic, across the world,
clinical trials answering important healthcare questions were
stopped, or temporarily paused to possibly restart later, some
with important modifications. Here, we consider the impact of
the COVID-19 pandemic on trials in non-COVID-19 indica-
tions. The challenges to these trials posed by the pandemic can
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take various forms including the following: (1) The (amount of)
missing data may preclude definite conclusions to be drawn with
the original sample size. (2) Incomplete follow-up (possibly not
at random) may invalidate the planned analyses. (3) Reduced
on-site data monitoring may cast doubt on data quality and
integrity. (4) Missed treatments due to the interruptions, but
also due to acquiring the SARS-CoV-2 virus may not be random
and require a different approach than based on the intention-
to-treat principle. (5) Circumstances (in, e.g., usual care, trial
operations, drug manufacturing) before, during, and after the
pandemic induced interruptions may differ substantially with
impact on interpretability of the clinical trial data, through
which the original research question is more difficult or even
impossible to answer. (6) Heterogeneity in patients included
in the trial associated with the pandemic may impact results.
(7) Potential heterogeneity in included patients may increase
for multicenter trials, as the prevalence/incidence of infected
patients varies from region to region.

Regulatory authorities have produced guidance on impli-
cations of COVID-19 on methodological aspects of ongoing
clinical trials (EMA 2020a, 2020b; FDA 2020a, 2020b). The
EMA guideline states that the current situation should not
automatically encourage unplanned interim or early analyses
(EMA 2020b). Despite strong scientific reasons to conduct trials
as planned, there may be situations where an unplanned or early
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analysis may be required to minimize the effect of COVID-19 on
the interpretability of the data and results. Potential situations
include trials where data collection is nearly finished, an interim
analysis is planned in the near future, or when recruitment
of new patients is slowing down or interrupted. In particular,
the impact of the pandemic depends on the timing of the
pandemic compared to the timeline of the trial, the length of
follow-up to observe the primary endpoint and the recruitment
rate. Figure 1 illustrates three different scenarios, namely (a) an
almost finished trial at the time of the outbreak; (b) a trial with
relatively short recruitment and long follow-up; and (c) a trial
with relatively long recruitment and short follow-up.

For example, when recruitment has been paused and will
be restarted after the pandemic, the trial duration will be pro-
longed. This may be the main impact the outbreak has on a trial
such as the one illustrated in panel (c) of Figure 1. A two-stage
adaptive design might then be considered for the clinical trial.
An interim analysis evaluating the first stage data, which include
participants not affected by COVID-19, should guide the inves-
tigators to decide whether it is worthwhile to restart recruitment
after the pandemic and with which sample size. Nevertheless,
as any unplanned interim analysis needs to protect the trial
integrity (e.g., blinding) and validity (e.g., Type I error rate)
appropriate statistical methodology for testing and estimation
at the end of the trial is an essential aspect. The adaptive design
literature offers potential solutions to deal with the concerns in
modified trial designs. This has also been recognized by Anker
et al. (2020) in the context of clinical trials in heart failure, a
chronic condition.

The article is organized as follows. In Section 2, four ongoing
clinical trials are introduced which are all impacted by the
COVID-19 pandemic. These serve as examples and illustrate
the many ways trials might be affected by the pandemic. In
Section 3, general comments are made on how adaptive designs
might be used to overcome the various challenges posed by
the pandemic before the issue of resizing trials in terms of
trial duration or sample size is considered in more detail in
Section 4. In Section 5, other adaptations are briefly touched
upon, including blinded and unblinded modifications of the
trial design. Regulatory and operational issues including the role

of data monitoring committees or data safety monitoring boards
are considered in Section 6. In Section 7, we close with a brief
discussion.

2. Motivating Examples

Clinical trials are affected in many different ways by the COVID-
19 pandemic. On the one hand, patients may get infected lead-
ing to missed visits, missing data, or even COVID-19 related
adverse events. On the other hand, the various lockdown and
quarantine measures may disrupt the trial conduct: patients may
be unable to attend their scheduled visits or the study medi-
cation cannot be delivered to the patients as planned. While
these issues apply to all trials recruiting patients or collecting
data during the pandemic, they are affected quite differently
depending on the stage the trial was in and also depending on
the endpoint of the trial as illustrated by increasing impact in
Sections 2.1–2.4.

One important point is still open at the time this article was
written: When and how to restart trials that have had their
recruitment interrupted or even study treatment stopped by the
onset of the pandemic? The only thing that seems clear is that
the conditions under which a trial is restarted will be very trial
specific and can be elaborated only provisionally at the end of
this article.

2.1. Long Acting Reversible Contraception: The Devil Is in
the Detail

For our first example, consider a study to assess the contracep-
tive efficacy beyond 5 years up to 8 years of a hormone releasing
intrauterine device (IUD) (Jensen et al. 2020) (NCT02985541).
At the onset of the pandemic all participating women had their
IUD in place for more than 6 years but only a few had already
completed 8 years of treatment. The primary outcome of the
trial is the contraceptive failure rate in years 6–8 measured by
the Pearl Index (Gerlinger et al. 2003). The trial uses a treatment
policy estimand, albeit the term estimand was not yet common
when the contraceptive trial was conceived.

Figure 1. Illustration of how the COVID-19 pandemic impacts clinical trials depending on accrual and follow-up.
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COVID-19 related intercurrent events such as missed or
postponed visits to the study center can be ignored for the pri-
mary analysis. There will be no interruption of study treatments
as the IUD has been in the woman’s uterus for 5 years at the
beginning of the trial and remains there for up to 8 years in
total. Even if the pandemic will last past the scheduled end of
the trial, the primary outcome (pregnant yes/no) can still be
ascertained even if a woman is not able to attend the final visit
in person on time, albeit that according to the statistical analysis
plan the continued exposure to the IUD needs to be confirmed
by the investigator. Nevertheless, the contraceptive failure rate
observed over the whole trial may be impacted not only by
a potential loss in confirmed exposure time but also by other
COVID-19 related intercurrent events. For instance, a couple
who usually commutes long-distance on weekends is not at risk
of contraceptive failure during the lockdown if they observe the
lockdown living apart, but they are possibly at a higher risk if
they observe the lockdown living together. However, given the
treatment policy estimand and the very low rate of contraceptive
failure with an IUD (Mansour, Inki, and Gemzell-Danielsson
2010) these intercurrent events are not likely to be relevant for
the interpretation of the trial’s results.

It should be noted that other endpoints of the trial may
also be impacted by COVID-19 related intercurrent events. The
regular safety assessments planned at the scheduled visits might
be at least partially missing if women need to skip the physical
visit. While details of some adverse events can be obtained
by phone, laboratory values will be definitely missing in such
instance. Thus, even for a trial that is very moderately affected
by COVID-19, adaptations of the study protocol or the statistical
analysis plan might be needed.

2.2. The START:REACTS Trial: Change in Endpoints Due to
Difficulties in Recruitment

Our second example is the Subacromial spacers for Tears
Affecting Rotator cuff Tendons: a Randomised, Efficient,
Adaptive Clinical Trial in Surgery (START:REACTS)
(ISRCTN16912075), an adaptive design multicenter
randomized controlled trial conducted in the United Kingdom
comparing arthroscopic debridement with the InSpace balloon
(Stryker, USA) to arthroscopic debridement alone for people
with a symptomatic irreparable rotator cuff tear (Metcalfe et al.
2020). Recruitment to the trial started in February 2018, with a
planned total sample size of 221 with the potential to stop the
study for efficacy or futility at a number of interim analyses.
The primary endpoint was shoulder function 12 months after
surgery measured using the Constant Shoulder Score (CS)
recorded at a hospital out-patient visit, with assessments taken
at 3 and 6 months following surgery also used for interim
decision-making (Parsons et al. 2019).

Due to the coronavirus pandemic, recruitment to the study
was delayed by the cancellation of elective surgery in UK
hospitals. The study team are working closely with the Data
Monitoring Committee in reviewing the planned timing of the
interim analyses to reflect this, and the resulting change in the
anticipated numbers of patients with 3, 6, and 12-month follow-
up data at different time-points in the study.

