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Abstract

Background: Valuation of the economic cost of antimicrobial resistance (AMR) is important for decision making
and should be estimated accurately. Highly variable or erroneous estimates may alarm policy makers and hospital
administrators to act, but they also create confusion as to what the most reliable estimates are and how these
should be assessed. This study aimed to assess the quality of methods used in studies that quantify the costs of
AMR and to determine the best available evidence of the incremental cost of these infections.

Methods: In this systematic review, we searched PubMed, Embase, Cinahl, Cochrane databases and grey literature
sources published between January 2012 and October 2016. Articles reporting the additional burden of
Enterococcus spp., Escherichia coli (E. coli), Klebsiella pneumoniae (K. pneumoniae), Pseudomonas aeruginosa (P.
aeruginosa) and Staphylococcus aureus (S. aureus) resistant versus susceptible infections were sourced. The included
studies were broadly classified as reporting oncosts from the healthcare/hospital/hospital charges perspective or
societal perspective. Risk of bias was assessed based on three methodological components: (1) adjustment for
length of stay prior to infection onset and consideration of time-dependent bias, (2) adjustment for comorbidities
or severity of disease, and (3) adjustment for inappropriate antibiotic therapy.

Results: Of 1094 identified studies, we identified 12 peer-reviewed articles and two reports that quantified the
economic burden of clinically important resistant infections. Two studies used multi-state modelling to account for
the timing of infection minimising the risk of time dependent bias and these were considered to generate the best
available cost estimates. Studies report an additional CHF 9473 per extended-spectrum beta-lactamases -resistant
Enterobacteriaceae bloodstream infections (BSI); additional €3200 per third-generation cephalosporin resistant
Enterobacteriaceae BSI; and additional €1600 per methicillin-resistant S. aureus (MRSA) BSI. The remaining studies
either partially adjusted or did not consider the timing of infection in their analysis.

Conclusions: Implementation of AMR policy and decision-making should be guided only by reliable, unbiased
estimates of effect size. Generating these estimates requires a thorough understanding of important biases and
their impact on measured outcomes. This will ensure that researchers, clinicians, and other key decision makers
concerned with increasing public health threat of AMR are accurately guided by the best available evidence.
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Background
Quantifying the burden of antimicrobial resistance (AMR)
is challenging and encompasses various methodologies
that aim to measure the impact on the patient, their use
of the healthcare system and/ or contribution to society
[1–4]. Erroneous or unclear estimates of impact can have
alarming effects some of which may contribute to greater
action but they also create confusion and potentially
undermine the fight against AMR. Therefore, assessing
the quality of the available studies is essential to equip cli-
nicians and policy-makers with the right tools to ensuring
that decisions are based on well-designed studies which
generate reliable, detailed and actionable measures [5].
The past decade has seen a large influx of studies report-

ing the costs of AMR [6] and these have produced highly
variable estimates ranging from £3-11billion [7] to US$100
trillion [4]. Inconsistency in economic studies examining
the burden of AMR have been reported [6, 8–10] and
demonstrate the importance of a thorough analysis of the
methodologies used to generate these estimates [11]. As
much as 84% of the variance in costs between patients
infected with a resistant versus susceptible infection can be
attributed to factors that could have been adjusted for in
the study design [8]. Inadequate adjustment for confound-
ing increases the risk of bias on outcomes, such as cost of
infection. Determining the most likely causes of heterogen-
eity in cost data, therefore may require an analysis of both
the clinical differences in participant characteristics as well
as variability produced by differences in the methodology
and the overall approaches used [12, 13].
Excess length of stay (LOS) is considered the most sig-

nificant cost of a healthcare associated infection [14].
However, methods to estimate the excess LOS attributable
to infection have been shown to be subject to bias, dem-
onstrating one of the key challenges with assessing the
costs of infections [15]. Previous studies show that if the
timing of infection is not treated as a time-dependent ex-
posure, then bias is introduced resulting in overestimation
of excess LOS [15]. As infection is a time-dependent
exposure, methods assessing its impact on LOS need to
treat it in a time-dependent manner. Study designs
which involve matching do not fully account for this
time-dependent bias [10], unless day of infection was
used in the matching.
Aside from the potential for bias in outcomes such as

excess LOS which are then used to estimate costs, fur-
ther considerations exist. Between studies, cost estimates
will differ based on the economic perspective of each
study and which exact costs were included. Estimates
will differ across countries due to differences in pricing
of relevant services and products, and the type of health
system in place. The underlying cost data needs to be
considered, such as whether the total hospital budget
has been divided to cost a bed day, or whether more
specifically exact activities to do with infection have
been considered.
We report a systematic review of the economic burden

of clinically important hospital- and community-acquired
infections. This review expands upon a recently published
systematic review [16] and previous rapid review [6], thus
literature was searched only between 2012 and 2016. We
only included studies that compared patients with drug-
resistant and drug-susceptible infections. The cost differ-
ence between cases and controls therefore represents an
estimate of the additional economic burden of resistance.
We describe the diverse approaches of studies quantifying
the economic burden of AMR, and provide a narrative
review of the costs found. This serves to provide an up-
date of current literature. In the process, we highlight
recommended methods for addressing bias in estimations.

