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Abstract: Radiotherapy is a well-established regimen for nearly half the cancer patients worldwide.
However, not all cancer patients respond to irradiation treatment, and radioresistance is highly
associated with poor prognosis and risk of recurrence. Elucidation of the biological characteristics
of radioresistance and development of effective prognostic markers to guide clinical decision
making clearly remain an urgent medical requirement. In tumorigenic and radioresistant cancer
cell populations, phenotypic switch is observed during the course of irradiation treatment, which is
associated with both stable genetic and epigenetic changes. While the importance of epigenetic
changes is widely accepted, the irradiation-triggered specific epigenetic alterations at the molecular
level are incompletely defined. The present review provides a summary of current studies on the
molecular functions of DNA and RNA m6A methylation, the key epigenetic mechanisms involved in
regulating the expression of genetic information, in resistance to irradiation and cancer progression.
We additionally discuss the effects of DNA methylation and RNA N6-methyladenosine (m6A) of
specific genes in cancer progression, recurrence, and radioresistance. As epigenetic alterations could
be reversed by drug treatment or inhibition of specific genes, they are also considered potential targets
for anticancer therapy and/or radiotherapy sensitizers. The mechanisms of irradiation-induced
alterations in DNA and RNA m6A methylation, and ways in which this understanding can be
applied clinically, including utilization of methylation patterns as prognostic markers for cancer
radiotherapy and their manipulation for anticancer therapy or use as radiotherapy sensitizers,
have been further discussed.
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1. Introduction

Radiotherapy has been established as one of the major treatment options for patients with
cancer in the clinic for over 100 years, based on the theory that cancerous regions can be destroyed
with targeted ionizing radiation exposure, while normal tissue parts surrounding tumor lesions
can withstand and recover after radiotherapy [1]. However, accumulating evidence indicates that a
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decisive small population of radioresistant cancer cells exhibits stem cell characteristics responsible for
tumor initiation, maintenance, and progression. These cancer-initiating cells, designated cancer stem
cells (CSCs), are characterized by their potent tumorigenic properties and ability to self-renew [2–4].
More importantly, cancer stem cells contribute to radioresistance as well as chemoresistance, and are
believed to mediate relapse and recurrence of the disease after therapy [5]. Cancer stem cell markers
are reported to be epigenetically regulated [6]. For instance, DNA methylation is linked to several
crucial pathways involved in CSC activation, including Wnt (Wingless-type MMTV integration site
family)/β-catenin (catenin beta 1), Hh (Hedgehog), and Notch signaling [7].

Efforts to improve radiotherapeutic strategies, such as optimization of treatment plans and
precision of dose delivery, are not beneficial in some cases, and inter-individual differences in
therapeutic activity are commonly observed [8]. Cellular response to radiotherapy is dependent
on the molecular composition of cancer cells. However, the availability of predictive biomarkers that
can be used to monitor alterations in molecular composition and predict outcomes of radiotherapy is
limited [8,9]. Combination of the clinical characteristics of patients with molecular or imaging markers
may aid in the identification of prognostic factors in cancer patients treated with radiotherapy [10].

Alterations in the epigenetic patterns in the structure and function of chromosomes are heritable
events that occur without changes in the DNA sequence. In mammalian cells, epigenetic changes,
including DNA and RNA m6A methylation, have been implicated in several critical biological
roles, including cellular proliferation, differentiation, and development of multiple organisms [11,12].
Dysregulation of epigenetic mechanisms leads to global changes in genomic packaging and specific
gene promoter changes that influence the transcription of downstream genes involved in cancer
progression [13]. Thus, regulation of epigenetic mechanisms has been established as an emerging
strategy for cancer therapy.

Cell proliferation and survival require tight regulation and propagation of genetic material,
which are attacked by both intracellular and extracellular environmental sources of DNA damage.
Irradiation is considered a potent DNA damage inducer and epigenotoxic agent [14]. Within the
epigenetic parameters, DNA methylation is significantly implicated in the context of radiation
biology [14,15]. DNA methylation is one of the known epigenetic mechanisms involved in the
regulation of genetic material. Recent studies have additionally demonstrated crucial roles of RNA m6A
methylation in both irradiation-triggered DNA damage response and radioresistance [16,17]. In the
current review, we have provided an overview of the reported roles of DNA and RNA m6A methylation
in radiobiology and cancer progression. Application of epigenetic regulators and biomarkers in
radiotherapy is further discussed. Epigenetic regulators are speculated to contribute to radioresistance
and metastasis of tumors. Elucidation of the molecular cues underlying the effects of epigenetic
changes following irradiation should facilitate the design and development of effective strategies to
improve the therapeutic effects of radiotherapy and prevent cancer recurrence.

2. Roles of DNA Methylation in Radiotherapy and Cancer Progression

2.1. DNA Methylation

DNA methylation is considered the most common mechanism regulating epigenetic events
and is closely associated with the progression of several cancer types, including breast, colon,
lung, and prostate cancer [18,19]. The process is catalyzed by DNMT (DNA methyltransferases),
and usually occurs at the 5′ position of the cytosine ring within the CpG (cytosine guanine
dinucleotide) island. To date, five members of the DNMT family have been identified, among which
DNMT1 (DNA methyltransferase 1), DNMT3A (DNA methyltransferase 3 alpha), and DNMT3B
(DNA methyltransferase 3 beta) have functional activity in mammalian cells. DNMT1 shows up to a
50-fold preference for hemimethylated DNA substrates at the CpG island after DNA replication, and is
thus designated “maintenance DNMT”. DNMT3A and DNMT3B generate new methylation patterns
on both DNA strands during embryogenesis and development of germ cells. DNA methylation is
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implicated in gene inhibition during development, and leads to potent X-chromosome inactivation
and genetic imprinting. In addition to regulation of gene expression, DNA methylation protects cells
from chromosomal instability through inhibition of endogenous retroviral and parasitic repetitive
sequences [20]. Additionally, alterations in DNA methylation patterns that appear to contribute to
cancer progression have been extensively documented. For instance, DNA hypermethylation of cancer
cells may present an alternative complementary mechanism to trigger mutation or silencing of specific
genes, consequently leading to acquisition of tumorigenic behavior, including cellular survival and
metastasis [13,18]. In addition to DNA hypermethylation, the genetic material of cancer cells undergoes
a global decrease in 5-methylcytosine levels. The overall hypomethylation of the genetic material
influences intergenic and intronic DNA, repetitive, and transposable elements especially, leading to
loss of imprinting, chromosomal instability, and reactivation of endogenous parasitic sequences [21].
Radiotherapy plays a crucial role in the curative treatment of various malignancies, and radioresistance
is highly associated with poor prognosis and relapse of cancers [22]. Mounting evidence indicates that
irradiation treatment may lead to aberrantly altering DNA methylation patterns, and radiation-induced
epigenetic changes may contribute to the initiation of radioresistance [23].