The pandemic also threatened disruption of the collection
of follow-up data for patients for whom surgery had already
been completed, as even prior to lockdown, many patients in the
study, a large proportion of whom are in vulnerable groups, were
unwilling to attend planned appointments for assessment. To be
able to obtain follow-up data from as many patients as possible,
the study team decided to change the primary endpoint to be
the 12 month measurement of the Oxford Shoulder Score (OSS),
as this does not require face-to-face data collection, but can be
completed by post or over phone (or app). As this had originally
been included as a secondary endpoint in the study, data were
available for all completed patients. The OSS is known to be
well correlated to the CS, with the same minimum clinically
important difference on a standardized scale, so that the power
of the trial is maintained and, as the change was made prior to
interim data being observed, there is no loss of trial integrity.
For other trials similarly affected, a change in endpoint might be
required after the analysis of some data on the original endpoint.
In this case, an adaptive approach such as that proposed by Bretz
et al. (2006) or Klinglmüller, Posch, and Koenig (2014) might
be used.

2.3. The ATALANTE 1 Trial: Premature Study
Discontinuation Not to Endangering Sensitive
Patients During the COVID-19 Pandemic

The ATALANTE 1 clinical trial (NCT02654587) aimed at eval-
uating and comparing the medicinal product tedopi (OSE2101)
to standard treatment (docetaxel or pemetrexed) as second and
third line therapy in HLA-A2 positive patients with advanced
NSCLC after failure of immune checkpoint inhibitor. This clin-
ical trial was planned in two stages (1) randomized controlled
trial (RCT) on a small sample of patients estimating overall
survival rate at 12 months (with about 100 patients) and (2)
an RCT comparing overall survival (with about 363 patients
in total). After the first stage, 99 patients were included (63 in
the experimental arm and 36 in the standard arm), the overall
survival rate at 12 months was 46% (95% confidence interval:
33%–59%) in the experimental arm and 36% (95% confidence
interval: 21%–54%) in the standard arm (OSE Immunothera-
peutics 2020a). The second stage of the study was supposed to
include patients during 2020. However, this trial was stopped
because of the COVID-19 pandemic since, as patients were
suffering from lung cancer, the DSMB decided that it was too
risky to continue. They stated that it was impossible to expose
patients suffering from lung cancer to COVID-19 infection, this
could endanger them and may end up biasing the results of the
trial (OSE Immunotherapeutics 2020b). As the results of the
first stage were promising, the trial stakeholders decided to dis-
cuss with the FDA and the EMA asking whether an additional
clinical trial would be required, knowing that there are crucial
treatment needs in this indication.

2.4. The CAPE-Covid and the CAPE-Cod
(Community-Acquired Pneumonia: Evaluation of
Corticosteroids) Studies: Embedding a COVID-19 Trial
Within an Ongoing Trial

Our fourth example is the CAPE-Cod trial (NCT02517489),
which aims to assess the efficacy of hydrocortisone at ICU on
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patients suffering of severe community-acquired pneumonia. At
the beginning of the COVID-19 pandemic the trial was active
and including patients. As SARS-CoV-2 pneumonia was not
an exclusion criterion of CAPE-Cod, centers started to include
COVID-19 infected patients into the study. The clinical char-
acteristics between the two indications differed, so trial stake-
holders have decided to put temporarily on hold the inclusions
in CAPE-Cod study and to use the information of COVID-19
patients by embedding a specific study considering COVID-
19 indication only. A group-sequential design using the alpha-
spending approach by Kim and DeMets (1987a, 1987b) was
chosen for the COVID-19 substudy to account for the consider-
able uncertainty with regard to the treatment effect in this new
group of patients. If the CAPE-Covid study does not achieve
the required sample size or stop (for efficacy or futility) before
next autumn, there will potentially be inclusions of patients into
two studies, as community-acquired pneumonia is a seasonal
disease and COVID-19 will still be present. Taking into account
patients’ heterogeneity will be a major methodological challenge
for this trial. More details on the revision of the design are
provided in Dequin et al. (2020).

3. Issues in Adapting a Running Trial in the COVID-19
Pandemic

In this section, guidance is provided on (i) how to achieve Type
I error rate control; (ii) how to deal with issues surrounding
the definition of estimands; (iii) how to deal with potential
treatment-effect heterogeneity; (iv) how to use early read-outs;
and (v) how to use Bayesian techniques.

3.1. Type I Error Rate Control

Even in an open-label trial, an adaption could be based on an
analysis that is blinded in the sense that it does not compare
treatments. Here, we use “blinded data” to refer more generally
to non-comparative data, that is, data pooled across treatment
arms (FDA 2019). Generally speaking, potential inflation of
Type I error rate is less of a concern when adaptations are
informed by blinded data (EMA 2007; FDA 2019). Therefore,
they might be considered first before looking into unblinded
adaptations with knowledge of treatment effect estimates. In
certain circumstances, however, blinded adaptations may lead
to some (often modest) inflation of the Type I error rate. Here,
we mention non-inferiority and equivalence trials as an example
(Friede and Kieser 2003; Friede and Stammer 2010).

It is well known that repeated analyses of accumulating
clinical trial data can lead to inflation of the Type I error rate
(Armitage, McPherson, and Rowe 1969) and to estimation bias.
For this reason, there is generally a reluctance to modify the
design of a clinical trial during its conduct for fear that the sci-
entific integrity will be compromised. The necessity of a severe
pause in recruitment in many trials due to the current pandemic,
however, raises questions of whether additional analyses can be
added to an ongoing trial to enable the data obtained so far to be
analyzed now, with a decision of whether or not to continue with
the trial at a later post-COVID-19 time. Although the current
situation of clinical trials being conducted in the setting of a

global pandemic is without precedent, the particular question
of adding interim analyses to a trial is not a new one.

If interest solely concerns adding an early stop for efficacy
or futility in a trial planned with a single final analysis, prior to
unblinding one should define an alpha-spending function and
change to a group-sequential design (GSD). Although this is
sufficient to maintain the validity when it is only of interest to
add an early stop, this is no longer the case when one wants to
make adaptations. In this case, an appropriate method to control
the Type I error is required.

Proschan and Hunsberger (1995) introduced the concept of
a conditional error function specified prior to the first analysis
of accumulating data to be a function that gives the conditional
probability of a Type I error given the stage 1 data, summarized
by a standardized normal test statistic, z1. To control the Type I
error of the test at level α, the conditional error function, A(z1),
with range [0, 1], must have

∫ ∞

−∞
A(z1)φ(z1)dz1 = α,

where φ is the standard normal density function. Wass-
mer (1998) and Müller and Schäfer (2001) showed how this
approach can be used to change a single-stage trial to have a
sequential design equivalent to that obtained using a group-
sequential or combination function test.

The conditional error principle thus enables a trial planned
with a single final analysis to be modified at any point prior to
that analysis to have a sequential design, with this constructed
in such that the Type I error rate is not inflated. It should be
noted, however, that it is necessary to specify how any data
before and after the interim analysis are combined before the
first interim analysis is conducted. Modification of the design to
include initially unplanned interim analyses will also generally
lead to a reduction in the power of the trial, as considered in
more detail below.

A similar application of the conditional error principle can
be used to modify a trial initially planned with interim anal-
yses. For ongoing clinical trials initially planned with interim
analyses, the impact of the COVID-19 pandemic may lead to a
desire to modify the timing of the planned analyses. Analyses
are often taken at times specified in terms of the information
available, which may be proportional to the number of patients
for a normally distributed endpoint, or to the number of events
for a time-to-event endpoint, or given by the number of events
for a binary endpoint. Changes to the timing of the interim
analyses do not generally lead to an inflation of the Type I error
rate provided these are not based on the observed treatment
difference, and the spending function method (Lan and DeMets
1983) can be used to modify the critical values used to allow for
such changes. In general, we do not expect that the timing of
interim analyses related to COVID-19 is based on the estimated
treatment difference. If, for whatever reason, these would be
related, the Type I error rate can be inflated using a group-
sequential test (see, e.g., Proschan, Follmann, and Waclawiw
1992). The combination testing or recursive combination testing
approach could then be used to control the Type I error rate in
this setting (see, e.g., Brannath, Posch, and Bauer 2002; Wassmer
and Brannath 2016).
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3.2. Impact on Estimands

Care has to be taken when employing an adaptive design
methodology to combine, for example, the information before
and after the COVID-19 outbreak. This because the different
stages may target a different estimand. An estimand provides a
precise description of the treatment effect reflecting the clinical
question posed by the trial objective (ICH 2019). It summarizes
at a population-level what the outcomes would be in the same
patients under different treatment conditions being compared.
When each stage of an adaptive design is based on a different
estimand, the interpretability of the statistical inference may be
hampered. If, for example, the pandemic markedly impacts the
trial population after the outbreak because elderly and those
with underlying conditions such as asthma, diabetes, etc. are
at higher risk and therefore excluded from the trial, then this
would lead to different stagewise estimands (due to the different
population attributes) and limit the overall trial interpretation.
The situation is different in adaptive designs with a preplanned
selection of a population at an interim analysis (as this does not
change the estimand), when following the usual recommenda-
tions for an adequately planned trial (which includes the need
to prespecify the envisaged adaptation in the study protocol).

