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SUMMARY

Aims: Resting tremor in Parkinson0s disease (PD) increases markedly during cognitive

stress. Dopamine depletion in the basal ganglia is involved in the pathophysiology of resting

tremor, but it is unclear whether this contribution is altered under cognitive stress. We test

the hypothesis that cognitive stress modulates the levodopa effect on resting tremor.

Methods: Tremulous PD patients (n = 69) were measured in two treatment conditions

(OFF vs. ON levodopa) and in two behavioral contexts (rest vs. cognitive co-activation).

Using accelerometry, we tested the effect of both interventions on tremor intensity and tre-

mor variability. Results: Levodopa significantly reduced tremor intensity (across behav-

ioral contexts), while cognitive co-activation increased it (across treatment conditions).

Crucially, the levodopa effect was significantly smaller during cognitive co-activation than

during rest. Resting tremor variability increased after levodopa and decreased during cogni-

tive co-activation. Conclusion: Cognitive stress reduces the levodopa effect on Parkinson’s

tremor. This effect may be explained by a stress-related depletion of dopamine in the basal

ganglia motor circuit, by stress-related involvement of nondopaminergic mechanisms in

tremor (e.g., noradrenaline), or both. Targeting these mechanisms may open new windows

for treatment. Clinical tremor assessments under evoked cognitive stress (e.g., counting

tasks) may avoid overestimation of treatment effects in real life.

Introduction

Tremor in Parkinson’s disease (PD) is a highly heterogeneous

and, for many patients, an agonizing symptom. It is often the

first presenting sign of PD and is ranked as the second most trou-

blesome symptom by patients in early phases of the disease [1].

Many patients complain about worsened tremor under stressful

circumstances in daily life [2]. This may create a feeling of

stigmatization and embarrassment, often leading to a vicious cir-

cle [3]. Tremor also spontaneously ‘waxes and wanes’ [4], mak-

ing it an unpredictable symptom both for patients and for

clinicians. The neural mechanisms that contribute to tremor

amplification during stress, and also to the spontaneous varia-

tions in tremor, are unclear. Having such insights would be help-

ful for the development of improved treatment strategies for

tremor. In this study, we address this issue by testing whether

the effect of levodopa on resting tremor is modulated by the

presence of acute cognitive stress.

The pathological hallmark of PD is nigrostriatal dopamine

depletion [5], but the dopaminergic basis of resting tremor is dis-

puted [6]. Specifically, striatal dopamine depletion correlates

with all motor symptoms except resting tremor [7], and

dopaminergic medication has a variable (and sometimes no)

effect on resting tremor [8,9]. This suggests that other neuro-

transmitter systems may play an (additional) role in the patho-

physiology of PD resting tremor. Accordingly, nuclear imaging

studies have shown a correlation between tremor severity and

serotonin depletion in the raphe [10,11]. Furthermore, there is

evidence for a role of the noradrenergic system in PD resting tre-

mor: Tremor-dominant PD patients have less degeneration of the

locus coeruleus (the main source of cerebral noradrenalin) than

nontremor patients [12], and intravenous injection of adrenalin

increases tremor [13]. Indeed, it has been argued that the

increase in tremor during cognitive stress could be related to acti-

vation of the locus coeruleus–noradrenergic system [14]. Taken

together, these findings suggest that different neurotransmitter
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systems may play a variable, context-specific role in the patho-

physiology of PD resting tremor.

Here, we test the hypothesis that the contribution of dopamine

depletion to PD resting tremor is modulated by acute cognitive

stress (when the noradrenergic system is activated). Using

accelerometry, we measured tremor intensity (maximal tremor

power during each condition) and tremor variability (coefficient

of variation of tremor power) at rest and during cognitive stress

(serial sevens), both OFF and ON dopaminergic medication. We

used a mental arithmetic task under social evaluation (by the

examiner), because previous studies have shown that this task

induces autonomic stress responses [15] and is associated with

activity in a cerebral stress circuit [16]. We expected a diminished

levodopa effect during cognitive stress. Furthermore, we hypothe-

sized to find higher, but more stable, tremor intensity during cog-

nitive stress.