2.2. Ionizing Radiation and Global DNA Methylation

The effects of radiotherapy on genetic alterations have been extensively documented [24–26].
However, epigenetic alterations induced by irradiation, even those causing changes in transcriptional
activity and cellular resistance to radiation therapy, remain to be clarified [14,15]. The earliest
research interest on the impact of irradiation on DNA methylation was traced back to 1972 when an
overall increase in DNA methylation was observed in Escherichia coli 15T following irradiation [27].
Subsequent experiments showed that irradiation triggers dynamic changes in DNA methylation,
with patterns of DNA hyper- and hypo-methylation observed in the thymus and bone marrow of Wistar
rats [28]. Moreover, the level of 5-methylcytosine was significantly decreased in several organs and
cancer cell types, including ovarian, lung fibroblasts, HeLa, and neuroblastoma cells [29]. Follow-up
studies have suggested that the levels of change in DNA methylation in response to irradiation are
dose- and tissue-dependent. For instance, global DNA methylation is decreased in liver thymus,
spleen, bone marrow, and mammary gland, but not muscle and lung [30–34]. Irradiation-induced
global hypomethylation, in vitro and in vivo, possibly occurs as a result of decreased expression
of DNA methyltransferases or methyl-CpG binding proteins, including DNMT1, DNMT3A/3B,
MBD2 (methyl-CpG binding domain protein 2), and MECP2 (methyl-CpG binding protein 2) [35–37].
These effects are more apparent after fractionated irradiation, and are sex- and tissue-dependent [38],
and appear persistent, even after repair of irradiation-triggered DNA damage [33,34,36,39,40].

2.3. Gene-Specific DNA Methylation as a Potential Predictor of Response to Radiotherapy

As global hypomethylation is linked to malignant transformation and carcinogenesis,
DNA hypomethylation triggered by radiation therapy may be utilized as a marker of oncogenic
transformation [33,34]. In addition to causing global changes, radiation induces alterations in
methylation locus-specific regions [41,42]. DNA methylation at promoter regions of specific genes thus
shows prognostic potential, and may present effective markers to predict the outcomes of radiotherapy
(Table 1).
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Table 1. Summary of the relevant DNA methylation of genes associated with radiotherapy/response
in various cancers.

Cancer Types Gene Names Methylation
Status

Response
to RT

Irradiation Induced
Methylation
Alteration

Prognostic
Marker of

Cancer
Reference

Glioblastoma
multiforme MGMT Hyper Sensitive [43–45]

Lung cancer

CDKN2A Hyper Resistant Hyper [46,47]

SERPINB5 & S100A6 Hyper
Resistant [48]

CAT & BNCI Hypo

Esophageal
cancer

CDKN2A, RPRM,
CDKN1C, TP73,
RUNX3, CHFR,
MGMT, TIMP3 &
HPP1

Hypo Sensitive [49,50]

Cervical
cancer TP73 Hyper Resistant [51]

Head and
Neck
squamous cell
carcinoma

TIMP3 & CDH1 Hyper Sensitive [52]

IRX1, EBF3, SLC5A8
& FUSSEL18 Hyper [40]

CCND2 Hyper Resistant [53]

Nasopharyngeal
carcinoma

miR-24 & FHIT Hyper Resistant [54]
Resistant [55]

Laryngeal
cancer

TOPO2A, PLXDC2,
ETNK2, GFI1 & IL12B Hyper Resistant [43]

Breast cancer

ADAMTS9, FOXC1 &
TRAPPC9 Hyper

[39]

AMIGO3 Hypo

AGAP1, ARHGEF10,
ATP11A, HDAC4,
PTPRD, PRR4 &
TBCD

Hyper [33]

: determined; RT: radiotherapy.

2.3.1. Glioblastoma Multiforme (GBM)

The methylation level of the promoter of MGMT (O6-methylguanine-DNA methyltransferase),
a radiation-induced gene that encodes a DNA repair enzyme responsible for removing alkyl
groups from guanine, was identified as a predictive epigenetic biomarker in glioblastoma [43,44,56].
Patients with hypermethylation of the MGMT promoter have been shown to display better survival
following adjuvant chemotherapy or radiotherapy [45,57,58]. This finding may be attributable to
hypermethylation-driven suppression of MGMT expression, and consequent blockage of the inhibitory
effects on the chemotherapeutic activity of drugs or irradiation in tumor killing. In contrast to data
obtained from patients with glioblastoma, the methylation level of the MGMT promoter was associated
with poorer prognosis or higher chance of relapse after chemo- or radiotherapy in other solid tumors,
such as cervical cancer and non-small-cell lung cancer patients with brain metastasis [46,59].

2.3.2. Lung Cancer

Significant DNA hypermethylation of MGMT and CDKN2A (cyclin-dependent kinase 2A)
genes in sputum of uranium miners was previously reported [60]. These genes are frequently
hypermethylated and inactivated during tumor progression, particularly in lung cancer [47,61].
Further studies revealed higher methylation levels of CDKN2A in lung adenocarcinomas from
plutonium-exposed workers, compared to non-exposed workers at MAYAK, a Russian nuclear
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enterprise [48]. Hypermethylation-driven silencing of CDKN2A expression has also been observed
in a murine model of radiation-induced thymic lymphoma [49]. Aberrant methylation of CDKN2A
is therefore proposed as a potentially useful marker to predict tumor cell response to chemo- and
radiotherapy. In non-small cell lung cancer (NSCLC), global analysis of CpG methylation has been
used to determine the factors associated with epigenetic control of radiosensitivity. In a study by
Kim et al. [62], a higher proportion of hypermethylation was observed in radioresistant NSCLC cells,
and 1091 differentially methylated genes were identified, among which, 747 were hypermethylated
and 344 were hypomethylated. Furthermore, hypermethylated genes were implicated in multiple
processes, including regulation of inter- and intra-cellular signaling, while most of the hypomethylated
genes were implicated in transcriptional control. Among the genes displaying the most significant
differences in methylation, SERPINB5 (serpin family B member 5) and S100A6 (S100 calcium binding
protein A6) hypermethylation, and CAT (catalase) and BNC1 (basonuclin 1) hypomethylation were
implicated in radioresistance of NSCLC. Data from this study suggest that response to irradiation is
highly dependent on the overall methylation profile of tumors [62].