Central to the estimand framework introduced in ICH
(2019) are intercurrent events, which occur after treatment
initiation that affect either the interpretation or the existence
of the measurements associated with the clinical question of
interest. Generally, the intercurrent events due to COVID-19
can be categorized into those that are of administrative or
operational nature (e.g., treatment discontinuation due to drug
supply issues), and those that are directly related to the effect
of COVID-19 on the health status of subjects (e.g., treatment
discontinuation due to COVID-19 symptoms), see Akacha et
al. (2020) and Meyer et al. (2020). However, the additional
intercurrent events are introducing ambiguity to the original
research question and teams need to discuss how to account
for them (Akacha et al. 2017; Akacha, Bretz, and Ruberg 2017;
Lipkovich, Ratitch, and Mallinckrodt 2020). Care therefore also
has to be taken if the pattern of intercurrent events is different
before and after an interim analysis, in line with the usual
recommendations to assess consistency across trial stages in
an adaptive design. Generally speaking, as the definition of an
adaptive design implies that we are considering a trial design,
it needs to be aligned to the estimands that reflect the trial
objectives according to ICH (2019). There are similar problems
in nonadaptive trial settings, as the data before and after the
COVID-19 outbreak will have to be investigated for consis-
tency (e.g., Friede and Henderson 2009), but adaptive designs
raise additional uncertainty through the inclusion of interim
analyses.

The considerations in the previous paragraphs are closely
related to the trial homogeneity issues discussed in Section 3.3.
One particular concern is the possible shift in the study pop-
ulation after the onset of the pandemic. At present we see
a notable decline in hospital admissions for non COVID-19
related diseases. It can be assumed that patients with less severe
problems tend to postpone a hospital stay for fear of an infection
in the hospital or for not putting stress on the already over-
loaded health system in some countries. Although standard trial

procedures like randomization assures the validity of the statis-
tical hypothesis test, it is unclear which population’s treatment
effect is actually being estimated.

3.3. Treatment-Effect Heterogeneity

Homogeneity over the stages of a multistage design has always
been a topic of discussion. Even without pandemic disruptions,
there are various reasons why studies could change over time:
Some sites may only contribute to part of study, the study
population may change over time, for example, for reasons of
a depleted patient pool, and the disease under study itself may
vary over time. While many of these reasons also apply to fixed
sample size designs, multistage and especially adaptive trials
are under obligation to deliver justifications of why the stages
can be considered sufficiently homogeneous to test a common
hypothesis. The EMA reflection article on adaptive designs
states that “Using an adaptive design implies […] that methods
for the assessment of homogeneity of results from different
stages are pre-planned” (EMA 2007). One option they give is
the use of heterogeneity tests as known from the area of meta-
analyses. However, as Friede and Henderson (2009) pointed out,
this can reduce the power of studies substantially even if there
is no heterogeneity as such tests are typically carried out at a
higher significance level than the standard ones, thus accept-
ing a higher false positive rate. An alternative they propose is
searching for timewise cutpoints in the data. Conclusions about
the relationship between timing of change and occurrence of
interim analyses can then be drawn from the resulting findings.
In the current COVID-19 situation, the challenge statisticians
face is similar to the general challenge described above. The
nature and the severity of the impact will very much depend
on the actual situation of the trial and the disease under study.
Consequently, the way to deal with them may differ as described
elsewhere in this article. Here, we will focus on the question
of whether the COVID-19-related changes are such that a res-
cue by introducing an adaptive design seems justifiable from
the homogeneity aspect. There is one major difference to the
situation described in the preceding paragraph: The presence
of one or two cutpoints, depending on whether the trial will
continue both during and after COVID-19, can be taken as a
given. Also the question of whether the changes are due to a
possibly performed interim analysis or due to COVID-19 seems
moot; the question we need to answer is whether a combination
is justified.

In some cases, it will be obvious that a combination is not
warranted. One example for such a case could be studies in res-
piratory diseases with hospitalizations included in the endpoint,
where a COVID-19 related hospitalization may be an intercur-
rent event. In other cases, it may not be that obvious and there
might be reasons to believe that the pooled patient set is suitable
to answer the study hypothesis. Due to the reasons listed above,
again a formal heterogeneity test will not be the tool of choice.
The EMA draft points to consider on COVID-19 (EMA 2020b)
do not make mention of the burden of proving homogeneity;
rather it states the need of “additional analyses […] to investigate
the impact of the three phases […] to understand the treatment
effect as estimated in the trial.” While this does not give sponsor
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carte blanche to combine as they wish, it clearly leaves room for
a number of approaches of justifying combination, both from a
numerical and a medical perspective. The estimand framework
will be an important factor in the decision on pooling or not
pooling the data as it will make arguments visible in a structured
way: If estimands differ between study parts, then no meaning-
ful estimator for them will be obtained from pooled data (see
also Section 3.2).

What can statistical methodology contribute if it must be
conceded that pooling the patients is not justifiable? In some
situations, the number of patients before the COVID-19 impact
may already be sufficient to provide reasonable power (see
Section 4.1). In this case, patients in the COVID-19 timeframe
would also need to be analyzed, but it is unclear how they might
be included. General guidance for such patients is given, such
as repeating the analysis including all patients and discussing
changes in the treatment effect estimate. Medical argumentation
will then be needed to underpin the assumptions that changes
are due to COVID-19. In some cases, causal inference can help
estimate outcomes from those patients under the assumption
that COVID-19 had not happened. If interested in the treatment
effect in a pandemic free world, it might be worth clarifying
the question of interest by relating to the estimand framework
(ICH 2019) where COVID-19 is seen as an intercurrent event.
Alternatively, one could standardize results from all patients
to the subgroup of patients pre-COVID-19 (e.g., Shu and Tan
2018; Hernan and Robins 2020). Sometimes, also an artificial
censoring at the COVID-19 impaction and the use of short-
term information (see Section 3.4) to estimate final outcomes
will provide a helpful sensitivity analysis.

If it is not feasible to gain sufficient evidence from the pre-
COVID-19 patients and a combination does not seem justifi-
able, then it may be advisable to pause the trial and to restart
it after the COVID-19 time. The during-COVID-19 patients
should be included in supporting analyses, but the main evi-
dence will come from the patient pool not directly affected by
the pandemic (see also Anker et al. 2020). Short-term endpoints
from during-COVID-19 patients may be used in addition to
completed patients to inform decisions on the future sam-
ple size.

Possible adaptations to mitigate concerns on misjudged
effects and to still get a valid and appropriately powered study,
like adaptive sample size increase or group sequential testing,
are discussed in Sections 4 and 5.

3.4. Use of Early Read-Outs

The use of short-term follow-up for decision making can be
helpful as it is generally expected to lead to more efficient deci-
sion making. In particular, this is relevant to studies interrupted
by COVID-19 as investigators may wish conduct an early or
unplanned interim analysis using the pre-pandemic data. Sev-
eral proposals have been made to use the information on early
read-outs to inform the adaptation decision (e.g., Friede et al.
2011; Rufibach, Chen, and Nguyen 2016; Jörgens et al. 2019).
Although the information is different from the primary outcome
with all limitations that this might have, a greater proportion of
subjects can contribute to the analysis. This is especially useful

in trials where only information about the short-term endpoint
would be available at the interim analysis (Friede et al. 2011).