Materials and Methods

Study Population

Patients with PD, diagnosed according to the UK Brain bank crite-

ria [17,18], were included. Patients without current dopaminergic

medications had to meet at least 3 of the “supportive UK Brain

bank criteria” (unilateral onset, rest tremor, and progressive disor-

der). We only included patients with a resting tremor score of ≥1
points (pts.) in at least one arm on item 17 of the Movement

Disorders Society-Unified Parkinson’s Disease Rating Scale (MDS-

UPDRS). All patients were recruited from our outpatient clinic

and examined by two independent movement disorders special-

ists. Exclusion criteria were as follows: neurological comorbidity,

signs of psychogenic tremor (e.g., entrainment or distractibility),

known allergy against levodopa–benserazide or domperidone, and

significant cognitive impairment (Mini-Mental State Examination

(MMSE) score <24 or frontal assessment battery (FAB) < 12)

[19,20].

The study was approved by the Local Ethics Committee and was

performed according to the standards of the 1964 Declaration of

Helsinki. All participants gave written informed consent prior to

their inclusion. Patients were clinically assessed using the MDS-

UPDRS-part III [21] and the Hoehn and Yahr Scale (H&Y) [22].

Design

Patients were measured twice on 1 day, both before (OFF medica-

tion) and after a levodopa challenge (ON medication). We

quantified clinical characteristics using the MDS-UPDRS and elec-

trophysiological tremor characteristics (maximal tremor intensity

and tremor variability) using accelerometry. Cognitive character-

istics were measured once, using the MMSE and the FAB.

Levodopa Challenge

All patients were evaluated after overnight fasting and in a practi-

cally defined OFF state, more than 12 h after intake of their last

dose of levodopa, more than 30 h after dopaminergic agonists,

and more than 24 h after anticholinergics or beta-blockers [23].

To avoid possible influence on tremor patients had to forgo

caffeine (tea, coffee) for >12 h. For the ON state assessment, the

patients first received 10 mg domperidone to reduce possible side

effects and to improve gastrointestinal absorption. This was fol-

lowed by a standard dose of 250 mg dispersible levodopa–benser-

azide (on average 75% higher than the patients’ own morning

dose) 1 h later [23].

Tremor Assessment

Clinical resting tremor was assessed with the MDS-UPDRS motor

scale (part III) using items 17 (tremor amplitude of the most

affected hand) and item 18 (tremor constancy, i.e., percentage of

visible rest tremor during the entire examination; range 0 to

>75%) [21]. The clinical rater was present during the entire exam-

ination and rated tremor clinically during the entire session,

including the electrophysiology part, breaks between the tasks,

and the whole MDS-UPDRS part III examination in OFF and in

ON state. Two different tremor features (of the most affected arm)

were quantified using accelerometry: tremor intensity (maximal

tremor power during each condition) and tremor variability (coef-

ficient of variation of tremor power; see section Statistical Analy-

sis). For better comparability with clinical ratings, the maximal

(rather than mean) tremor intensity was quantified with the log

values of the amplitudes, derived by accelerometry, because

MDS-UPDRS item 17 is based on the highest amplitude at any

time during the entire examination. Patients lied down comfort-

ably on a bed to achieve complete resting state. The forearms

rested in a relaxed position on two pillows, while hands and fin-

gers were unsupported. Resting tremor was recorded in two differ-

ent contexts: at rest (REST) and during cognitive co-activation

(COCO); backwards counting in steps of three or seven as fast as

possible, while the examiner verbally encouraged rapid respond-

ing (social evaluation) [24]. For each context, we collected three

trials of 60 s each.

Accelerometer Data Analysis

ECG was measured to calculate heart rate during each condition.

Resting tremor intensity was measured with a lightweight biaxial

piezoelectric accelerometer (Medifactory international; Heerlen,

the Netherlands; sensitivity: 128 Hz) attached to the dorsum of

the most affected hand. Data were stored on a computer for offline

analysis. For preprocessing, a bandpass filter of 1–40 Hz was used

to remove slow-frequency drifts and high frequencies of no inter-

est. Next, we analyzed the data using FieldTrip [25]. Specifically,

we calculated the time–frequency representations (TFR) between

1 and 20 Hz using a 2 s. Hanning taper, which resulted in a

0.5 Hz resolution. By averaging over all time points, we obtained

an average power spectrum across segments. For each patient, we

picked the TFR of the corresponding tremor frequency, resulting

in patient-specific regressors describing fluctuations in tremor

intensity during the 60-s trial. After log-transformation, we calcu-

lated maximal tremor intensity by taking the highest value of the

tremor regressor (for each patient, context, and trial). This value

reflects the highest tremor episode (based on a 2-s sliding win-

dow) during each trial. Furthermore, we calculated variability of

tremor intensity using the coefficient of variation (mean of the

tremor regressor divided by its standard deviation).
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Statistical Analysis

First, we compared the clinical characteristics (including heart

rate) OFF versus ON levodopa using paired t-tests (two-sided).