While these studies clearly suggest a role for epigenetic biomarkers in determining response
to radiotherapy, the prognostic value of the potential markers identified requires validation in large
patient populations to ensure their clinical utility.

2.3.3. Esophageal Cancer

In esophageal cancer, CDKN2A, RPRM (reprimo), CDKN1C (cyclin dependent kinase inhibitor 1C),
TP73 (tumor protein p73), RUNX3 (runt related transcription factor 3), CHFR (checkpoint with
forkhead and ring finger domains), MGMT, TIMP3 (TIMP metallopeptidase inhibitor 3), and HPP1
(hyperpigmentation, progressive, 1) comprise a marker panel showing decreased methylation in
radiation-responsive patients. Conversely, increased methylation of these genes is significantly
correlated with poor responsiveness to chemoradiation [63]. Runt-related transcription factor 3
(RUNX3), a tumor suppressor that mediates transforming growth factor TGF-β (Transforming growth
factor beta) dependent apoptosis [50,51], is reported to be hypermethylated and downregulated in
radioresistant esophageal cancer cells. Both RUNX3 expression and methylation levels in pretreatment
specimens may be applied to predict radiosensitivity of esophageal squamous cell carcinomas [52].

2.3.4. Cervical Cancer

TP73, a member of the p53 family of transcription factors involved in cellular responses to
stress and development, is hypermethylated in radioresistant cervical cancers, and significantly
associated with silencing of p73 expression [53]. Higher p73 expression is positively associated with
radiosensitivity of cervical cancer cells, and may play an important role in regulating the radioresponse
of tumors.

2.3.5. Head and Neck Squamous Cell Carcinoma (HNSCC)

In patients with advanced head-and-neck squamous cell carcinoma (HNSCC) treated solely
with radiotherapy, promoter hypermethylation-driven silencing of TIMP3, an inhibitor of matrix
metalloproteinases, and CDH1 (cadherin 1), a calcium-dependent cell–cell adhesion protein,
have been identified as markers to predict better therapeutic outcome [54]. Another study
identified five frequently methylated tumor suppressor genes, including IRX1 (iroquois homeobox 1),
EBF3 (early B cell factor 3), SLC5A8 (solute carrier family 5 member 8), SEPT9 (septin 9), and SKOR2
(SKI family transcriptional corepressor 2), in HNSCC following radiotherapy. Alterations in
methylation of promoters of this subset of genes were enriched in pathways implicated in radiation
responses, including cell cycle regulation, DNA repair, and apoptosis [42]. A recent study using
Human Methylation450 BeadChip, in combination with gene expression profile analysis, identified
84 differentially expressed genes that display differential methylation levels between radioresistant
and radiosensitive HNSCC cells. Data from this investigation disclosed significantly increased DNA



Int. J. Mol. Sci. 2018, 19, 555 6 of 23

methylation in radiation-resistant cells. Notably, the differentially methylated and expressed genes
in radioresistant cells were implicated in the regulation of integrin-linked kinase and glucocorticoid
receptor cascades, fatty acid catabolism, and cell proliferation. Further validation studies indicated
that cyclin D2 (CCND2), a potent cell cycle regulator, is hypermethylated at the promoter region,
and downregulated in radioresistant head and neck squamous cells [55].

2.3.6. Nasopharyngeal Carcinoma (NPC)

Radiotherapy is the standard therapy of choice for nasopharyngeal carcinoma (NPC), and aberrant
DNA methylation is known to be involved in NPC response to radiotherapy. A recent study reported
that inactivation of miR-24 through hypermethylation of its precursor promoter is associated with
NPC radioresistance. Furthermore, treatment with 5-aza-2′-deoxycytidine compensated for reduced
miR-24 expression and sensitized radioresistant NPC cells to therapy [64].

FHIT (Fragile histidine triad) gene, a triphosphate hydrolase involved in purine metabolism,
is hypermethylated and consequently silenced in established radioresistant oral cancer cells [65].
Further in vivo experiments confirmed that inhibition of DNA methylation of FHIT leads to significant
resensitization of the radioresistant oral tumors. Furthermore, hypermethylation of the FHIT promoter
was inversely correlated with its expression, and served as an independent predictor of both overall
survival and locoregional control in oral cancer patient samples. These data suggest that expression
and hypermethylation-driven silencing of FHIT are the determining factors for radiosensitivity in
oral cancer.

2.3.7. Laryngeal Cancer

Another study used radioresistant laryngeal cancer cells established via long-term fractionated
irradiation to identify the crucial genes with DNA hypermethylation involved in radioresistance of
cancer. Increased methylation levels of promoters of TOP2A (DNA topoisomerase II alpha), PLXDC2
(plexin domain containing 2), ETNK2 (ethanolamine kinase 2), GFI1 (growth factor independent
1 transcriptional repressor), and IL12B (interleukin 12B) were detected in radioresistant laryngeal
cancer cells. Elimination of methylation of TOP2A by treatment with the DNA methyltransferase
inhibitor, 5-aza-2′-deoxycytidine, not only sensitized resistant laryngeal cancer cells to radiotherapy,
but re-activated expression of these genes, clearly supporting the theory that changes in DNA
methylation levels contribute to radioresistance of laryngeal squamous cell carcinoma [45].