If primary endpoint data are available, another approach is to
retain the prespecified long-term endpoint as the primary focus
of the interim analysis, but to support it with information on
short-term data. In particular, such methodology exploits the
possible statistical association between the short- and long-term
endpoints to provide information about the long-term primary
endpoint on patients who did not reach their primary endpoint
yet (e.g., Galbraith and Marschner 2003; Sooriyarachchi et al.
2006; Stallard 2010; Niewczas, Kunz, and König 2019; Van
Lancker, Vandebosch, and Vansteelandt 2020). To maintain the
Type I error—even if all unblinded available first-stage data are
used in the adaptation decisions, it is recommended to define
the first stage p-value by the cohort of patients included before
the interim analysis (e.g., Jenkins, Stone, and Jennison 2011).
In comparison with the other existing methods for binary and
continuous endpoints, the method of Van Lancker, Vandebosch,
and Vansteelandt (2020) has the advantage of making fully
efficient use of the information in the data by, besides mul-
tiple short-term endpoints, also taking into account baseline
measurements.

Similarly, methods for applying flexible study designs to
time-to-event data have also been developed (Brückner, Burger,
and Brannath 2018; Jörgens et al. 2019). When data are sepa-
rated into stages by the occurrence of the primary event, the
Type I error will be compromised if information other than the
current logrank test statistic is used for interim decisions (Bauer
and Posch 2004). If short-term endpoints are to be used, Jenkins,
Stone, and Jennison (2011) proposed to base the separation on
patients instead of on events. As for other endpoints, this would
mean that the primary event for patients who were included
before the COVID-19 impact but did experience their primary
event only after that impact, would need to be analyzed together
with those occurring before the impact. Depending on the
actual impact, it may be appropriate to either use these patients
as a separate cohort—in which case their short-term endpoint
should not be used for decision making—or to artificially censor
them at the impact timepoint and use their complete data for
supplemental analyses only.

However, one should be cautious when employing short-
term and longitudinal measurements in adaptive design
methodology for trials impacted by COVID-19. As long as
the estimand of interest is the (hypothetical) treatment effect
not impacted by COVID-19, these analyses will be unbiased
if only pre-COVID-19 data are used. For example, in the sit-
uation where the number of patients before the COVID-19
impact may already be sufficient to provide reasonable power
(see Section 4.1), the use of short-term information to estimate
primary endpoint might lead to an even higher power (e.g.,
Van Lancker, Vandebosch, and Vansteelandt 2020). In situations
where it is not feasible to obtain sufficient information from
the pre-COVID-19 patients, it may be advisable to support
the interim analysis with historical data (Van Lancker et al.
2019). Similarly, if the trial is paused and will restart after the
COVID-19 time, short-term endpoints from during-COVID-
19 patients may be used in addition to completed patients to
inform decisions on the future sample size. As the main evidence
will come from the patient pool not directly affected by the
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pandemic (see also Anker et al. 2020), the during-COVID-
19 patients should be included in supplemental analyses only.
However, in studies where the estimand of interest is defined
with respect to the combination of pre-, during-, and post-
COVID-19 patients, predicting the long-term primary endpoint
of patients who are still at risk to be impacted by COVID-19
with prediction models based on pre-COVID-19 data only, will
lead to biased estimators. Although the prediction models used
in Van Lancker, Vandebosch, and Vansteelandt (2020) could be
adapted to account for the (expected) dilution effect, this would
require strong assumptions about the effect of the longitudinal
measurements on the dilution; which falls out of the scope
of this article. We therefore recommend using the methods
presented in Section 4 to modify the trial. Once the pandemic is
over, and the trial is resumed, it seems reasonable to resize the
trial. In that case, prediction models based on the pre-COVID-
19 data can be used to predict the outcomes for the patients
recruited after COVID-19 and not impacted by it. Depending
on the estimand of interest the sample size can be adjusted or
not for the period with dilution.

Note that the different methods described in this section can
also take into account missing data (e.g., due to COVID-19-
related drop-out) if one can assume that the missing mecha-
nism is missing completely at random. In the appendix of Van
Lancker, Vandebosch, and Vansteelandt (2020), an extension
of their method that allows the weaker assumption that miss-
ingness is at random is discussed. An alternative for the other
methods is to consider more detailed informative missingness
models (e.g., via multiple imputation (Sterne et al. 2009)).

3.5. A Bayesian Perspective

Inter-patient heterogeneity as well as intra-patients heterogene-
ity are both very common in clinical trials. In COVID-19,
however, several types of heterogeneity might add to the usual
level of variability. These include (1) patients infected or not
by COVID-19, especially incidence of COVID-19 variability
per country in international multicenter trials, (2) patients’
outcomes (in cancer studies is the present mortality due to the
disease or immunosuppressed systems), (3) patients’ follow-
up, and (4) patients’ compliance due to missing treatments.
One way of considering these types of heterogeneity is to use
Bayesian approaches during, if possible at all, or at the end
of the trial. Using hierarchical Bayesian methods associated
with Bayesian evidence synthesis methods will allow different
types of heterogeneity to be accounted for (Thall and Wathen
2008; Röver, Andreas, and Friede 2016; Friede et al. 2017).
These approaches take into account uncertainty in estimating
the between-trial or subgroup heterogeneity but they can also
be used in the setting of within-trial heterogeneity. By using
potential variation of the scale parameter of the heterogeneity
prior would facilitate sensitivity analyses. Friede et al. (2017)
proposed a Bayesian random-effects meta-analyses with priors
covering plausible heterogeneity values. In the setting of within-
trial heterogeneity prior calibration of each source of hetero-
geneity is at most interest, indeed one should not be limited
to methods accounting for only one source of heterogeneity as
more than one type can be present. Let φ be the within-trial

standard deviation, it determines the degree of heterogeneity
across patients either included before or after COVID-19 pan-
demic or patients infected or not by COVID-19 (or any other
COVID-19 source of heterogeneity) and μ the parameter of
interest. Under Bayesian inference, uncertainty for φ is automat-
ically accounted for and inference for μ and φ can be captured
by the joint posterior distribution of the two parameters. The
key point is in the choice of the prior distribution of φ, in
particular when subgroups are small or unbalanced. In the
absence of relevant external data or information about within-
trial heterogeneity, the 95% prior interval of φ should capture
small to large heterogeneity. Moreover, the use of a Bayesian
approach entails the question of what constitutes sensible prior
information in the context of COVID-19 in which there is a
continual updating of information that is still not considered
reliable. This may be argued on the basis of the endpoint in
question, that is, what is the plausible amount of heterogeneity
expected, what constitutes relevant external data, and how this
information may be used. A relatively simple solution would
be the use of weakly informative priors. For priors of effect
parameters, adaptive priors using power or commensurate prior
approaches have proved to be efficient in updating if, when and
how to incorporate external information (Hobbs, Sargent, and
Carlin 2012; Ollier et al. 2019).

4. When Trial Duration or Sample Size Should Be
Changed

As previously mentioned, there are a number of reasons for
changes to the duration or sample size of a clinical trial affected
by the COVID-19 pandemic. In particular, such changes may be
appropriate if either the trials’ feasibility as a whole is affected
or if there are serious concerns that the treatment effect will be
diluted due to the pandemic, for example, due to missing data
or missed study drug administration.

In the following, we develop approaches which can give guid-
ance as to when each change may be appropriate. Specifically,
we look at how to calculate the power of the trial under various
assumptions and give guidance about the introduction of sample
size reassessments and interim analyses. Many of these methods
are implemented in a freely available R shiny app, which is briefly
introduced in Section 4.5.

4.1. Changing Trial Duration: Almost Done—To Stop or
Not to Stop Early

If data collection is nearly finished at the time of the COVID-
19 impact—that is, we find ourselves in the leftmost situation
of Figure 1, a natural question that comes into mind is whether
one should analyze the trial early based on the data collected so
far accepting some loss in power. The decision on this question
can be informed by calculating the actual power based on the
original assumptions.