Methods
This systematic review is reported according to the
PRISMA checklist [17]. Ethical approval was not required
for this study. Methods and inclusion criteria were speci-
fied in advance and documented in an unregistered review
protocol, full text of which is available in Additional file 1.
Published articles reporting the economic burden of the
following infections: Enterococcus spp., E. coli, K. pneumo-
niae, P. aeruginosa and S. aureus compared to susceptible
infections, were searched in Pubmed, Embase, Cinahl and
Cochrane databases from January 2012 until October
2016. Search strategies are provided in Additional file 1.

Study selection and data extraction
TW and LB independently screened titles and abstracts
of records identified through database searching. Dupli-
cates were removed prior to screening. Full-text articles
identified in peer-reviewed and grey literature that met
the inclusion criteria were retrieved. Studies were eli-
gible for inclusion if they: reported empirical or primary
evidence about the economic impact of resistant versus
susceptible infections, or reported about models of this
impact; pertained to community or healthcare acquired
Enterococcus spp., Escherichia coli (E. coli), Klebsiella
pneumonia (K. pneumoniae), Pseudomonas aeruginosa
(P. aeruginosa), or Staphylococcus aureus (S. aureus);
reported the costs of resistant infections compared to
susceptible infections; reported the control group as the
susceptible strain of the organism; were published be-
tween 2012 and last date of database searching (11th
October 2016); were conducted in adult populations
(those admitted to adult hospitals). As the review process
unfolded, some studies were found to include a mixture of
adult and paediatric populations, and these were included
as they were considered important studies to describe. We
excluded studies that only reported on LOS and/or mor-
tality; studies which compared uninfected patients with
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patients with resistant infection; studies comparing re-
duced susceptibility; and, studies focussed on control
interventions, cost-effectiveness of interventions or on
antiviral, anti-malarial or antiprotozoal infections.
We searched the reference lists of included studies to

further identify eligible articles. Reviewers were not masked
to the journals or authors of the studies. Data were ex-
tracted and condensed into summary tables using Micro-
soft Word and Excel (Additional file 1).

Assessment of economic studies
We developed a framework for the assessment of in-
cluded studies. This framework considered the main pa-
rameters of perspective, methodology and the minimum
study characteristics reported in each study (Table 1).

Risk of bias assessment
To assess the quality of included studies, we developed a
risk of bias assessment tool modified from previously
identified key methodological caveats of costing studies
[10] (Additional file 2). This tool assessed included stud-
ies against three methodological components: (1) adjust-
ment for LOS prior to infection onset and consideration
of time-dependent bias, (2) adjustment for comorbidities
or severity of disease, and (3) adjustment for inappropri-
ate antibiotic therapy. In the adjustment for LOS and
disease severity, we also assessed whether the adjust-
ment was made at the study design phase (i.e. matching
on LOS or underlying comorbidities) or at the analysis
phase (i.e. multi-state modelling or adjusting for time to
infection as a baseline covariate in regression analysis).
Matched study designs were not considered to fully ad-
dress time-dependent bias, as has been previously shown
[15]. Inappropriate empiric therapy was considered due
to its potential influence on patient outcomes [18].

Extraction of cost estimates
From the included studies, we extracted cost estimates,
the year of cost data and cost drivers. Usually, study per-
spectives in economic evaluations are those of the pa-
tient, hospital/clinic, healthcare system or society [19].
Depending on the country and context, the specific
payer and costs included may vary. For example, in one
study, the cost perspective is described as that of the
hospital, and this involved a third-party payer perspec-
tive [20]. Further, physician remuneration costs were not
included as they were not reimbursed through the hos-
pital, but fell under a particular insurance plan [20]. As
our purposes were descriptive in nature, rather than to
compare in detail the costs included in each study, we did
not exclude by study perspectives, and extracted costs,
charges or estimates as presented by the studies. We
broadly described the perspectives as either healthcare sys-
tem/hospital/hospital charges to patients or as societal.
Interested readers may refer to the individual studies to
find exact perspective and cost/charge descriptions.
Costs and charges reported in the included studies were

not converted to a single currency for comparative pur-
poses. Due to differences in healthcare systems and pri-
cing of healthcare items in different countries, it was
considered that conversion could be misleading, because
the cost to treat an infection in one setting would likely be
different in another. For studies that did not report hos-
pital LOS and cost of resistance, we subtracted the LOS or
cost estimate of susceptible infections from resistant infec-
tions to provide an overall estimate of effect size.

Synthesis
Heterogeneity of studies did not permit for a meta-analysis
of combined effect.

