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Summary

Bacterial cells display both spatial and temporal
organization, and this complex structure is known to
play a central role in cellular function. Although nearly
one-fifth of all proteins in Escherichia coli localize to
specific subcellular locations, fundamental questions
remain about how cellular-scale structure is encoded
at the level of molecular-scale interactions. One sig-
nificant limitation to our understanding is that the
localization behavior of only a small subset of proteins
has been characterized in detail. As an essential step
toward a global model of protein localization in bacte-
ria, we capture and quantitatively analyze spatial and
temporal protein localization patterns throughout
the cell cycle for nearly every protein in E. coli that
exhibits nondiffuse localization. This genome-scale
analysis reveals significant complexity in patterning,
notably in the behavior of DNA-binding proteins. Com-
plete cell-cycle imaging also facilitates analysis of
protein partitioning to daughter cells at division,
revealing a broad and robust assortment of asymmet-
ric partitioning behaviors.

Introduction

The intricate physical organization of the cell plays a
central role in many cellular processes, from chromosome
replication and segregation to gene expression and
protein synthesis. The importance of cellular organization
has long been accepted as an essential component of the
biology of eukaryotic cells: Subcellular organelles and
complex cell morphologies have been observed and
studied since the infancy of light microscopy, but system-
atic investigations into the role of cellular organization in
bacterial cell biology awaited the development of tractable

techniques of fluorescence labeling and microscopy on
sub-micron length scales (Shapiro et al., 2009). Over the
last two decades, many compelling examples of bacterial
cellular organization have emerged, including the precise
positioning of the septum at midcell during cell division
(Raskin and de Boer, 1997; Errington et al., 2003;
Lutkenhaus, 2007), the role of chromosome organization
in cell polarity (Huitema et al., 2006; Lam et al., 2006) and
the localization of the chemotaxis receptors to the cell
poles (Alley et al., 1992; Maddock et al., 1993). Neverthe-
less, a global or proteome-wide understanding of the
dynamic cellular-scale organization of proteins in bacterial
cells remains elusive.

A significant step toward a global understanding of
protein localization in bacterial cells has been achieved by
the construction of near-complete libraries of fluorescent
protein fusions, first in Escherichia coli (Kitagawa et al.,
2006) and more recently in Caulobacter crescentus
(Werner et al., 2009). Both collections have been imaged
by snapshot analysis (single-time-point imaging), which
revealed many examples of proteins with nondiffuse locali-
zation patterns, e.g. polar, bipolar, ring-like, punctate, etc.

At the same time, in the absence of time-lapse imaging,
it is nearly impossible to differentiate between cell-to-cell
variation and cell-cycle-dependent localization. We do not
yet know the extent to which bacteria can target proteins
to specific cellular positions at specific times during the
cell cycle. How many distinct spatiotemporal addresses
are in rod-shaped bacterial cells and how precise are
these addresses? To what extent does typical protein
localization vary during the cell cycle? Even for known
cellular addresses, e.g. the cell poles, it is not clear
whether or not proteins localize to the pole in a stochastic
or temporally defined pattern.

To answer these questions and establish a global
picture of protein localization dynamics in the bacterial
cell, we undertook a genome-scale quantitative charac-
terization of both the spatial localization of proteins and
the cell-cycle-dynamics of these localization patterns in
the rod-shaped gram-negative bacterium E. coli. To
accomplish this goal, we developed an approach that was
motivated by a central challenge in the interpretation of
time-dependent protein localization data in prokaryotic
cells: The stochastic nature of chemical and physical pro-
cesses on a molecular-scale produces both significant
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cell-to-cell variation and temporal fluctuations that may
have little physiological significance.

By combining high-throughput time-lapse imaging and
automated image analysis, we are able to collect hun-
dreds to thousands of complete cell cycles for each
protein fusion, allowing us to quantitatively characterize
mean protein localization dynamics for nearly every
protein that displays nondiffuse localization. Our analysis
reveals that even a bacterial cell without obvious morpho-
logical complexity can still exhibit robust, reproducible and
strikingly diverse complexity in the spatial and temporal
structure of protein localization patterns.

To visualize average protein localization and compare
localization behaviors between proteins, we define the
consensus localization pattern (the mean over single-cell
images), which captures both the spatial and temporal
structure of protein localization over the entire cell cycle.
Hierarchical clustering and principal component analysis
(PCA) reveals large groups of proteins with similar locali-
zation patterns, many of which are familiar (cytoplasmic,
nucleoid, membrane, Z-ring, bipolar, unipolar), but there is
significant and reproducible variation within these catego-
ries. Detailed analysis of DNA-binding protein localization
patterns reveals considerable spatial complexity: Many
DNA-binding proteins appear to consistently bind to a
small number of sites on the nucleoid. Proteins that are
targeted to the cell poles or midcell arrive at these target
locations at distinct times, demonstrating considerable
temporal complexity in protein localization. Finally, the
explicit observation of protein localization throughout the
entire cell cycle also facilitates the analysis of protein
partitioning between daughter cells at cell division. We find
that many proteins are partitioned with strong asymmetry
between daughter cells, including the surprising observa-
tion of a number of DNA-binding proteins that are prefer-
entially partitioned to the daughter cell with the new cell
pole.