In the following, we focus on superiority trials comparing
a treatment versus placebo (or standard treatment) with allo-
cation ratio 1:r for placebo versus treatment. Let α denote the
one-sided significance level and 1 − β the desired power at
the planning stage of the trial. Assume that the endpoint of
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interest (approximately) follows a normal distribution, as for
example difference of means or proportions, log odds ratios or
log hazard ratios. Let δ denote the assumed difference between
the means under the alternative hypothesis and let σ 2 denote the
common variance for both arms. The total sample size N needed
to achieve a desired power of 1 − β is then given by

N = (
z1−α + z1−β

)2 σ 2

δ2
(r + 1)2

r
(1)

with z1−α and z1−β denoting the (1 − α)- and (1 − β)-quantile
of the cumulative standard normal distribution. We assume that
the trial was originally planned to be analyzed based on N
observed patients but so far has only data available for a fraction
n = τN patients. The actual power (1 − βτ ) based on the data
observed can easily be shown to be

1 − βτ =�

(
δ

σ

√
r

(r + 1)2

√
τN − z1−α

)
, (2)

where �(·) denotes the cumulative distribution function of
the standard normal distribution. If the true treatment effect
is indeed equal to the assumed effect, Equation (2) reduces
further to

1 − βτ =�
(
z1−β

√
τ − z1−α(1 − √

τ)
)

. (3)

Note that the achieved power for the reduced sample size
depends on the original assumptions in this specific situation
only through the originally planned power and the significance
level.

Resulting values for the power depending on the information
fraction τ are shown in the first row of Figure 2 (black dotted
line). For a desired power of 1−β = 0.80, if data are available for
about 80% (τ = 0.80) of the planned patients, the absolute loss
in power for the fixed design is about 10 percentage points while
for a planned power of 1 − β = 0.90, the absolute loss in power
is about 7 percentage points. Numerical values are included in
comprehensive Table 1 in Section 4.3.

There can be no general guidance on what power might still
be acceptable. In each individual trial, the decision will be based
on balancing the calculated loss in power against the probability
of actually obtaining the originally planned amount of data and
also on the degree of belief in the originally planned sample
size. If doubts remain then a sample size reestimation might be
called for.

4.2. Changing Sample Size: Without Looking at
Comparative Data

In this section, we focus on blinded sample size reestimation.
More general blinded adaptations will be considered in Sec-
tion 5.1. Blinded sample size reestimation procedures are well
established to account for misspecifications of nuisance param-
eters in the planning phase of a trial (Friede and Kieser 2013).
In this situation considered, namely the impact of the COVID-
19 pandemic, a number of circumstances might make a resizing
of the trial necessary and, as discussed, could be addressed in a
blinded sample size review.

A likely scenario is that due to the COVID-19 outbreak
the response to the treatment, and possibly even the response

to control, changes. As above, assume that at the time of the
outbreak n = τN patients have been enrolled into the trial and
that it is planned to enroll a total of N patients, randomized to
control and treatment in a 1:r ratio.

Let μc0 and σ 2
c0 denote the mean and the variance for the

control group before the outbreak and let μc1 and σ 2
c1 denote

the mean and variance for the control group after the outbreak.
Analogously, the means and variances for the treatment group
before and after the outbreak are denoted with μt0, μt1, σ 2

t0,
and σ 2

t1. Let δ = μt0 − μc0 denote the treatment effect before
the outbreak started. The difference between the means after
the outbreak started can then be expressed as a fraction of the
difference before the outbreak started, that is, μt1 − μc1 =
(1 − η)δ. While this applies to a relative change in treatment
effect, an absolute change in treatment effect can be handled in
much the same way as both definitions can be converted into
one another. In the following, η will be called the dilution effect.

For the variances, we only consider a relative change of
the variance and define σ 2

c1 = ψcσ
2
c0 and σ 2

t1 = ψtσ
2
t0. A

common assumption is that the variances for the treatment and
the control group are the same. Here, we consider the case of
σ 2

t0 = σ 2
c0 = σ 2

0 = σ 2 and σ 2
t1 = σ 2

c1 = σ 2
1 with ψt = ψc = ψ

and σ 2
1 = ψσ 2

0 . That is, we assume equal variances for the two
arms but not necessarily equal variances before and after the
outbreak.

Let t0 denote the test statistic based on only the patients
enrolled before the outbreak and let t1 denote the test statistic
based on only the patients enrolled after the outbreak. Further-
more, let t denote the test statistic based on all enrolled patients.
The joint distribution of t0, t1, and t is then given by

⎛
⎝t0

t1
t

⎞
⎠ ∼ N

⎛
⎜⎜⎜⎝

⎛
⎜⎜⎜⎝

√
Nrτ

(r+1)2 · δ
σ√

Nr(1−τ)

(r+1)2 · (1−η)√
ψ

· δ
σ√

Nr
(r+1)2 · τ+(1−τ)(1−η)√

τ+(1−τ)ψ
· δ

σ

⎞
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⎛
⎜⎝

1
0 1√
τ

τ+(1−τ)ψ

√
(1−τ)ψ

τ+(1−τ)ψ
1

⎞
⎟⎠

⎞
⎟⎠ . (4)

The general solution for the joint distribution can be found in
Appendix A.1.

As before, we assume that the original sample size was
planned using a one-sided significance level of α to achieve
a desired power of 1 − β based on Equation (1). If the true
treatment effect is equal to the assumed treatment effect, we can
replace N with ((z1−α + z1−β)2 σ 2

δ2
(r+1)2

r yielding

⎛
⎝t0

t1
t

⎞
⎠ ∼ N

⎛
⎜⎝

⎛
⎜⎝

(
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τ(
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) √
1−τ(1−η)√
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τ+(1−τ)ψ

⎞
⎟⎠ ,

⎛
⎜⎝

1
0 1√
τ

τ+(1−τ)ψ

√
(1−τ)ψ

τ+(1−τ)ψ
1

⎞
⎟⎠

⎞
⎟⎠ . (5)

As shown in Sections 4.1 and 4.3, the resulting distribution
depends on the values for the significance level α, the desired
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Figure 2. Resulting power depending on the information fraction τ for a dilution effect of η = 0, η = 0.10, or η = 0.50 for the fixed design (black dotted line), the Pocock
group sequential design (stage 1: black dashed line, overall: black solid line), and the O’Brien–Fleming group sequential design (stage 1: gray dashed line, overall: gray solid
line) for a desired power of either 1 − β = 0.80 or 1 − β = 0.90.

power 1 − β , and the fraction of data available for the outbreak
τ . In the case considered here, the only additional variable is the
dilution effect η.

Figure 2 shows the resulting values for the power depending
on the information fraction τ for a dilution effect of η = 0,
η = 0.10, and η = 0.50, assuming a variance inflation/deflation
factor of ψ = 1. The first row has already been discussed in
Section 4.1, η = 0 corresponding to the original assumption
about treatment effect still holding; the middle plots show the
power for a dilution effect of η = 0.1, and the bottom plots for a
dilution effect of η = 0.5, that is, half the treatment effect getting
lost due to the COVID-19 impact.

As above, no general recommendations can be made as every
trial is different. However, if the original trial was planned for
a power of 90% and at least 85% of the data are available and
no considerable dilution effect is expected, then the recommen-
dation could be to stop the trial immediately (if the power loss

is offset by a corresponding gain in other regards, e.g., in time
to market). In all other scenarios, consequences of any decision
would need explored carefully using the approaches developed.
As we will see in Section 4.5, these are implemented in an R
Shiny app to support this process.

If it is considered undesirable to stop the trial immediately,
a sample size adjustment to restore the desired power of 1 − β

based on the assumed dilution effect can be considered. This
does not involve an interim analysis of unblinded data and
therefore the Type I error rate will be protected. The number
of patients which need to be enrolled after the outbreak can be
calculated as shown below.

Let n0 denote the number of patients already enrolled into
the trial before the outbreak and let ñ1 denote the number to be
enrolled after the outbreak started. We wish to determine ñ1 so
that the power based on a total of Ñ = n0 + ñ1 enrolled patients
is 1 − β .
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Based on Equation (4), we know that the final test statistic t
follows a normal distribution with

t ∼ N

⎛
⎜⎝

√
(n0 + ñ1)r
(r + 1)2 ·

n0
n0+ñ1

+ (1 − n0
n0+ñ1

) (1 − η)√
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n0+ñ1
+ (1 − n0

n0+ñ1
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· δ

σ
, 1

⎞
⎟⎠ .