Results
Database searching returned 1094 articles, of which 844
articles were extracted. A further three reports [4, 21, 22]
were identified from grey literature searching. Hand
searching identified one relevant article [23]. Screening
based on title and abstract excluded 798 records. Of 50 ar-
ticles assessed for eligibility, 14 studies met the inclusion
criteria (Fig. 1) [20–33]. Reasons for full-text exclusion are
given in Fig. 1. “Other” included reasons such as article
not in English, poster and oral abstracts that did not pro-
vide adequate information, and incorrect patient group.
There were seven cohort studies [20, 23–25, 30, 31, 33];

two case-control studies [28, 29]; two retrospective ana-
lyses [26, 27]; one descriptive study [32] and two eco-
nomic model reports [21, 22]. Studies reported on clinical
isolates from BSI, urinary tract infections and other
clinical sites (Table 2).
AMR was defined as either (i) the presence or absence

of resistance to a given antibiotic with or without inter-
mediate threshold isolates [24, 25, 33]; or (ii) a change in
the minimum-inhibitory concentration relative to the
baseline levels [27, 29]; or (iii) determination of resistant
genotypes [31] or (iv) a combination of microbiologic
results, clinical symptoms and diagnosis codes as judged
by an expert panel [26]. Standard methods conforming
to Clinical Laboratory Standards Institute [20, 28, 32] or
European Committee on Antimicrobial Susceptibility
Testing guidelines [30] were reported.
Twelve studies reported the economic burden of AMR

from a healthcare perspective, with the highest quality
studies as assessed by the risk-of-bias tool (Additional
file 2) listed at the top of the table (Table 2). Two studies
used multi-state modelling to fully adjust the timing of in-
fection [24, 25] and they were assessed to generate cost
outcomes of highest quality (Table 2). A further four of
the included studies made partial adjustment for time of
infection, either at the study design stage by matching for



Table 1 Framework for assessment of economic studies

Parameters for assessment

Study perspective What is the study perspective? The
study perspective (s) is the viewpoint
from which the intervention’s costs
and consequences are evaluated [42].

Patient perspective
Example: out-of-pocket costs or patient
preference, costs that the patient pays
for that are not covered by their health
insurance

Healthcare payer perspective
Example: attributable costs to the
payers of healthcare including
insurers or national payers

Healthcare system perspective
Example: cost effectiveness analysis
of stewardship programs, additional
length of hospital stay, impact of
resistant infections on structuring
of cares such as infection control,
increased use of isolation rooms

Societal perspective
Example: broader costs to society
such as productivity loss due to
morbidity or premature death,
can include cost to other sectors
such as impact on trade and
economy

Methodology Did the study match the resistant
cases and susceptible control
groups based on LOS prior to
infection? or

Did the study adjust statistically
for prior LOS? or

Did the study conduct sensitivity
analysis that considered hospital
LOS prior to infection? or

Was multistate modelling used to
take into account the time-varying
nature of infections?

If yes, low to moderate risk of
time dependent bias

If no, high risk

If unsure, check:
Did the study estimate excess
LOS, mortality or costs without
matching by LOS prior to infection

Did the study express only
post-infection LOS or costs?

If yes to any of the above then
high risk of time-dependent bias

Did the study adjust for
underlying co-morbidities or
severity of illness on clinical
outcomes

If yes, did they adjust for time-
dependent bias (above)?

If no, high-risk of bias

Did the study adjust for
inappropriate antibiotic therapy

Table 1 Framework for assessment of economic studies
(Continued)

Parameters for assessment

If yes, did they adjust for time-
dependent bias (above)?

If no, high-risk of bias

Minimum study characteristics
to be reported

Country

Year of data used for analysis

Organism, susceptibility, and site
of infection

Comparator

Study design and analysis methods

Cost driver/ costs explored (e.g., excess
LOS, mortality)

Type of costs (including year of cost
data and currency)

Statistical significance
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prior LOS [29] or at the statistical stage [26, 31, 33], these
were graded next best. The remaining six studies did not
report adjustment of the study population for prior LOS
or consider time-dependent bias, either at the study de-
sign or statistical stage of analysis [20, 23, 27, 28, 30, 32]
and were therefore graded as generating cost estimates of
low-quality. Some of these studies included post-infection
costs only [27, 28] and some admitted patients to the
study post-infection only, in an attempt to reduce con-
founding [20].
Five of the included studies adjusted for severity of

disease, primarily using tools such as the Charlson co-
morbidity index (CCI) and the Acute Physiology and
Chronic Health Evaluation score [24, 26, 29, 31, 33]
(Table 2). Four of these studies made adjustment for co-
morbidities at the statistical stage of the analysis and one
study matched patients based on CCI [29].
Two studies considered inappropriate initial antimicro-