Second, we compared the electrophysiological resting tremor

characteristics (1) maximal resting tremor intensity, and (2) tre-

mor variability using two-way repeated-measures analysis of vari-

ance (ANOVA) with factors TREATMENT (OFF vs. ON levodopa)

and CONTEXT (REST vs. COCO). Third, we correlated clinical

characteristics and electrophysiological tremor characteristics, and

we correlated the dopamine response (OFF vs. ON, averaged over

REST and COCO) with the context response (COCO vs. REST,

averaged over OFF and ON), using a Spearman correlation (two-

sided). All statistical analyses were performed using SPSS (IBM

SPSS Statistics for Windows, Version 22.0, IBM Corp., Armonk,

NY, USA).

Results

A total of 71 patients (49 men; mean age: 63 years; range: 45–81)

were recruited from our outpatient clinic and examined by two

independent movement disorders specialists. The recruited

patients were moderately affected (indicated by a median HY stage

of 2), and the overall results of cognitive tests (MMSE and FAB)

indicated good cognitive functioning. Of 71 patients, two were

excluded (signs of psychogenic and atypical tremor). All analyses

were performed on the remaining 69 patients. Eight patients did

not use anti-Parkinson medication, and the others used dopamin-

ergic medication at home (levodopa and dopamine agonists; aver-

age daily levodopa equivalent: 439.5 mg; range: 0–1500 mg). Six

patients were on anticholinergics. Eight patients used beta-block-

ers (for hypertension and/or tremor). Patient characteristics are

listed in Table 1.

The first tremor assessment in ON state started on average

47 min (range: 35–59 min) after taking levodopa. Levodopa had a

significant effect on clinical measures of disease severity, including

resting tremor (Table 2). The average tremor frequency was 4.78

(�0.08) Hz and was not affected by either TREATMENT or CON-

TEXT (P > 0.19). Heart rate significantly increased during COCO

(average at REST: 63 � 1.2 bpm, during COCO: 71 � 1.5 bpm;

main effect of CONTEXT, F(1,68) = 31.2; P < 0.001), but

there was no significant effect of treatment (TREATMENT,

F(1,68) = 3.2, P = 0.08), and there were no significant interac-

tions (F(1,68) = 0.4, P = 0.53). This suggests that patients experi-

enced cognitive stress during COCO.

Levodopa Effect on Tremor Intensity

Levodopa and cognitive co-activation had opposite effects on rest-

ing tremor intensity: Levodopa significantly reduced maximal tre-

mor intensity (main effect of TREATMENT, F(1,68) = 42.9;

P < 0.001), while cognitive co-activation significantly increased

tremor intensity (main effect of CONTEXT, F(1,68) = 128.9;

P < 0.001). Crucially, the effect of levodopa was significantly

smaller during COCO than during REST (TREATMENT 9 CON-

TEXT interaction, F(1,68) = 5.6; P = 0.02; Figure 1A). In other

words, the positive effect of levodopa was counteracted by a nega-

tive effect of cognitive stress such that maximal tremor intensity

during COCO in the ON state was similar to maximal tremor

intensity during REST in the OFF state (t(68) = 1.4; P = 0.2). Post

hoc t-tests revealed that the effect of levodopa was present for both

REST (t(68) = 6.9; P < 0.001) and COCO (t(68) = 4.9; P < 0.001)

conditions and that cognitive co-activation increased tremor

intensity for both OFF (t(68) = 8.7; P < 0.001) and ON

(t(68) = 10.2; P < 0.001) sessions. The effects of levodopa

(OFF > ON) and context (COCO > REST) appeared to be inde-

pendent from each other: There was no correlation between both

difference scores (Spearman’s rho = 0.12, P = 0.31).