(6)

Solving
√

(n0 + ñ1)r
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n0
n0+ñ1

+ (1 − n0
n0+ñ1

) (1 − η)√
n0

n0+ñ1
+ (1 − n0

n0+ñ1
)ψ

· δ

σ
− z1−α = z1−β (7)

for ñ1 yields

ñ1 =Nτ
ψ − 2 + 2τη + √

ψ2 − 4τ(1 − η)(η + ψ − 1)

ψ − 2τη(1 − η) − √
ψ2 − 4τ(1 − η)(η + ψ − 1)

.

(8)

The derivations can be found in Appendix A.2.
Note that the dilution effect η cannot be estimated from

the data, but needs to be hypothesized. Of course sensitivity
analyzes can be conducted based on different assumptions. The
R shiny app introduced in Section 4.5 was devised to support
such processes.

For time-to-event trials, an additional consideration is that
censoring of follow-up might make it necessary to reassess the
sample size and length of follow-up. This would be of particular
importance in long running trials—as depicted in the middle
panel of Figure 1, particularly prevalent in chronic conditions.
In the context of heart failure trials, Anker et al. (2020) suggested
to censor observations due to regional COVID-19 outbreaks.
Such actions would imply a resizing of the trial, potentially in
terms of number of patients recruited and length of follow-up,
to maintain previously set or in the light of the pandemic revised
timelines (Friede, Pohlmann, and Schmidli 2019).

4.3. Possibly Changing Trial Duration Based on
Comparative Data: Switching From a Fixed to a GSD

If the methods proposed in Section 4.2 suggest that the decision
between an immediate stop of the trial and continuation with
or without a change in sample size to restore power is not
clear, it may be reasonable to include an opportunity for early
stopping for efficacy. The trial would then be analyzed as a group
sequential design (GSD) using the total sample size from the
fixed design. The difference between Sections 4.1 and 4.2 and
the situation here is, that we will adjust both the critical value
and the sample size to allow for two tests of the null hypothesis.
In a first step, we show how to calculate the power for a GSD
when the total sample size N is still the one from the fixed design
but the critical values are adjusted to account for multiplicity.

Let c1 and c2 denote the critical values for a two-stage design
and let τ = n/N denote fraction of data being used for the first
stage. Using � to denote the cumulative distribution function of

the bivariate normal distribution the power is given by (see, e.g.,
Wassmer and Brannath 2016)

1 − β = 1 − �
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Assuming the true effect is equal to the assumed effect at
planning stage, we can replace N in Equation (9) by the right-
hand side of Equation (1) yielding

1 − β = 1 − �

((
c1
c2

)
, μ =

(√
τ

(
z1−α + z1−β

)(
z1−α + z1−β

) )
,
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(

1
√
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τ 1

))
. (10)

As in Section 4.1, the resulting power depends on the origi-
nally planned effect (and the allocation ratio) only through the
desired power 1 − β at the planning stage. In addition to the
dependency on the information fraction τ it depends not only
on the significance level α but also on the allocation of the Type
I error to the stages. The two types of allocation usually used
to illustrate the extremes—the O’Brien and Fleming version
preserving the major part of the Type I error rate to stage 2 and
the Pocock GSD boundaries with more Type I error allocated
to early stages—are included in Figure 2. Each of the designs
is represented by two lines, one (the dashed lines) showing the
power at the interim analysis and one (the solid lines) showing
the power at the final analysis. A selection of values from this
figure is included in Table 1.

Figure 2 shows the resulting power depending on the infor-
mation fraction τ for a planned desired power of either 1−β =
0.80 (left-hand panel) or 1 − β = 0.90 (right-hand panel) for
various values of the dilution effect η. The black dotted line
gives the resulting values for the power for the fixed design if
analyzed early, the black lines give the resulting power for the
Pocock design for the first stage (dashed line) and overall (solid
line), and the gray lines give the resulting power for the O’Brien–
Fleming design for the first stage (dashed line) and overall (solid
line). It should be noted that the power for the fixed design as
well as the power for the first stage for the GSDs does not change
across different values of η as analyses only use first stage data
which was collected before the outbreak.

Table 1 lists the power for some values of τ for a desired
power of either 80% or 90%. The first column gives the value
for τ , columns 2–6 give the resulting power for the fixed design
as well as for both stages the Pocock and the O’Brien–Fleming
design for a desired power of 1 − β = 0.80, and columns 7–11
give the achieved power for a desired power of 1 − β = 0.90.
The first set of lines assume that there is no dilution effect (see
Section 4.2) for patients enrolled into the trial after the COVID-
19 outbreak while the second set assumed that the dilution effect
is η = 0.10. For example, if 80% of the planned data has been
collected before the COVID-19 outbreak, the resulting power
for a fixed design is 0.707 if the planned power is 1 − β = 0.80.
Using a Pocock GSD, the power for the first stage is 0.653 while
the overall power at the end of the second stage is 0.78. For
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Table 1. Resulting values for the power based on n patients (1−βn) depending on the fraction τ of data already available for an originally planned power of 1−β = 80%
or 1 − β = 0.90 for a dilution effect of η = 0 or η = 0.10.

1 − β = 0.80 1 − β = 0.90

Pocock stage OBF stage Pocock stage OBF stage

τ Fix 1 2 1 2 Fix 1 2 1 2

η = 0, ψ = 1

0.50 0.508 0.422 0.756 0.207 0.797 0.630 0.545 0.870 0.307 0.898
0.60 0.583 0.504 0.764 0.344 0.795 0.709 0.637 0.875 0.476 0.896
0.70 0.650 0.581 0.772 0.478 0.793 0.774 0.717 0.880 0.622 0.895
0.80 0.707 0.653 0.780 0.597 0.792 0.826 0.785 0.886 0.739 0.895
0.85 0.733 0.688 0.785 0.650 0.793 0.848 0.815 0.889 0.786 0.895
0.90 0.757 0.721 0.789 0.699 0.794 0.868 0.842 0.892 0.826 0.896
0.95 0.780 0.754 0.794 0.745 0.796 0.885 0.868 0.896 0.862 0.897
0.99 0.796 0.785 0.799 0.783 0.799 0.897 0.890 0.899 0.889 0.899

η = 0.1, ψ = 1

0.50 0.508 0.422 0.718 0.207 0.756 0.630 0.545 0.838 0.307 0.867
0.60 0.583 0.504 0.735 0.344 0.763 0.709 0.637 0.852 0.476 0.872
0.70 0.650 0.581 0.752 0.478 0.770 0.774 0.717 0.864 0.622 0.878
0.80 0.707 0.653 0.768 0.597 0.778 0.826 0.785 0.877 0.739 0.884
0.85 0.733 0.688 0.776 0.650 0.783 0.848 0.815 0.883 0.786 0.887
0.90 0.757 0.721 0.784 0.699 0.788 0.868 0.842 0.888 0.826 0.891
0.95 0.780 0.754 0.792 0.745 0.793 0.885 0.868 0.894 0.862 0.895
0.99 0.796 0.785 0.798 0.783 0.798 0.897 0.890 0.899 0.889 0.899

OBF: O’Brien–Fleming.

the O’Brien–Fleming GSD, the power for the first stage is 0.597,
while the overall power is 0.792.

As the cost of the early efficacy stopping option is paid in
terms of power loss, the power for the second stage of such a
GSD is lower than the originally planned power even if there is
no dilution effect. This loss is generally more pronounced for
the Pocock critical boundaries as opposed to the O’Brien and
Fleming boundaries (on the other hand, the power for the first
stage will generally be higher for Pocock boundaries than for
O’Brien and Fleming boundaries).

A sample size reassessment in this case does not require any
changes to the design or measures to protect the Type I error
rate if it is based on methods presented in Section 4.2, that is, if
it uses only the information fraction τ and a guesstimate of the
dilution effect η. To find the sample size for the second part of
the trial for a GSD, a search algorithm based on Equation (4) has
to be used.