bial therapy [25, 31]. Stewardson et al (2013) define this as
failure to prescribe an antibiotic that was appropriate for
the treatment of a BSI and to which the infecting organ-
ism was susceptible within 24 h of the infection [25].
However, it was unclear whether this variable was in-
cluded in the model. The study by Cheah et al (2013) ad-
justed for appropriateness of antibiotic therapy in their
multivariable model [31]. Neidell et al. [26] adjusts for
days of medication used but the adequacy of prior anti-
biotic use was not considered. One study included pa-
tients that were receiving empiric antibiotic therapy [32].
Three studies undertook multivariable regression analysis

to determine predictors of increased hospital cost. For re-
sistant P. aeruginosa infection, the total hospital cost was
1.37-fold higher (95% CI 1.08–1.72, p = 0.01) and 1.77-fold
higher (1.41–2.22, p < 0.001) for patients infected with a
multidrug-resistant strain, compared to non-resistant



Fig. 1 PRISMA flow diagram of the search
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control [27]. Patients with a MRSA BSI had a 1.32 higher
(0.94–1.80, p = 0.10) direct costs compared with susceptible
S. aureus [20]. The impact of extended-spectrum
beta-lactamases (ESBL)-producing E. coli on hospital
costs was increased 3.1-fold (1.3–7.0, p = 0.008) com-
pared to non-ESBL E. coli urinary isolates [30].
Twelve studies [20, 23–33] and one report [21] quanti-

fied the additional LOS of patients with resistant compared
to susceptible organisms (Tables 3 and 4). Additional to
bed-day estimations, seven of the included studies also re-
ported consumable items used in the clinical management
of the infection [20, 23, 25, 27–30]. Not all studies
reported the cost of a bed-day as a separate variable,
but rather absorbed all of the measured costs into a
total estimated burden on the healthcare system. One
study reported the economic burden as accounting
and opportunity costs [24].
The methodology used to generate estimates of cost from

a societal perspective were different to those in Table 2,
hence these two reports [21, 22] which were identified in
grey literature are reported separately (Table 4).
There was inconsistency in the calculation and

reporting of bed-days and cost estimates (Tables 3 and 4).
Seven studies reported the entire LOS (susceptible
or resistant) and associated costs from time of infec-
tion [20, 23, 27–30, 33] and the remaining reported
the specific excess LOS and the corresponding costs
[21, 22, 24–26, 31, 32]. There was a mixture of mean
and median cost estimates for a single resistant organism
[20, 24–27, 30, 31, 33] or pooled estimates of all resistant
organisms [21, 22, 32]. Neidell et al (2012) calculated cost
estimates that may capture aspects of societal costs by
censoring charges and LOS for patients who died in hos-
pital [26]. While the study’s censored models may capture
aspects of societal perspective, for the purpose of this sys-
tematic review, this study was grouped with healthcare
perspective studies contained in Table 2.
Total hospital cost or charges ranged from additional

USD$31,338 for MRSA [33] to CHF284,190 (Swiss Franc)
for ESBL-producing Enterobacteriaceae [25]. Some costs
descriptions were missing and it was unclear whether the
costs were total or per hospital admission. Only some
studies explicitly stated whether infection control and pre-
vention costs were included. For example, one study expli-
citly stated infection prevention and control costs were
included in the estimation of indirect costs; while another
stated they did not estimate the excess cost of isolation of
MRSA patients such as costs of additional gowns [20, 28].
By organisms, the costs of resistance were varied. Infec-

tion with Enterobacteriaceae cost an estimated additional
€3200 per third-generation cephalosporin resistant Entero-
bacteriaceae BSI [24] to USD$13,200 per resistant K.
pneumonia, albeit the latter costs were not statistically
significant when compared to susceptible infections [26].



Table 2 Study characteristics, graded by risk-of-bias tool with highest quality studies reported at the top of table. 2012–2016

Author (year)
Country
Year of data used

Organism
Site of infection

Comparator (n) Adjustment for prior LOS
or time dependence

Adjustment for
disease severity

Adjustment for
inappropriate
antibiotic use

Stewardson (2016)
10 EU countries
2010–2011 [24]

Enterobacteriaceae
S. auerus
BSI

MSSA (885)
MRSA(163)
3GCSE(2100)
3GCRE (360)

Fully adjusted for at the
analysis stage using
multi-state modelling

Comorbid conditions
calculated and adjusted
in model

No

Stewardson (2013)
Switzerland
2009 [25]

Enterobacteriaceae BSI Non-ESBL (96)
ESBL+ (30)

Fully adjusted for at the
analysis stage using
multi-state modelling

Data collected but not
adjusted in model

Uncertain if
adjusted in
model

Neidell (2012)
USA
2006–2008 [26]

S. aureus,
Enterococcus, KP, PA
BSI, UTI, Lower RTI

Susceptible (3880)
Resistant (1819)

Partially adjusted for at
the analysis stage using
nearest neighbour
matching, based on
propensity scores for
prior LOS