2.3.8. Breast Cancer

The effects of fractioned ionizing radiation at a dose of 2 Gy with cumulative doses of 10 and 20 Gy
on DNA methylation in the human breast cancer cell line, MCF7, were examined [41]. Cells were
harvested 48–72 h after the final irradiation, as well as the recovery period of up to 24 days. A subset
of genes was differentially methylated in response to radiation treatment. Specifically, increased
methylation was observed in ADAMTS9 (ADAM metallopeptidase with thrombospondin type 1
motif 9), FOXC1 (forkhead box C1), and TRAPPC9 (trafficking protein particle complex 9), while the
methylation level of AMIGO3 (adhesion molecule with Ig like domain 3) was decreased in response to
radiation. Further in vitro experiments showed significant methylation loss in FOXC1 and TRAPPC9
after a recovery period in which irradiated cells displayed regrowth, compared to control cells.
As both genes are implicated in cell death control, alterations in their DNA methylation patterns
may lead to reduced apoptotic signaling, resulting in regrowth of breast cancer cells after radiation [41].
Antwih et al. [35] globally analyzed DNA methylation changes at >450,000 loci in breast cancer
MDA-MB-231 cells subjected to X-ray irradiation. Their findings suggest that that differentially
methylated genes (for instance, AGAP1 (ArfGAP with GTPase domain, ankyrin repeat and PH
domain 1), ARHGEF10 (Rho guanine nucleotide exchange factor 10), ATP11A (ATPase phospholipid
transporting 11A), HDAC4 (histone deacetylase 4), PRR4 (proline rich 4), PTPRD (protein tyrosine
phosphatase, receptor type D), and TBCD (tubulin folding cofactor D)) in MDA-MB-231 cells induced
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by irradiation exposure are enriched in pathways related to control of the cell cycle, DNA repair,
and apoptosis.

2.3.9. Cancer Stem Cells

As intrinsic cancer stem cells (CSCs) are responsible for radioresistance and metastasis in various
cancer types [2,66–68], radiation-induced alterations in DNA methylation in this cell population are
particularly interesting. A recent report showing that mouse embryonic stem cells do not exhibit
changes in DNA methylation levels after radiation suggests that global levels of methylation in stem
cells are not determinants of radiosensitivity [69]. However, alterations in DNA methylation levels were
observed in offspring of radiation-treated mice [70,71]. These findings indicate that epigenetic changes
are transmitted through the germline and cause genomic destabilization, representing a possible cause
of cancer [70]. Another study combined irradiation with 5-aza-2′-deoxycytidine to improve the cancer
killing effects through inhibiting proliferation and promoting apoptosis of pancreatic cancer cells, both
in vitro and in vivo. Interestingly, this combinatorial effect was preferentially targeted to pancreatic
CSCs through inhibition of regulatory factors of self-renewal and surface markers. Further experiments
revealed significant downregulation of the OCT4 (POU class 5 homeobox 1, POU5F1)-centered
transcriptional network of genes in cells in response to the combination treatment. Radiotherapy in
combination with DNA methylation inhibitors may, therefore, present a novel therapeutic anti-cancer
strategy [72].

2.4. Therapeutic Potential of DNA Methylation-Targeted Drugs in Radiotherapy

Accumulating evidence suggests that the DNA methylation landscape influences cellular
responses to irradiation. This knowledge may be further utilized in modulation of the response
of normal and cancerous cells to irradiation, as well as application of DNA methylation-targeted drugs
as radiosensitizers.

Based on the finding that depletion of DNMTs results in global demethylation [73], several DNMT
inhibitors, including the nucleoside analogs 5-azacytidine (5-aza), 5-aza-2′-deoxycytidine (decitabine),
and zebularine, have been successfully used for hematological malignancies, and are currently under
trial for treatment of several solid tumors [74–76]. Inhibitors of DNMT are nucleoside analogs that
irreversibly bind DNMTs to DNA, thereby inhibiting their function [77]. Thus, the genes silenced
via methylation can be rescued. Inhibitors of DNMT are hypothesized to influence radiosensitivity
through several mechanisms. For instance, as blockers of DNA synthesis, DNMT inhibitors suppress
not only DNA repair, but also the number of tumor clonogens, exerting cytotoxicity to proliferative
cells following radiotherapy. Additionally, these compounds are considered a trigger of apoptosis [78].
Mounting evidence indicates that utilization of nucleoside analogs increases the sensitivity of various
cancer types to radiotherapy, including gastric [79], colorectal [80], head and neck, nasopharyngeal [80],
and brain cancer [81]. Moreover, removal of DNMT inhibitors led to recovery of radioresistance to
previous levels for all cancer types, except DNMT-deficient tumor cells. For instance, HCT116,
a colorectal cell line deficient in DNMT3B and DNMT3B/DNMT1−/−, displayed a trend of increased
radiosensitivity, which was not observed in DNMT1-deficient cells [80].

As aza and decitabine are relatively toxic to normal cells and cannot be administered orally, other
DNMT inhibitors, such as zebularine and 5-fluoro-2′-deoxycytidine, have been developed [77] that are
also closely related to radiosensitivity [78,81].

Despite the promising results, the majority of data have been generated from in vitro studies so far,
and several concerns regarding the safety of radiation treatment in combination with DNMT inhibitors
to healthy tissue need to be addressed. Demethylating agents also cause hypomethylation of normal
tissue, which may influence radiation-induced abscopal effects, risk of secondary tumor development,
and virus reactivation (e.g., Epstein-Barr virus) [80,82]. Moreover, a number of in vitro and in vivo
studies have indicated that AZA and decitabine cause chromosomal instability, decreased fertility, and
loss of offspring [78]. To address these issues, non-nucleoside inhibitors have recently been developed
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that target DNMT directly without incorporation into DNA. These compounds display demethylating
activity both in vitro and in vivo, and are currently undergoing clinical trials [81]. Further in vivo and
clinical studies are required to resolve the multiple problems and clarify the biological mechanisms
underlying the effects of DNMT inhibitors on radiosensitivity.