While theoretically one could attempt to estimate the dilu-
tion effect based on available data, it should be noted that the
estimator has a huge variability. For example, assume that the
original trial was planned to detect a treatment effect of 0.35
with a desired power of 90% and a one-sided significance level
of 0.025. Furthermore, assume that the true treatment effect is
indeed as planned and that 70% of the data have been collected
before the outbreak while the remaining 30% of the data were
collected after the outbreak. For a true dilution effect of 0.1, the
lower and upper 5% percentile of the distribution are −2.7453
and 1.2486 with expected value being −0.1011. That is, on
average we would conclude that there is no dilution effect but
that the treatment effect after the outbreak is even larger than
before the outbreak! The distribution for the dilution effect can
be derived based on the article by Hinckley (1969). It should be
noted that if we would switch to a GSD with Pocock boundaries
without adjusting the sample size, the power to reject the null
hypothesis at the first stage is 72% while the overall power
is 86%.

Instead of trying to estimate the dilution effect, we recom-
mend calculating the sample size for a GSD using different
values for the dilution effect and then deciding on the maximum
sample size still feasible in the specific situation. This approach
is similar to calculating the effect that can be detected given
a specific sample size instead of calculating the sample size to
detect a specific treatment effect. It should be kept in mind that
if the dilution effect is too large, even if the trial is significant
in the end, the product might not be marketable. If the dilution
effect is solely a result of external circumstances, as for exam-
ple missed treatment cycles, one could also consider stopping
recruitment until patients are able to fully comply with the
treatment protocol and continue the trial based on the original
sample size. Depending on the expected dilution effect, this
approach might still lead to a shorter trial length than trying to
adjust the sample size. For the example above, the original total
sample size is 344 and assuming an accrual rate of 20 patients
per months it would have taken approximately 12 month to
recruit 70% of the patients. It would require a further 5 months
to finish recruitment. If we assume that the dilution effect is 0.25,
a GSD with Pocock boundaries requires a further 229 patients
which could be recruited in approximately 12 months. If we were
able to resolve the issues leading to the dilution effect within 6
months and restart recruitment, the overall trial length would
be similar to the GSD with recruitment continued. Overall, we
see that there is no simple solution applicable to all trials.

4.4. Possibly Changing Trial Duration and Sample Size:
Switching to a Group Sequential Adaptive Design

In some cases, it may be desirable to combine the early stopping
option with sample size reassessment based on comparative
analyses. This may be because the uncertainty seems too big
to conduct a sample size reassessment based on an assumption
of the dilution effect; or in situations like the right panel in
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Figure 1, where the study will continue following the pandemic.
Two different options already mentioned in Section 3.1 would
be candidates for such a design change:

1. A group sequential adaptive design using a combination test
with prespecified weights and group sequential boundaries as
already used in Section 4.3;

2. A recursive combination test allowing a complete redesign
after the interim analysis, including sample size and number
and timing of future interim analyses.

While the latter option provides more flexibility, this char-
acteristic may be the very reason not to use it, especially if
the trial is located in a later development stage. If the aims of
the interim analysis are early efficacy stopping and sample size
reassessment only, then the former choice would provide both
options and still stay reasonably close to a group sequential
designs if the actual changes in sample size are small. The
prerequisite, however, is fixing the number of interim analyses
and the weight to be used for each stage of the design before
the blind is broken. This may of course pose difficulties in the
current situation where recruitment during the pandemic and
return to projected timelines are hardly predictable. Completely
overturning the design, while allowed from a methodological
point of view, should remain the last resort if is really felt that
this is the only way the trial can be salvaged.

The decision to introduce an interim analysis based on com-
parative data will generally be influenced by operational aspects
including the development stage and purpose of the clinical
trial. Further advice is given in Section 6.

4.5. Implementation of the Resizing Approaches in a R
Shiny App

To facilitate the implementation of the proposed methods, an
R shiny app was developed as a simple-to-use web-based appli-
cation. It provides insights into the power properties on the fly,
given user-defined input of design parameters. Specifically, it has

a module for the calculations shown in Section 4.1 to answer
the following question: If a trial was designed for 90% power for
an assumed treatment effect at a significance level α = 0.025,
what is the power if we conduct the analysis with only 85% of
the patient data? By following (3), the app provides the power
(84.8%) and a plot for different proportions of data available, in
addition to 85%. A screenshot of the app is provided in Figure 3.

The app was originally designed to facilitate the discussion
by Akacha et al. (2020), where the same calculation as (3) was
independently developed. The app is expanded to implement
the group sequential design of an interim analysis conducted
with data available and a final analysis when the planned data
is obtained (see Section 4.3). Two popular group sequential
designs are considered which are the Pocock and the O’Brien–
Fleming schemes. In addition, the incorporation of dilution
effects allows for more general considerations, as demonstrated
in Section 4.2. Similar outputs as in displayed Figure 3 are
provided with the app for the various scenarios considered
above. The app can be accessed at https://power-implications.
shinyapps.io/prod/ and comes with a help tab that contains more
information about its usage.

5. Adaptations Other Than Trial Duration or Sample
Size

In the previous section, we made some detailed comments on
changing the trial duration or sample size. Here, we consider
other adaptations, starting with blinded adaptations and then
continuing the discussion considering unblinded adaptations.

5.1. Blinded Adaptations

The introduction provided an outline of the potential chal-
lenges for clinical trials by the COVID-19 pandemic. To assess
the extent by which a trial is affected by these, blinded data
may be used to investigate baseline patient characteristics,

Figure 3. Screenshot of the R shiny app.

https://power-implications.shinyapps.io/prod/
https://power-implications.shinyapps.io/prod/
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premature study or treatment discontinuations, missing data
during follow-up, protocol violations, and nuisance parame-
ters of the outcomes including event rates and variances. The
findings may be compared with planning assumptions. Further-
more, time trends can be explored in the blinded data and any
changes might be attributed to the COVID-19 if these coincide
with the onset of the pandemic (see, e.g., Friede and Henderson
2003).

The findings of such blinded analyses might trigger investi-
gations into resizing the trial. The resizing could be based on
blinded or unblinded data; appropriate procedures will be con-
sidered in Section 4. However, adaptations are not restricted to
sample size reestimation but also include other adaptations such
as changes in the statistical model, test statistics, or endpoint
to be used. For instance, observed changes in baseline charac-
teristics might be reflected in the statistical model by including
additional covariates. Similarly, findings regarding missing data,
for example, due to missed visits, might suggest to adopt a more
robust analysis approach. Additionally, if the new endpoint is
no longer appropriate due to COVID-19 impact, modifying
the endpoint midstream in a long-term clinical trial might be
desired. One example for such a case could be studies targeting
pneumonia as events might require exclusion of COVID-19
related pneumonia, if it becomes apparent that the event rates
are severely increased.

5.2. Unblinded Adaptations

The methods introduced in Section 3.1 can be used to create
quite flexible designs while maintaining Type I error rate con-
trol. As mentioned in Section 5.1 the need to change the sta-
tistical model or test statistics might arise. There we considered
this based on blinded data. However, such changes can also be
carried out following inspection of unblinded data. This has
been considered by, for example, Kieser, Schneider, and Friede
(2002) and Friede et al. (2003). Although these methods have
not been used a lot as the change of a (primary) endpoint is
somewhat controversial in confirmatory trials from a regulatory
perspective. However, this might be quite different in a pan-
demic situation as currently experienced with SARS-CoV-2.

In Section 3.3, treatment effect heterogeneity was considered.
With the rise of personalized medicine and targeted therapies
adaptive enrichment designs starting with a broader popula-
tion and zooming in on patient subgroups with particularly
large benefit or reduced harm following an interim analysis
have become popular over the past years (Friede, Parsons, and
Stallard 2012; Stallard et al. 2014; Friede, Stallard, and Parsons
2020). These designs could potentially also be useful to modify
eligibility criteria of trials affected by the COVID-19 pandemic.