CCI calculated; individual
comorbidities adjusted in
model

No

Campbell (2013)
USA
2005–2010 [33]

S. aureus
Multiple sitesa

MSSA (206)
MRSA (119)

Partially adjusted for at
the analysis stage by
adjusting for time to
infection as baseline
covariate. In sensitivity
analysis matching based
on propensity scores for
time to infection

CCI calculated and
adjusted in model

No

Leistner (2014)
Germany 2008–2010 [29]

E. coli
BSI

Non-ESBL (92)
ESBL+ (92)

Partially adjusted for at
the design stage using
matching (LOS of controls
matched with LOS of cases)

Matched on CCI No

Cheah (2013)
Australia
2002–2010 [31]

Enterococcus
BSI

VSE (603)
VRE (116)

Partially adjusted at the
analysis stage using LOS
prior to infection

CCI calculated and
adjusted in model

Yes

Morales (2012)
Spain
2005–2006 [27]

P. aeruginosa
Multipleb

Susceptible (149)
Resistant (119)
MDR (134)

Not addressed No No

Maslikowska (2016)
Canada
2010–2013 [28]

E. coli
Klebsiella spp.
Multiple c

Non-ESBL (75)
ESBL+ (75)

Not addressed No No

Thampi (2015)
Canada
2007–2010 [20]

S. aureus
BSI

MSSA (377)
MRSA (58)

Not addressed No No

EstevePalau (2015)
Spain
2010–2013 [30]

E. coli
UTI

Non-ESBL (60)
ESBL+ (60)

Not addressed No No

MacVane (2014)
USA
2011–2012 [23]

E. coli
Klebsiella spp.
UTI

Non-ESBL(55)
ESBL+ (55)

Not addressed No No

Chandy (2014)
India
2010 [32]

All organisms
BSI suspected

Susceptible (87)
Resistant (133)

Not addressed No No

BSI Bloodstream infection, UTI Urinary tract infection, RTI Respiratory tract infection, 3GC Third-generation cephalosporin, 3GCSE 3GC susceptible
Enterobacteriaceae, 3GCRE 3GC resistant Enterobacteriaceae, ESBL Extended-spectrum beta lactamase, VSE Vancomycin susceptible Enterococcus, VRE Vancomycin
resistant Enterococcus, MRSA Methicillin resistant S. aureus, MSSA Methicillin susceptible S.aureus, KP K. pneumoniae, PA P. aeruginosa, MDR Multidrug resistant, CCI
Charlson comborbidity index, APACHE Acute physiology and chronic health evaluation, DRG Disease-related group, NS Not significant
amultiple sites of infections were, as listed by authors, “blood, urine, respiratory, neurologic, orthopaedic, other”
bRespiratory, SST, genitourinary, catheter, endovascular, abscess, peritonitis, digestive, as found in original article
cmultiple sites of infection are summarised here as orthopaedic, lung, blood, urinary tract, abdominal region, and skin and soft tissue infections
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Patients infected with MRSA costs the healthcare system
an additional €1600 per BSI [24]; CD$7153 per patient
[20] or USD$31,338 per infection [33] compared to
methicillin-susceptible S. aureus. Vancomycin-resistant
E. faecium (VRE) costs additional AUD$28,872 per
hospitalisation [31] or USD$16,900 from multiple sites
of infection [26]. Hospital admissions with resistant P.
aeruginosa cost an additional €2914 per admission in
Spanish hospital [27] and USD$31,400 per infection in
a United States hospital [26]. One study estimated the



Table 3 Attributable LOS and costs associated with AMR infections from a healthcare system/hospital/charges to patients
perspective, 2012–2016

Author (year) Extra LOS due to resistant infection,
95% CI and P value (if indicated)

Cost drivers/costs explored Type of costs (year of cost data)
Excess cost, significance (if indicated)

Stewardson (2016) [24] MRSA: + 2.54 (− 3.19 to 8.27)
Third-generation cephalosporin-resistant
Enterobacteriaeacea: + 4.89 days (1.11–8.68)

Bed days Accounting (2011)
+€1600 (− 700 to 5000)/ MRSA
+ €3200 (1600–6000)/ 3GCRE
Opportunity
+€120 (− 60 to 740)/ MRSA infection
+€250 (60–1100)/ 3GCRE infection

Stewardson (2013) [25] ESBL+ Enterobacteriaceae: + 6.8 days Bed days
Patient activities
Hospital service

Accounting (2009)
+ CHF 9473/ BSI
+ CHF 284190 total cost of Enterobacteriaceae

Neidell (2012) [26] Resistant Enterococcus: + 0.85 days
(− 0.86 to 2.55)
Resistant K. pneumoniae: + 1.63 days
(− 0.96 to 4.21)
Resistant P. aeruginosa: + 3.30 days
(0.87–5.73), p = < 0.01
Resistant S.aureus: + 0.42 days (− 2.29 to 3.13)

Bed Days
Medications Procedures

Accounting (missing)
Enterococcus: +US$16900 (4600–29,300) p < 0.01
KP: +US$13200 (− 5900 to 32,200) NS
PA:+US$31400 (10100–52,800) p < 0.01
S. aureus: -US$16000 (− 36,900 to 4800) NS
Results of censored models for HAIs provided.