Levodopa Effect on Tremor Variability

Levodopa significantly increased tremor variability (main effect of

TREATMENT, F(1,68) = 43.6, P < 0.001; Figure 1B), while cogni-

tive co-activation decreased tremor variability (main effect of CON-

TEXT, F(1,68) = 32.2, P < 0.001). There was no significant

interaction between the conditions (F(1,68) = 1.4, P = 0.24). This

finding indicates that patients switched more often between low-

and high-amplitude tremor in the ON state and at rest, while they

experienced a more consistent (more severe) tremor in the OFF

state and during cognitive stress.

Correlation of Clinical and Accelerometry Data

As expected, electrophysiological and clinical tremor characteristic

were strongly related. First, maximal resting tremor intensity

showed a significant and positive correlation with clinical tremor

severity (MDS-UPDRS, item 17), both OFF levodopa (REST:

q = 0.5; P < 0.001; COCO: q = 0.6; P < 0.001; see Figure 2A) and

ON levodopa (REST: q = 0.4; P < 0.001; COCO: q = 0.5;

P < 0.001). Second, maximal resting tremor intensity and the

clinical tremor constancy (item 18) were significantly correlated,

both OFF levodopa (REST: q = 0.6; P < 0.001; COCO: q = 0.5;

P < 0.001) and ON levodopa (REST: q = 0.5; P < 0.001; COCO:

q = 0.4; P < 0.01). Third, the reduction in tremor intensity, which

was clinically (item 17) and electrophysiologically detected, signif-

icantly correlated during COCO (q = 0.4; P < 0.001). Finally, we

observed a negative correlation between resting tremor variability

(using accelerometry) and tremor constancy (item 18), both in

the OFF state (REST: q = �0.5; P < 0.001; COCO: q = �0.6;

Table 1 Clinical characteristics

Age (years; mean) 63 (45–81)

Sex 20 F, 49 M

HY stage (median) 2.0 (1.0–3.0)

Disease duration (years; mean) 3.9 (0.3–15)

MMSE (mean) 29 (24–30)

FAB (mean) 17 (13–18)

Levodopa equivalent at home (mg/day; mean) 440 (0–1500)

H&Y stage, Hoehn and Yahr stage (score 0–5); MMSE, Mini-Mental State

examination (score 0–30); FAB, frontal assessment battery (score

0–18). If not indicated otherwise, data are mean (�standard error of

the mean) across 69 Parkinson patients. For HY stage, higher scores

indicate worse functioning. For both FAB and MMSE, lower scores indi-

cate worse functioning. The scores were evaluated OFF medication.
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Table 2 Clinical Levodopa effect (MDS-UPDRS part III)

OFF state ON state Improvement Significance (P)

UPDRS part III OFF state (mean) 43.9 (�1.80) 25.9 (�1.38) 41.3% (�1.79) <0.001

Tremor score MA hand (item 17; mean) 2.97 (1–4) 2.01 (0–4) 35.0% (�4.12) <0.001

Tremor constancy (item 18; mean) 3.26 (1–4) 1.70 (0–4) 47.3% (�4.20) <0.001

MDS-UPDRS, Movement Disorder Society-Unified Parkinson’s disease rating scale part III (score 0–132; item 17 ranges from 0 to 20); OFF state, with-

out dopaminergic medication; ON state, after dopaminergic medication; MA hand, most affected hand. Data are mean (�standard error of the mean)

across 69 Parkinson patients. Higher scores indicate worse symptoms.

Figure 1 Levodopa effect on resting tremor. Panel A shows the levodopa effect on tremor intensity (maximal tremor power during each condition,

measured with accelerometry) during REST (left) and COCO (right) in OFF and ON levodopa state (colored bars). Levodopa significantly reduced resting

tremor intensity, while COCO significantly increased it. However, the effect of levodopa was significantly smaller during COCO than REST. Panel B shows

the levodopa effect on tremor variability (coefficient of variation of tremor power) during REST and COCO. Levodopa significantly increased tremor

variability, while cognitive co-activations reduced it. Level of significance: *P < 0.05; **P < 0.01; ***P < 0.001; data are log-transformed. COCO, cognitive

co-activation.