3. Roles of RNA m6A Methylation in Radiotherapy and Cancer Progression

Analogous to DNA methylation, RNA methylation occurs at the N6 position of adenosine (m6A)
of transcripts, leading to context-dependent perturbations in the duplex structure. m6A, initially
identified in 1974 [83], is the most widespread base modification of all RNA types, including mRNA,
ncRNA, snoRNA, tRNA, rRNA, and others, accounting for ~0.2–0.6% of all adenosines in mammalian
mRNA and over three sites within a G(m6A)C (70%) or A(m6A)C (30%) consensus sequence per
transcript [84–86]. m6A on mRNA is installed, recognized, and erased post-transcriptionally through
m6A methyltransferases (writer) [87–91], demethylases (eraser) [92,93], and m6A-specific binding
proteins (readers) [94,95]. High-throughput sequencing revealed that distribution of m6A in mature
transcripts is not random, but mainly occurs in the 5′, 3′ untranslated regions (5′-, 3′-UTR) and
within internal long exons [96–98], consequently influencing the procession and function of RNAs,
including RNA stability [99,100], mRNA translation [101–103], alternative splicing [104,105] and
polyadenylation [106]. Due to the crucial roles of RNA in genetic regulation, RNA m6A patterns
play important roles in regulating biological functions of mammalian and cancer cells [12,107,108].
Various issues on RNA methylation and demethylation in relation to cancer therapy and progression
remain to be clarified. Recently, m6A in RNA was shown to be involved in the DNA damage response
following irradiation [17]. Since the treatment effects of radiation mainly rely on DNA damage, m6A in
RNAs involved in the damage response and repair processes of tumor cells potentially have significant
effects on the outcomes of radiotherapy.

CSCs are a crucial contributor to radioresistance and disease recurrence after radiotherapy
in the majority of cancers [2–4]. Notably, m6A modification is involved in CSC generation and
radioresistance of tumor cells. Thus, manipulation of inhibitors or inducers of m6A modifications
could be advantageous in the treatment of radioresistant tumor cells [109].

3.1. m6A Methyltransferases (m6A Writers)

m6A formation within mRNA is catalyzed by the m6A writers containing catalytically
active METTL3 (methyltransferase-like 3)–METTL14 (methyltransferase-like 14) complex and
other associated proteins [87]. WTAP (Wilms’ tumor 1-associating protein), VIRMA (vir-like
m6A methyltransferase associated), RBM15 (RNA binding motif protein 15), and RBM15B/OTT3
(RNA-binding motif protein 15B) are established partners of METTL3. METTL3 contains a catalytically
active methyltransferase domain that methylates mRNA, but not rRNA [110]. METTL14 is an active
component of the m6A methyltransferase complex that forms a heterocomplex with METTL3 [91,111].
Biochemical analyses have revealed that METTL3 and METTL14 form a stable complex at a
stoichiometric ratio of 1:1 [112]. The methylation activity of METTL14 is only slightly higher than
that of METTL3 in vitro. Interestingly, however, the heterodimer of METTL3 and METTL14 exhibits
enhanced methylation efficiency. In addition, METTL14 serves as an RNA adaptor protein to enhance
the methyltransferase activity of the m6A writer complex.

Homologous genes of WTAP were initially identified in Arabidopsis thaliana and yeast, and shown
to be associated with the METTL3–METTL14 complex [113,114]. This m6A writer localizes in nuclear
speckles to participate in RNA methylation and processing [88,91,115,116]. Due to the lack of an
active catalytic methylation domain, WTAP does not possess methylation activity, but interacts with
METTL3–METTL14 heterodimer to influence the RNA m6A load in cells.

RBM15 and its paralog RBM15B associate with METTL3 in a WTAP-dependent manner [92,117].
Both RBM15 and RBM15B contain RNA-binding domains that facilitate writer complex binding to
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specific mRNAs. For instance, RBM15 and RBM15B guide the m6A-methylation complex to lncRNA
X-inactive specific transcript (XIST) for consequent repression [118].

Recently, METTL16 was identified as an RNA methyltransferase that exerts its functions
independently of the m6A writer complex containing METTL3 [119,120]. The protein acts as a
conserved U6 snRNA methyltransferase, and displays an additional function in vertebrates in
regulating the homeostasis of S-adenosylmethionine (SAM) by modulating alternative splicing of
MAT2A (methionine adenosyltransferase 2A) through differential methylation of mRNA hairpin
loops [119].

3.2. m6A Demethylase (m6A Erasers)

Fat mass and obesity-associated protein (FTO) is a member of the AlkB (Alkylation
repair homologs) subfamily of Fe(II)/alpha-ketoglutarate-dependent dioxygenases, and was
originally described as an eraser of m6A modifications in RNA. FTO was initially reported to
demethylate single-stranded DNA (ssDNA) and single-stranded RNA (ssRNA) via removal of
N3-methylthymidine [121,122]. Further experiments revealed that silencing of FTO in HeLa and
293FT cells leads to an increase in total m6A in polyadenylated RNA, while its overexpression
causes a decrease in m6A levels [92,117]. Recently, FTO was identified as an eraser for the N6,
2′-O-dimethyladenosine (m6Am) modification co-detected with m6A [123]. Advanced detection
techniques could effectively differentiate between m6A and m6Am to facilitate detailed examination
of the substrate spectrum of FTO. Biochemical analyses revealed that m6Am is the preferred cellular
target of FTO in vivo [123]. FTO contains a unique C-terminal domain, distinct from that of other
proteins in the AlkB family [121,124], which engages in additional protein–RNA and protein–protein
interactions that influence the function of the protein [125,126].

ALKBH5 (AlkB homolog 5) is another mammalian demethylase belonging to the AlkB subfamily
with efficient demethylation activity on m6A in mRNA. ALKBH5 contains an alanine-rich sequence
and potential coiled–coil structure within the N-terminal region that is responsible for its nuclear
localization [126]. Structural analyses revealed a putative region contributing to binding of dsDNA.
Moreover, silencing of ALKBH5 is reported to impair both mRNA export and processing in nuclear
speckles [99,101,127,128]. ALKBH5 participates in multiple physiological functions, including fertility,
cell survival, and apoptosis, via regulating stability, splicing, subcellular localization, and translation
efficiency of mRNA [12,84,93,129].