Campbell (2013) [33] MRSA: + 5.9 days, p = < 0.0001 Bed days
Laboratory
Pharmacy

Accounting (2009)
+US$31338 total from index admission, p < 0.05
Results of primary analysis provided.

Leistner (2014) [29] ESBL+ E. coli: − 2 days, p = 0.29 Bed days
Medical products
Laboratory
Pharmacy
Staff time
Procedures

Accounting (missing)
+€38 / patient per day p = 0.69
+€ 1318, p = 0.33 (ICU)
+€ 930, p = 0.7 (general ward)
- €1479 total hospital cost, p = 0.36

Cheah (2013) [31] VRE:+ 4.89 days (0.56–11.52) Bed days Accounting (2010)
+ AUD $28,872 (734–70,667)/ hospitalisation

Morales (2012) [27] Resistant P. aeruginosa: + 13.9 days
MDR P. aeruginosa: + 20.6 days, p < 0.00

Bed days
Surgery
Laboratory
Radiology
Pathology
Pharmacy

Accounting (missing)
Resistant versus non-resistant: +€7418
MDR versus non-resistant: +€10,332
MDR versus resistant: +€2914/ admission
p < 0.00
Resistant versus non-resistant OR = 1.37
(95% CI; 1.08–1.72) p = 0.01
MDR versus non-resistant OR 1.77
(95% CI; 1.41–2.22) p < 0.00

Maslikowska (2016) [28] ESBL+(E. coli + Klebsiella spp):+ 2 days,
p = 0.024

Bed days
Other costsb

Accounting (missing) Canadian dollar
+CAD$2625/ admission p = 0.039

Thampi (2015) [20] MRSA:+ 8.5 days, p = 0.095 Bed days
Human resourcesa

Pharmacy
Antibiotics
Laboratory
Diagnostics
Operating room

Accounting (2010) Canadian dollar
+C$7153/ patient p = 0.029
OR (MRSA) = 1.32 (0.94–1.8), p = 0.1

Esteve-Palau (2015) [30] ESBL+ E. coli: + 4.1 days, p = 0.02 Bed days
OPAT
Pharmacy
Antibiotics
Laboratory
Consultations

Accounting (missing)
+€1109/ hospitalisation p = 0.01
+€2368/ UTI p < 0.00
+€1389/ OPAT p = 0.04
ESBL versus non-ESBL E. coli OR = 3.1
(1.3–7.0) p = 0.01

MacVane (2014) [23] ESBL+(E. coli + Klebsiella spp):+ 2 days,
p = 0.02

Bed days
Antibiotics

Accounting (missing)
+US$3189 hospitalisation cost
(direct and indirect)/patient
(Median loss per patient with ESBL-
producing organism versus non-ESBL
producing organism.)

Chandy (2014) [32] Resistant (all) organisms:+ 3 days,
p = 0.03

Bed days
Antibiotics
Pharmacy
Ward costs

Accounting (missing) Indian rupee
+INR 41993 (16667–63,848) /hospitalisation,
p = 0.00

ESBL Extended-spectrum beta-lactamases, MDR Multidrug resistant, NS Not significant, LOS Length of stay, OPAT Outpatient parenteral antimicrobial therapy
aincluded costs related to nursing and specialists care
bincluded costs, as listed by authors, related to “allied health, ambulatory care, cardiac catheterization, imaging, food, intensive care, laboratory tests,
surgical procedures, pharmacy, ward care, and indirect care”
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Table 4 Studies reporting the economic burden of antimicrobial resistance from a societal perspective, 2012–2016

Author (year)
Country

Organism
Comparators
Site of infection

Methodology Excess LOS (days) Cost drivers Type of costs (year of
cost data) Currency
Excess cost, significance

Taylor (2010)
Global
2010 [21]

S. aureus, E. coli, K.
pneumoniae, HIV,
malaria, TB
MRSA
3GC-E.coli
3GC-K. pneumoniae
Resistant HIV
Resistant malaria
MDR-TB
BSI, UTI, Lower RTI, SSTI

Theoretical dynamic
general equilibrium
was used to predict
future scenarios of
incidence and resistance
(0%, current rates, 5, 40,
100% resistance) starting
with the population in
2010 and projecting
to 2050.
Costs: (a) increased
mortality (b) increased
morbidity due to prolonged
period of sickness leading
to productivity loss
Assumptions: (i) Resistance
rates increase in a one-off
step, not an S-shaped
epidemic pattern (ii)
Incidence remains constant
until 2050 (except malaria
where it was projected) (iii)
Extra LOS was assumed to
be the same for all countries/
regions (iv) Mortality risk per
infection remained unchanged