Figure 2 Correlation of clinical versus electrophysiological evaluation. Panel A shows that increased tremor intensity (maximal tremor power, measured

using accelerometry; x-axis) was associated with increased clinical tremor severity (MDS-UPDRS item 17 for the most affected hand, range from 0 to 4

points; y-axis), during cognitive co-activation in the OFF state. Panel B shows that increased tremor variability (coefficient of variation of tremor power,

measured using accelerometry; x-axis) was associated with reduced clinical tremor constancy (MDS-UPDRS item 18; range from 0 to 4 points; y-axis)

during cognitive co-activation in the OFF state.
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P < 0.001; see Figure 2B) and in the ON state during COCO

(q = �0.6; P < 0.001).

Discussion

We tested the hypothesis that the antitremor effect of levodopa is

reduced during cognitive stress. The cognitive co-activation task

activated the noradrenergic stress system, as evidenced by a signif-

icant increase in heart rate [15]. Our main finding is that cognitive

stress reduced the ability of levodopa to suppress tremor intensity,

as compared to a resting condition. Furthermore, we found that

levodopa increased the spontaneous variability of resting tremor

amplitude, while cognitive stress decreased it.

Our findings appear to contradict a previous study by Sturman

and colleagues, who reported similar effects of levodopa on tremor

intensity for tremor at rest and for tremor during cognitive co-acti-

vation in 10 PD patients [26]. However, this discrepancy might be

explained by methodological differences: Sturman et al. only

included patients with implanted deep brain stimulation elec-

trodes in the STN, and both the patient characteristics (surgical

candidates differ from the general PD population) and micro-

lesions induced by the surgery may have altered the levodopa

response. Furthermore, while their cognitive co-activation task

was externally paced, we aimed to induce higher stress level by

instructing to “count as fast as possible” (i.e., internally paced)

[27]. Finally, our sample was considerably larger than the previ-

ous study (69 vs. 10 patients).

Possible Mechanisms Underlying the Reduced
Levodopa Effect on Tremor During Cognitive
Stress

The finding that levodopa had a relatively reduced antitremor

effect during cognitive stress may be explained by the involve-

ment of nondopaminergic mechanisms, or by a depletion of avail-

able dopamine during cognitive stress, or both. Our task reliably

activated the noradrenergic stress system, as evidenced by a signif-

icant increase in heart rate [15,27]. Although it is known that the

noradrenergic system is affected in early stage PD [28], neu-

ropathological studies revealed a high association of locus coeru-

leus degeneration with akinetic-rigid phenotypes, but only

minimal involvement of the locus coeruleus in tremor-dominant

patients [12,14]. This suggests that an intact noradrenergic system

may be necessary for the development of tremor, although there

is no evidence for a causal link. Animal studies have shown that

an acute stressor produces motor hyperactivity, possibly mediated

through direct effects of noradrenalin onto the cerebral motor cir-

cuit [29]. Using fMRI, we have previously shown that PD resting

tremor is triggered by the dopamine-depleted basal ganglia, and

amplified in the cerebello-thalamo-cortical circuit [30]. The locus

coeruleus sends noradrenergic projections to all nodes of the cere-

bello-thalamo-cortical circuit [14,27], which may amplify tremu-

lous activity in this circuit.

Another possibility is that cognitive stress depleted available

dopamine in tremor-related regions of the basal ganglia and that

our dopaminergic intervention was insufficient to replete this

functional deficit. More specifically, it is conceivable that our (cog-

nitive) task leads to a redistribution of dopamine from motor to

cognitive portions of the cortico-striatal circuit, causing dopamine

depletion in the cortico-striatal motor loop. On the other

hand, our dopaminergic intervention (levodopa/benserazide

200/50 mg) was considerably larger than the dose taken by most

patients. This makes underdosing unlikely—even in the presence

of cognitive co-activation. Neuroimaging studies may further test

whether cognitive stress increases PD tremor by activating the

noradrenergic system, by depleting the dopaminergic system, or

both.

Finally, it is also unlikely that our task increased tremor through

the peripheral nervous system, given the immediate effect of cog-

nitive stress on tremor intensity (i.e., in less than a second). Fur-

thermore, previous work has shown that adrenalin administration

only increases Parkinson’s tremor when injected intravenously

(i.e., systemically, enabling central effects [31]), but not when

injected into an artery—which distributes adrenalin to the muscle

[32]. It is also unlikely that psychological stress modulates tremor

through spinal mechanisms, given absent effects of cognitive

stress on the Hoffmann’s reflex [33,34].