3.3. m6A Binding Proteins (m6A Readers)

m6A methylations of RNAs are mainly read by eukaryotic initiation factor 3 (eIF3) and proteins
containing a YT521-B homology (YTH) domain belonging to the YTH protein family. However,
several RNA binding proteins (RBP) that associate with m6A do not belong to the classical m6A
YTH domain family. YTHDF1 (YTH N6-methyladenosine RNA binding protein 1), YTHDF2
(YTH N6-methyladenosine RNA binding protein 2), YTHDF3 (YTH N6-methyladenosine RNA binding
protein 3), YTHDC1 (YTH domain containing 1), and YTHDC2 (YTH domain containing 2), members of
the YTH domain family, represent the predominant cytoplasmic m6A reader proteins [94]. Proteins of
the YTH domain family preferentially bind RNA with m6A at the (G>A)m6ACU consensus sequence,
compared to unmethylated RNA of the same transcript [95]. YTHDF2 is the first characterized
m6A reader protein shown to mediate RNA decay by targeting RNA substrates to P-bodies in an
m6A-dependent manner [130,131]. YTHDF1 and YTHDF3 are proposed to modulate translation
machinery, and consequently influence the translation efficacy of target mRNAs [132–134].

Nuclear YTH domain-containing 1 (YTHDC1), also designated YT521-B, has been identified
as a nuclear m6A reader that binds m6A through tryptophan residues at positions 377 and 428 by
forming an aromatic cage [135]. A glutamic acid-rich region of the amino terminus and glutamic
acid/arginine-rich regions of the carboxyl terminus of YTHDC1 are responsible for nuclear localization
and formation of YT bodies [136]. Due to the proximity of YT bodies to nuclear speckles, YTHDC1
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may access nascent mRNA, and subsequently facilitate recruitment of RNA splicing factors to regulate
pre-mRNA splicing [137].

Nuclear YTH domain-containing 2 (YTHDC2) was initially reported as a factor required for
HCV genome replication [138]. This factor is widely expressed in human cells and shown to promote
cancer metastasis through enhancing translation of hypoxia-inducible factor-1α (HIF-1α) and TWIST
(Twist family bHLH transcription factor 1) [139]. Recently, YTHDC2 was reported as an m6A reader
essential for male and female fertility in mice via regulation of the m6A transcriptome. Additionally,
this factor is highly expressed in germ cells, and interacts with an essential meiosis-specific protein,
MEIOC (meiosis specific with coiled-coil domain) [140].

Other than the YTH domain family, pulldown assays revealed that heterogeneous nuclear
ribonucleoprotein A2/B1 (HNRNPA2B1) binds m6A in the nucleus [94]. Another study consistently
demonstrated that HNRNPA2B1 interacts with the m6A site of RNA transcripts, and regulates splicing
and maturation of microRNA (miRNA) [141].

Eukaryotic initiation factor 3 (eIF3), a protein complex that functions in the initiation of eukaryotic
translation, has additionally been identified as an important m6A binding protein. Following binding to
m6A in the 5′-UTR of RNA transcripts, initiation of translation can be triggered by eIF3 in a 5’cap- and
eukaryotic initiation factor 4E (eIF4E)-independent mechanism [142]. These findings support an
alternative mechanism of translational initiation mediated via m6A modifications in 5′-UTRs of mRNA
when eIF4-dependent initiation is hindered by specific cell states. Furthermore, m6A has been shown
to influence the secondary structure of RNAs through binding of regulatory proteins, consequently
modulating the expression or maturation of RNA transcripts [143–145].

For instance, secondary structure changes induced via m6A modification facilitate binding of
HNRNPC (heterogeneous nuclear ribonucleoprotein C) and RBMX (RNA binding motif protein,
X-linked) for targeting and regulation of mRNA expression and splicing [146].

3.4. m6A-Mediated Cancer Progression or Radioresistance

3.4.1. Glioblastoma Multiforme (GBM)

Glioblastoma multiforme (GBM) is the most aggressive glioma type, affecting ~17,000 patients
per year. Treatment failure of glioblastoma may be due to tumor heterogeneity and treatment
resistance of cancer stem cells, triggering disease recurrence [22,147]. Several studies have indicated
that m6A in RNA is associated with tumorigenesis and progression of glioblastoma [109,148].
Overexpression of METTL3 or inhibition of the RNA demethylase, FTO, is known to suppress GSC
growth and self-renewal. Moreover, suppression of FTO causes tumor regression and promotes
survival rates in GSC-grafted mice. Several oncogenes, including ADAM19 (ADAM metallopeptidase
domain 19), EPHA3 (EPH receptor A3), and KLF4 (Kruppel like factor 4), are upregulated in METTL3
or METTL14-depleted GSCs, and conversely downregulated in GSCs with METTL3 or METTL14
overexpression [109].

METTL3-mediated m6A modification is proposed to play a crucial role in glioma stem-like cell
(GSC) maintenance and dedifferentiation of glioma cells [16], based on the finding that expression of
METTL3 is elevated in GSCs and attenuated in differentiated cells. Further experiments demonstrated
that SOX2 is the m6A target of METTL3. Recruitment of human antigen R (HuR) to m6A sites
was essential for SOX2 mRNA stabilization by METTL3. Notably, silencing of METTL3 enhanced
sensitization of GSC to radiotherapy, and expression levels of METTL3 predicted poor survival in GBMs
enriched for GSC-specific signatures [16]. Zhang et al. [148] recently reported that elevated expression
of ALKBH5 in GSCs is predictive of poor patient prognosis. Moreover, ALKBH5 demethylated nascent
FOXM1 (forkhead box M1) transcripts, consequently enhancing FOXM1 expression. FOXM1-AS,
a lncRNA that localizes in the nucleus, has been shown to promote interactions between ALKBH5
and nascent FOXM1 transcripts. Silencing of ALKBH5 and FOXM1-AS inhibited the tumorigenic
potential of GSCs via suppression of FOXM1. Thus, m6A modifications could influence the expression
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or function of genes associated with the malignant phenotype of cancer, presenting a promising
therapeutic target in the tumor.