Mean excess LOS
from the WHO
Observatory (2014)

Loss of productivity Disruption to the
supply of labour
by increased
mortality and
morbidity measured
as reduction in GDP
(2011) US
Current cost:
US$5.8 trillion
Excess cost (over 40 yrs):
Loss of
US$2.1- $124.5 trillion

KPMG (2014)
156 countries
Data sourced from
various publication
with the latest from
year 2012 [22]

S. aureus, E. coli, K.
pneumoniae, HIV,
malaria, TB
Susceptible versus
Resistant
BSI
Lower RTI
SSTI
UTI

Total factor productivity
model used to compute
macroeconomic stability,
technology, quality of
infrastructure, human
capital and strength of
public institutions.
Life expectancy used as
a proxy to measure the
quality of human capital
and adjustments to
country life expectancy
score were made to allow
for deterioration of human
capital as result of increased
AMR incidence.
Labour force was based on
working age (15–64) and
adjusted to AMR mortality
rate
Costs: (a) attributable
mortality (b) increased
morbidity leading to
productivity loss.
Assumptions: (i) Correction
coefficient used to estimate
resistance rate by site of
infection was assumed
to be the same for all
countries/ regions (ii) Extra
LOS analysed for EU, Iceland
and Norway only (iii) Mortality
risk per infection remained
unchanged

Combined
(S. aureus + E. coli +
K. pneumonia): 4 mil
bed-days in 2012

Loss of productivity
+ cost of hospital
bed-days

Impact on labour
force and human
capital measured
as reduction in GDP
(2012) EURO
Excess cost:
+€1.6 billion
Global GDP loss (2050):
40% resistant: 1.66%
100% resistant: 3.4%

KP K. pneumonia, TB Mycobacterium tuberculosis, 3GC Third-generation cephalosporin resistant, BSI Bloodstream infection, UTI Urinary tract infection, RTI Respiratory
tract infection, SSTI Skin and soft tissue infection, LOS Length of stay, GDP Gross domestic product
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cost of confirmed bacteraemia in patients admitted to a
tertiary centre in India to be an additional INR41,993
(Indian rupee) per hospitalisation [32]. Two studies re-
port a negative cost of resistance for ESBL-producing
E. coli [29] and resistant S. aureus [26], albeit both were
not statistically significant.
We highlight that high quality estimates arising from

appropriate study design and analysis methods are cur-
rently available for third-generation cephalosporin-
resistant Enterobacteriaceae BSI [24]; ESBL-resistant En-
terobacteriaceae BSI [25] and MRSA BSI [24].
Studies reporting the economic burden from a societal

perspective did not employ the same methodologies as
healthcare/hospital/hospital charges to patients perspec-
tive studies, hence assessment of these was descriptive in
nature (Table 4). Both the RAND [21] and KPMG [22] re-
ports present models used to predict future costs incurred
to society as a proportion of the loss to the gross domestic
product [21, 22]. Reduction in the labour efficiency by
means of early death and loss of productivity are also re-
ported. Methodologies of generating costs of LOS or early
deaths are less clear in the RAND report. In the absence
of data, the authors relied on expert opinion to calculate
rates of resistance and/or made assumptions of mortality
across regions. The KPMG report presented an additional
global estimate of €1.6 billion for E. coli, K. pneumoniae
and MRSA infections [22] and RAND provide a cumula-
tive costs of up to USD$124.5 trillion over a 40 year period
for all included organisms (Table 4) [21]. Neither study re-
port confidence intervals but have undertaken sensitivity
analysis on key model parameters. The RAND study re-
ports aggregated cost estimates for E. coli, K. pneumoniae,
S. aureus, HIV, malaria and M. tuberculosis, and contribu-
tion from individual organisms to the overall cost esti-
mate could not be delineated. Therefore, based on
several pitfalls identified in both reports, a definitive
estimate of the cost of AMR from the societal per-
spective could not be derived.

Discussion
Drug-resistant infections are increasingly prevalent, harder
to treat and notoriously challenging to quantify. The most
rigorous estimates of the economic impact of AMR are
available for third-generation cephalosporin-resistant En-
terobacteriaceae BSI [24]; ESBL-resistant Enterobacteria-
ceae BSI [25] and MRSA BSI [24] only. The remaining
evidence is constructed with methodologies and definitions
of exposure and outcomes of varying quality inevitably gen-
erating highly variable estimates of the burden of AMR.