Tremor Variability

Tremor variability was highest during the ON-REST state and low-

est during the OFF-COCO state. A possible explanation for the

high variability ON levodopa is that levodopa desynchronizes

oscillatory activity in the basal ganglia, leading to more irregular

tremor frequencies [26]. Since frequency changes are associated

with (temporary) amplitude reductions, this may have lead to

higher amplitude variability in ON state [35]. High tremor vari-

ability may continuously bring this symptom under the patient’s

attention, thereby contributing to a subjective experience of many

patients that levodopa is ineffective in reducing resting tremor,

whereas in fact the tremor amplitude is lower.

Clinical Implications

The decreased levodopa effect during cognitive stress underlines

the importance of using simple (rapid) counting tasks for clinically

assessing tremor [24]. Although there are several tremor provoca-

tion tasks, the serial-sevens task used here is one of the most prac-

ticable ones [24]. Otherwise, it is possible that the clinical

examination underestimates tremor intensity and, importantly,

potentially overestimates the effect of levodopa and therefore does

not reflect the patient’s tremor burden in daily life. Ideally, tre-

mor-rating scales should describe explicitly under which circum-

stances the tremor was scored, because the context obviously has

a major effect on tremor severity. Currently, the resting tremor

rating in MDS-UPDRS part III (item 17) only scores the maximal

tremor amplitude in the context chosen by the investigator.

Our findings highlight an important clinical problem: Patients

suffer most from tremor in stressful circumstances, when available

(dopaminergic) therapy is least effective. This calls for new treat-

ments aimed at reducing the influence of acute stress on resting

tremor. This may be achieved by cognitive behavioral therapy

[36] or pharmacological therapy that blocks noradrenergic trans-

mission (e.g., beta-blockers).

Our findings may also have implications for future studies

aimed at enhancing noradrenergic activity in PD. Specifically, it has
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been suggested that noradrenergic enhancement may alleviate

symptoms such as apathy, cognitive dysfunction, freezing of gait,

and sleep disorders [37]. Our findings raise the possibility that

noradrenergic enhancement is not suitable for a subset of patients

that are particularly sensitive to the effects of acute cognitive stress

on resting tremor.

Interpretational Issues

We did not collect a direct measure of activity in the locus

coeruleus–noradrenergic system. Thus, although our task was

associated with increased heart rate, which is associated with

noradrenergic activity [15], we cannot rule out an additional

effect of distraction, concentration, or speaking—as in previous

studies [38]. Also, our findings do not suggest that noradrenergic

activity is the only factor that modulates tremor intensity: Motor

co-activation (such as walking or finger tapping with the hand

contralateral to the tremor) can also increase tremor, possibly

through other mechanisms [24].

We only measured electrophysiological tremor severity (with

accelerometry) on the most affected arm. Therefore, it remains

unclear whether our findings can be extrapolated to tremor in

other body parts—although it is unlikely that tremors in different

body parts have a different pathophysiology.

All patients were aware of the intervention, and therefore, a pla-

cebo effect may have contributed to the tremor reduction in the ON

state. However, an influence on our main finding (interaction effect

with context) is unlikely, since a placebo effect would have been

similar for both contexts. For the same reason, it is unlikely that our

findings are influenced by order effects (ON was always after OFF).

Finally, given the absence of validated context-specific tremor-

rating scales, we do not have clinical ratings separately for the

REST and COCO conditions [39]. This makes it difficult to judge

the clinical relevance of our accelerometry findings.

Conclusion

Our results show a reduced levodopa effect in PD resting tremor

during cognitive stress and lower tremor variability in this con-

text. Both findings have clinical relevance: They emphasize the

impact of simple counting tasks in clinical practice to avoid overes-

timation of treatment effects visible at rest. Mechanistically, our

findings suggest that not only dopaminergic, but also non-

dopaminergic, circuits may be involved in the pathophysiology of

Parkinson’s tremor—and that the contribution of different circuits

may be context-specific. Finally, our findings open new windows

for personalized treatment of Parkinson’s tremor, taking patient-

and context-specific factors into account.
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