3.4.2. Acute Myeloid Leukemia (AML)

Leukemias are a clinically and genetically heterogeneous group of hematopoietic disorders that
begin in early blood-forming cells found in the bone marrow. Acute myeloblastic leukemia (AML) is
more frequent in older patients, with diagnosis at about 70 years of age on average [149]. Genetic and
epigenetic regulation processes play crucial roles in classification, risk stratification, and management
of acute leukemia types [150]. Increasing numbers of gene mutations, dysregulation, and epigenetic
alterations have been associated with progression of acute leukemia [151,152]. FTO, an m6A eraser,
promotes leukemic oncogene-mediated cell transformation and leukemogenesis, and suppresses
all-trans-retinoic acid (ATRA)-triggered AML cell differentiation by regulating the expression of
specific target genes, including ankyrin repeat and SOCS box-containing 2 (ASB2) and retinoic acid
receptor a (RARA), through repressing m6A levels in these transcripts [153]. ASB2 (ankyrin repeat and
SOCS box containing 2) and RARA (retinoic acid receptor alpha) are induced during hematopoiesis
and function as crucial regulators of ATRA-induced differentiation of leukemia cells. Furthermore,
inhibition of FTO-mediated ASB2 and RARA suppression contributes to the response of AML cells to
ATRA treatment [153]. Another report suggests that isocitrate dehydrogenase 1 or 2 (IDH1/2) mutant
tumors account for ~20% of AML cases, causing aberrant metabolite D-2-hydroxyglutarate (D2HG)
production [154], which acts as a competitive inhibitor of FTO through suppressing the activities
of alpha-ketoglutarate-dependent enzymes. In a further in vitro study, cells expressing the IDH2
mutant contained significantly higher levels of m6A in RNA transcripts than isogenic IDH2 wild type
expressing cells. Therefore, the precise roles of FTO in the pathogenesis of AML require elucidation in
the context of the IDH1/2 mutation in this setting [155].

Recently, a role for METTL3 in regulating myeloid differentiation and maintaining myeloid
leukemia has been reported [156,157]. Both mRNA and protein levels of METTL3 are more
highly expressed in AML cells than hematopoietic stem and progenitor cells (HSPC). Additionally,
depletion of METTL3 in human myeloid leukemia cell lines induces cell differentiation and apoptosis,
while suppressing leukemia progression in recipient mice in vivo. Analysis of single nucleotide
resolution mapping of m6A, in combination with ribosome profiling, revealed that METTL3-mediated
m6A modification promotes translation of c-MYC (MYC proto-oncogene, bHLH transcription factor),
BCL-2 (B cell leukemia/lymphoma 2), and PTEN (phosphatase and tensin homolog) in human
AML cells [156]. Another study confirmed the important roles of METTL3 in leukemia progression.
The authors showed that METTL3 associates with chromatin, and localizes to the transcriptional
start sites of active genes, inducing m6A modification within the coding region of the associated
mRNA transcripts, and consequently, enhancing its translation [157]. Further analyses disclosed that
mutations and copy number variations of m6A regulatory genes are strongly associated with the
presence of TP53 mutations in AML patients [158]. These results suggest that genetic alterations of
m6A regulatory genes in cooperation with TP53 contribute to the pathogenesis and maintenance of
AML, and provide a rationale for therapeutic targeting of METTL3 in myeloid leukemia.

3.4.3. Lung Cancer

Lung cancer is the most commonly diagnosed cancer type and the leading cause of cancer-related
mortality worldwide, with a <15% 5-year survival rate, despite the progressive improvements in
standard therapies [159]. METTL3 is significantly upregulated in lung cancer, in turn, promoting
cellular proliferation, survival, and metastasis. In human lung cancer cells, METTL3 promotes
the translation of specific genes, such as EGFR (epidermal growth factor receptor) and Hippo
pathway effector, TAZ (tafazzin), through recruitment of eIF3 to the translation initiation complex.
Although m6A is implicated in regulation of translation through binding YTHDF1 [134], another model
has been proposed in which METTL3 enhances both cap-binding proteins 80 and 20 (CBP80/20),
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and eIF4E-dependent translation via binding to a specific subset of transcripts, and helping to recruit
eIF3 to translation. Moreover, an independent pathway of mRNA–ribonucleoprotein complexes’
remodeling may entail replacement of METTL3 with YTHDF1 at the m6A methylated sites, and
enhance the translation of a distinct subset of genes, including those encoding EGFR and TAZ.

3.4.4. Hepatocellular Carcinoma (HCC)

HCC is the fifth most prevalent malignant tumor, and third leading cause of cancer-related deaths
worldwide [160]. Recent investigations of m6A-related mechanisms in HCC have provided new
ideas for treatment. Silencing of METTL14 decreases the m6A level in RNA transcripts and enhances
cancer metastasis, both in vitro and in vivo [161], and downregulation of METTL14 in HCC serves
as an adverse prognostic factor for recurrence-free survival. METTL14 has been shown to interact
with the microprocessor protein, DGCR8 (DGCR8, microprocessor complex subunit), and modulate
primary processing of microRNA-126 in an m6A-dependent manner. These findings suggest that
METTL14 participates in the regulation of microRNAs in tumor biology, and highlight its potential as
a therapeutic target in HCC [161].

In addition, METTL3 is overexpressed in HCC, and associated with poor prognosis. Silencing of
METTL3 is reported to suppress tumorigenesis and progression of HCC, and conversely,
its overexpression significantly promotes HCC growth, both in vitro and in vivo. Further experiments
revealed that METTL3 induces m6A modification of the SOCS2 transcript, and consequently decreases
its stability in a YTHDF2-dependent manner [162].

Another recent study demonstrated that YTHDF2 expression is closely associated with malignancy
of HCC, and negatively correlated with miR-145 [163]. Bioinformatics and functional assays further
revealed that miR-145 targets the 3′-UTR of YTHDF2 mRNA, and inhibits its expression in HCC.
Moreover, overexpression of miR-145 induced a strong increase in m6A levels which could be blocked
upon YTHDF2 overexpression [163]. These studies strongly suggest that not only methyltransferases
and demethyltransferases, but also readers of m6A, control the global m6A level in cells to influence
cancer progression.