Recommendations to improve estimates of the economic
burden of AMR
How exposure (i.e.; AMR) and outcomes (i.e.; additional
costs) of interest are defined, measured and reported needs
consideration. Published definitions of AMR and the
associated detection methodologies vary substantially
[34]. Resistance to one antibiotic can have several
underlying resistance mechanisms and different detec-
tion methods will reveal different outcomes. Stewardson
et al (2016) report the impact of resistance of Enterobacte-
riaceae to beta-lactams grouped as third-generation
cephalosporin and found the additional LOS was 4.89 days
[24], but when the exposure was limited to only ESBL-
producing Enterobacteriaceae, the additional LOS in-
creased to 6.8 days [25]. Hence, validation of methodolo-
gies and selection of appropriate cut-off thresholds need
to be clearly reported and be consistent to ensure esti-
mates remain comparable between studies.
Once exposure is standardised and clearly defined,

economic studies need to consider the independent effect
of the infection on the outcome variables. This would
require adjusting for variables such as patient characteris-
tics, underlying severity of disease [35], antibiotic therapy
[36] and most importantly the timing of infection [8].
Adjustment of disease severity can be particularly challen-
ging as measurements can alter the relationship between
appropriate antibiotic therapy and outcome measures (i.e.;
mortality) [37]. The optimal time of 24 h prior to culture
collection represents the closest measure of the onset of
infection and the most likely baseline measure of severity
of illness [37]. Measurements taken at later times are likely
to be on the causal pathway between exposure and
outcome and should not be controlled for.
By far the greatest independent effect on hospital cost

of AMR is LOS attributable to infection which is
strongly dependent on time of infection and studies
examining the healthcare costs of AMR should treat pa-
tient’s infection status as a time-dependent, rather than
a time-fixed variable, to obtain more accurate LOS esti-
mates [15]. In unadjusted analysis, this misclassification
(i.e. time-dependent bias) can inflate LOS by as much as
9.8 days [15]. Multi-state survival modelling is a useful
method that considers infection as an intermediate vari-
able or a ‘state’ allowing individuals to move from one
state to another when intermediary events occur, instead
of assigning individuals to a fixed exposure on study
enrolment [38]. In our systematic review, we only identi-
fied two studies that used multi-state modelling to fully
adjust for the time-varying nature of infection and con-
sider this the recommended method which would gener-
ate the most unbiased estimates of cost of AMR [24, 25].
This would suggest the large majority of current costing
studies are generating longer LOS estimates leading to
an inflated estimate of the cost of AMR.
Multi-state models can also be used to adjust for the im-

pact of inappropriate empiric therapy on patient outcomes
for the duration patients were receiving said therapy. Con-
sidering those with resistant infections are more likely to
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receive inappropriate empiric therapy, it is less severe
source of bias in estimating the associated burden of AMR.
The key cost driver in healthcare studies is the valu-

ation of a bed-day, often represented as an accounting
cost but increasingly more common as an opportunity
cost. Accounting costs indicate what has been spent to
supply a bed, taking into consideration the total hospital
budget [14]. In contrast, opportunity costs determine
the value of achieving a desired outcome of freeing up a
hospital bed for an alternative use [39, 40]. Our review
identified one study that included both the accounting
and opportunity costs for the same bug-drug combin-
ation, and provided readers with an alternative valuation
of scarce healthcare resources [24].
The main limitation in this systematic review is the

use of an untested quality grading tool. However, given
the heterogeneity of included studies, it was agreed
this was the most appropriate measure of quality as-
sessment and it is based on identified factors that are
important in evaluating economic studies [10]. How-
ever, it is possible that reviewers varied in how they
used the tool, which may introduce unintended bias as
to how the included studies were graded. The quality
tool suggests aspects to consider about methodologies
used to estimate costs of infection. It is important to con-
sider the applicability of each aspect to the individual
study under consideration. For example, time-dependent
bias in extra LOS estimation can be eliminated by match-
ing by day of infection. However, competing events bias
still needs to be considered. Additionally, we did not dis-
tinguish whether studies required adjustment for each fac-
tor while using the tool. For example, we did not specify
the classification of infections into healthcare-acquired
and community-acquired infections, which would have
determined whether adjusting for LOS prior to infection
was necessary.
We specifically considered the incremental cost be-

tween a susceptible and a resistant infection. The bigger
picture of costs of all infections and the need for infec-
tion prevention and control overall should not be ig-
nored. Resistant infections may in fact need to be
considered as additive [41], indicating that considering
only the incremental cost of resistance compared to sus-
ceptible infection would underestimate the total costs of
resistant infections.

Conclusions
Rigorous and unbiased estimates of the economic bur-
den of AMR are limited to healthcare-associated Entero-
bacteriaceae and MRSA BSIs. Valuation of economic
cost of AMR for other infections and in other settings
such as low or middle-income countries is particularly
important given the high burden of disease and subse-
quent impact on health services. We make several
recommendations to improve the quality of economic
studies for generating high-quality estimates of the costs
attributed to AMR. This is essential to inform decision
makers around the globe not only about how to reduce
the problem but also how best to allocate scarce health-
care resources.
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