6. Regulatory and Operational Aspects

The COVID-19 pandemic affects all clinical trials, with impli-
cations for studies intended for drug regulation well beyond
statistical aspects (EMA 2020a, 2020b; FDA 2020a, 2020b). For
example, on-site monitoring of most trials is suspended during
the lockdown and with the interdiction of nonessential travels
the recording of adverse events might not be as good if a site

visit is replaced by a telephone consultation, or a local laboratory
was used instead of the central laboratory. Similarly, the mode
of administration of a patient reported outcomes questionnaire
might have been changed from an electronic collection at the
site on a tablet computer to a article based version mailed to the
patient’s home. All these examples may lead to a reduced quality
of the trial data which may need to be taken into consideration
when interpreting the trial.

As much remains to be learned on the COVID-19 dis-
ease manifestations, treatments and pandemic distribution, it
appears necessary to monitor the status and integrity of the
trial on an ongoing basis. However, it may not be clear in some
situations how this can be done in a way that protects the
integrity of trial conduct. Care has to be taken that the original
responsibilities of an Independent Data Monitoring Committee
(IDMC) are not expanded beyond reasonable limits. Many of
the responsibilities arising during the pandemic might more
naturally seem to belong to trial management personnel, as
the associated issues can often be addressed adequately without
access to unblinded data; this might involve sponsor personnel,
steering committees, etc. If important decisions are advised by
unblinded results, then of course this should be done through
an IDMC. But many other decisions may not require unblinded
access. Some, including initiating a sample size reassessment
or updating a study’s final statistical analysis plan (SAP), could
be very problematic in terms of validly interpreting final anal-
ysis results if initiated by a party with access to unblinded
interim results such as an IDMC. In general, IDMCs should
not proactively initiate a sample size reassessment scheme, as
it has to be specified without knowledge of unblinded results.
Likewise, changes to the SAP should not be in the scope of
IDMC responsibilities. In current practice and supported by
prior regulatory guidance, such decisions are generally initiated
by parties remaining blinded. Of course the IDMC should be
kept fully aware of any changes implemented in a trial, and
should comment if they have any concerns. But for actions taken
based upon blinded data, there are generally no confidentiality
concerns, and sponsors can enlist any experts who can help
arrive at the best decisions.

The introduction of an IDMC into a trial might be warranted
if, for example, the trial design is changed from a fixed sample
to an adaptive design. Establishing a qualified IDMC when one
was not previously felt to be needed can be challenging and
time consuming during the pandemic. Attempting to ensure
that IDMC members have full understanding of all relevant
background for the important tasks they will be assigned to,
compared to trial personnel or steering committee members
who will already have such perspective, could be risky. Thus,
if an unblinded IDMC is felt necessary to be established, given
the challenges of identifying and implementing such a group
quickly, an internal firewalled group might thus be considered
as an option in exceptional situations.

COVID-19 affects ongoing clinical trials in many different
ways, which in turns affects many aspects of statistical inference,
which are best described in the estimand framework laid out by
ICH (2019). Some of complications resulting from the COVID-
19 pandemic lead to unforeseen intercurrent events in the
sense that they affect either the interpretation or the existence
of the measurements associated with the clinical question of
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interest (ICH 2019), while others prevent relevant data being
collected and result in a missing data problem. For pandemic-
related unforeseen intercurrent events, we follow Akacha et al.
(2020) and Meyer et al. (2020) in their recommendation to
revise existing estimand definitions accordingly. As discussed
in Section 3.2, however, care has to be taken when revising
the estimand of interest in view of combining the information
across different stages: If, for example, the estimands before and
after the COVID-19 outbreak are different, this may limit the
interpretability of the statistical inference.

The challenges imposed by the pandemic will lead to difficul-
ties in meeting protocol-specified procedures in many instances,
thus requiring the need to change aspects of ongoing trials. It
is then important to be mindful about the fact that prespeci-
fication of the study protocol and the SAP is the corner stone
to avoid operational bias in any clinical trial. Although the
ICH (1998) guideline allows changing the SAP even shortly
before unblinding a trial, this if often viewed as critical by
stakeholders. Changing the characteristics of a trial based on
unblinded trial data always requires appropriate measures to
control the Type I error rate whereas changes triggered by
external data are often seen more lenient. In the case of changes
to the conduct and/or analysis of a trial caused by the pandemic
it is reasonable to assume that such changes are not triggered
by the knowledge gained from the ongoing trial. Still, changes
will have to be prespecified and documented, as appropriate. It is
recommended to prespecify key analyses important to interpret
the objectives of the trial in the SAP, in particular analyses
related to the inferential testing strategy. Therefore, we suggest
to consider first whether different analyses are needed for the
primary or key secondary objectives. Other analyses that have
a more exploratory character can be included in a separate
exploratory analysis planning. If any impact is detected that
warrant additional analyses in the clinical study report, then
these can be added later.

After the lockdown measures will be eased in future, the
medical practice may not return to the state before the onset of
the pandemic. Social distancing measures may be kept in place
and it is to be expected that the trend of, for example, fewer hos-
pital admissions for minor cases will continue to some extent.
Nevertheless, certain trials interrupted by the pandemic will be
able to restart, albeit in a possibly changed environment. The
trial of the long acting contraceptive (Section 2.1) was largely
unaffected by the onset of the pandemic. The START:REACTS
trial (Section 2.2) had changed its endpoint to a PRO measure
that can be observed remotely if a patient does not wish to come
to the clinic. This trial can restart recruitment when elective
surgeries will be again possible, albeit with the new endpoint
as the original endpoint was not always measured during the
lockdown measures. The ATALANTE 1 trial (Section 2.3) was
stopped for ethical reasons due to the study population being at
high risk of COVID-19. As the trial did not proceed to its second
stage, consultations with agencies have started to discuss the
partial results in view of the clinical unmet need. Such discus-
sion will be likely focus also on the loss of power even if first stage
was promising. This begs the question, how promising the first
stage results should have been to provide convincing evidence
if a dilution of the treatment effect cannot be excluded a priori
and the considerations in Section 4 of this article may support

such discussions. Lastly, the CAPE-Covid and the CAPE-Cod
studies (Section 2.4) are both addressing ICU patients with
two kind of pneumonia. There is heterogeneity in disease and
patients prognostic. For the moment, the CAPE-Cod trial is
temporarily stopped but is planned to restart next autumn. As
the investigators had no choice than to embed a trial within the
other, heterogeneity will need to be addressed at the end of the
study to preserve both results.

7. Discussion

The COVID-19 pandemic has not only led to a surge of clinical
research activities in developing treatments, diagnostics, and
vaccines to fight the pandemic, but also impacted ongoing trials
in many ways. Here, we illustrated the negative effects the pan-
demic might have on trials by giving four examples from ongo-
ing studies and describing the considerations and consequences
in reaction to the pandemic. Furthermore, we focused here on
the role of adaptive designs in mitigating the risks of the pan-
demic which might result in a large number of inconclusive or
misleading trials. Aspects that are of particular importance here
are Type I error rate control and treatment-effect heterogeneity.
When trials are affected, the question to stop the trial early or
to continue the trial, possibly with modifications is of particular
interest. Considering normally distributed outcomes we devel-
oped a range of strategies. We believe that these are transferable
to other types of outcomes with only limited modifications.

In Section 3.1 on Type I error rate control, we mention
noninferiority trials as one example where blinded adaptations
may inflate the Type I error rate. Otherwise we believe that
extensions of the discussions and approaches proposed from
superiority trials to non-inferiority trials are straightforward.

A. Appendix

A.1. General Joint Distribution

The joint distribution of t0, t1, and t is given by
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Equation (A.1) can then be rewritten as
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A.2. Sample Size Adjustment

Substituting n0/(n0 + ñ1) with ξ = n0/(n0 + ñ1), we can rewrite Equation
(7) as follows√
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Replacing n0 = Nτ and also noticing that the right-hand side of the
equation also equals N, we obtain
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Now, if τη2 − 1 + ψ = 0 and replacing ψ = 1 − τη2, we get
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For τη2 − 1 + ψ �= 0, we obtain
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Resubstitution of ξ finally yields
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As can be seen from Equations (A.6) and (A.7), ξ and hence ñ1 have
two different solutions due to the square root. Evaluating both solutions for
different values of τ , η, and ψ show that only the second solution (+√

in
the numerator and −√

in the denominator lead to a positive number for
the sample size.
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