3.4.5. Breast Cancer

Breast cancer is the most common cancer type, and the fourth leading cause of cancer-related
deaths among women worldwide [164]. Tumor hypoxia, a common phenomenon in the majority of
malignant tumors, is a condition whereby tumor cells are deprived of oxygen, causing advanced but
dysfunctional vascularization, and acquisition of epithelial-to-mesenchymal transition phenotype
that results in cell metastasis, the major cause of breast cancer related mortality [165]. Exposure of
breast cancer cells to hypoxia promotes the ALKBH5-mediated demethylation of m6A in NANOG
transcripts, consequently enhancing NANOG expression. NANOG is a potent pluripotency factor
that stimulates CSC maintenance. Similar to hypoxia exposure, overexpression of ALKBH5 not
only decreases NANOG mRNA methylation, but also increases NANOG (Nanog homeobox) levels,
resulting in elevation of the CSC population in breast cancer [166]. Exposure to hypoxia also induces
ZNF217 (zinc finger protein 217)-dependent inhibition of m6A methylation of NANOG and KLF4
transcripts, both important pluripotency factors that mediate CSC maintenance, in turn, influencing
cancer radiosensitivity and recurrence [167]. Therefore, hypoxia of cancers may stimulate pluripotency
factor expression and CSC maintenance through regulation of RNA methylation.

3.4.6. Renal Cell Carcinoma (RCC)

Renal cell carcinoma (RCC) is currently the ninth most common cancer type in men and 14th most
common in women globally [168]. The mortality rate of RCC has continuously increased by ~1.5–5.9%
per year [169]. Recent experiments showed that METTL3 is downregulated in clinical specimens
of RCC, and negatively associated with larger tumor size and higher pathological grade. Notably,
RCC patients positive for METTL3 expression had a better survival rate. Moreover, METTL3 was
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associated with regulation of cellular proliferation, migration, and metastasis through the EMT and
PI3K-Akt-mTOR pathways in RCC. The collective findings suggest that loss of METTL3 expression
serves as a marker for tumorigenesis, development, and survival of RCC [170].

3.4.7. Cervical Cancer

Cervical cancer is one of the most prevalent gynecological malignancies worldwide [171,172].
A recent analysis of m6A mRNA methylation levels in 286 pairs of cervical cancer samples
disclosed significant downregulation in cervical cancer and negative correlation with characteristics
of malignancy, including pathologic stage, tumor size, differentiation, lymph invasion, and cancer
recurrence. Suppression of the m6A level, via FTO or ALKBH5 overexpression, promoted proliferation
of cervical cancer cells, whereas increasing the m6A level led to significant suppression of tumor
development, both in vitro and in vivo. Thus, inhibition of the m6A level is tightly associated with
cervical cancer progression, and regulators of m6A mRNA methylation present potential therapeutic
targets in cervical cancer [173].

3.5. Clinical Application of m6A

Cancer stem cells (CSC) represent a subpopulation of cancer cells with the capacities of
radioresistance, metastasis, and tumor initiation in various cancer types [2,66–68]. As crucial
regulators of m6A in RNAs play important roles in cancer stem cell maintenance and progression,
targeting of m6A editing may present an effective treatment strategy. For instance, inhibition of
the RNA demethylase, FTO, suppresses GSC growth and self-renewal, consequently suppressing
tumor progression of GBM. Additionally, FTO exerts a critical oncogenic effect on ATRA-induced
leukemic cell differentiation by decreasing m6A levels in critical mRNA transcripts, including ASB2
and RARA [153]. Rhein, a natural compound that is neither a structural analog of α-ketoglutaric
acid nor a of metal ion-chelator, competitively targets to the active site of FTO. Data from an earlier
in vitro study indicate that Rhein exerts inhibitory activity on m6A demethylation within cells [100].
Meclofenamic acid (MA) has been developed as another selective inhibitor of FTO that acts via
competitive binding to m6A-containing regions in RNAs [102]. Moreover, MA2, an ethyl ester form
of MA approved by US Food and Drug Administration (FDA) as a nonsteroidal anti-inflammatory
drug, serves as a competitive inhibitor of FTO [102]. Thus, Rhein, MA, or MA2 may induce tumor
regression in GBM, or increase ATRA efficacy in AML through inhibiting the RNA demethylase
FTO. Furthermore, citrate and IOX3 serve as inhibitors of ALKBH5, another m6A demethylase
that maintains tumorigenicity of glioblastoma stem cells [99,127]. However, the specificities of
these inhibitors need to be validated in vivo, and development of selective inhibitors of other
m6A regulators should aid in overcoming disease recurrence and resistance to cancer therapy.
In addition to FTO and ALKBH5, S-adenosylhomocysteine (SAH) acts as a kind of competitive
inhibitor of adenosylmethionine-dependent methyltransferases [103]. SAH is hydrolyzed by SAH
hydrolase into adenosine and homocysteine, which are important regulators of intracellular SAH
levels. 3-Deazaadenosine (DAA), one of the most frequently used SAH hydrolysis inhibitors, has been
shown to suppress m6A methylation of mRNA substrates [174]. Moreover, DAA and its analogs can
suppress the replication of various viruses that are capable of extensive editing of m6A-containing
mRNA [106,175]. The effects of DAA on cancer therapy are yet to be investigated in detail.

4. Conclusions

Radiotherapy is one of the major forms of cancer treatment for various malignant tumor types.
Radiation treatment triggers DNA damage through ionization or production of reactive oxygen species
(ROS), leading to death of tumor cells, but can concomitantly promote radioresistant cancer cell
metastasis and progression [22]. Accumulating evidence suggests that epigenetic alterations play
important roles in radioresistance and cancer recurrence. Epigenetic approaches, including evaluation
and manipulation of DNA and RNA methylation patterns, could thus present a crucial strategy to
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elucidate the biological effects of irradiation on tumors. However, the majority of documented results
on the effects of irradiation on methylation of DNA or RNA are derived from in vitro and in vivo
experimental systems, and limited investigations have focused on non-cancerous and tumor regions in
humans to date. Thus, translational studies need to be conducted to ascertain the clinical impacts of
DNA or RNA methylation on radiotherapy. However, radiation treatment is known to cause epigenetic
alterations. Irradiation-induced DNA/RNA methylation markers or a marker panel may therefore be
effectively utilized to predict outcomes for patients treated with radiotherapy. While no epigenetic
drugs have been approved for application in humans as yet, their therapeutic benefits are clearly
promising, and could be a prospective radiosensitizer in the clinic.
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