Results

Construction of the localization library

To apply quantitative analysis to protein localization
dynamics, we began with an existing library of fluorescent
fusions: the complete ASKA green fluorescent protein
(GFP) fusion library (Kitagawa et al., 2006). To build a
dynamic protein localization library, as a first pass we
screened the existing collection of ASKA snapshot data by
eye to identify those protein fusions that display nondiffuse
localization, resulting in a reduced library of 864 fusions. To
this collection we added five additional (non-ASKA) fusions
of interest that were not represented or known to show
aberrant localization in the ASKA collection (SlmA, MukB,
MreB, MinD, Ssb), bringing the final library to 869 unique

protein fusions, approximately one-fifth of the E. coli pro-
teome. The resulting localization library was reimaged
using high-throughput time-lapse fluorescence micros-
copy with a frame-capture rate of 6–8 min, described in
detail in Experimental procedures. Briefly, log-phase cells
grown in minimal liquid media were spotted onto large
format agarose pads. The pads were then sealed with a
coverslip and imaged using a wide-field fluorescence
microscope outfitted with an environmental chamber
(30°C, doubling time ∼ 60 min). Images were then seg-
mented: processed to identify cell boundaries from the
corresponding phase contrast images and linked frame to
frame to build cell cycles. Only complete cell cycles, i.e.
cells in which both cell birth and division were explicitly
observed, were kept for analysis, necessarily precluding
filamentous and nongrowing cells. In a typical experiment,
hundreds of complete cell cycles are captured for each
protein fusion.

The ASKA library has three potential limitations: (i) the
fluorescent fusions are expressed from an inducible pro-
moter on a high-copy plasmid, therefore the total protein
abundance is greater than the physiological concentration;
(ii) GFP typically does not fold properly in the periplasm
(Feilmeier et al., 2000), thereforeASKAfusions to periplas-
mic proteins are often nonfunctional and thus the localiza-
tion library is biased toward cytoplasmic proteins; and (iii) in
addition to the C-terminal GFP fusion, the protein fusions
also have an N-terminal histidine tag. Both C- and N-
terminal fusions can potentially lead to loss of function and
localization, and may even exhibit artifactual localization
as the explicit result of the fusions (Swulius and Jensen,
2012).1 To account for the effects of fusion protein concen-
tration on localization behavior, we imaged the entire locali-
zation library at two separate induction levels (50 and
500 μM, see Experimental procedures). Most localization
patterns (> 70%) were qualitatively robust to protein con-
centration. Notable exceptions are the cell division proteins
FtsZ and FtsA, and ∼ 250 fusions that tend to form polar-
localized aggregates (likely inclusion bodies) at the higher
induction level. Although this subset of polar-localized
aggregates is likely artifactual, the majority of protein
fusions in the localization library exhibit a broad range of
dynamic yet reproducible localization patterns that are
consistent with expected protein function.

It would be ideal to image all fusions under physiologi-
cal relevant expression levels, but many proteins are not
expressed at robust-enough levels to be visible under
standard imaging conditions. If these proteins had been
expressed from their endogenous promoter, the practical

1 A rough estimate of what fraction of proteins show aberrant locali-
zation can be taken from Werner et al. (2009), who constructed a
C. crecentus library with both N and C-terminal fusions. Of the pro-
teins that were localized with the C-terminal fusion, roughly 40% also
showed consistent localization with the N-terminal tag.
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limitations of fluorescence microscopy would lead to
bleaching the low numbers of protein in a single exposure,
all but precluding the capture of cell-cycle dynamics.

Therefore, in the context of this study where we explic-
itly attempt to characterize the cell-cycle dynamics of pro-
teins at a genomic scale, the experiment is only tractable
with the expression levels used in the study. Given these
constraints, the use of the ASKA collection is both expe-
dient and necessary.

Visualization of complete cell cycles

One of the challenges of high-throughput cell-cycle
imaging and analysis is visualizing the complete data set
in a meaningful way (Sliusarenko et al., 2011). To effi-
ciently visualize our complete cell-cycle data, we organize
each individual cell-cycle images sequentially into a
single-cell tower image, in which the cell images are
arranged vertically with the first frame of the cell cycle at
the top and the final frame (prior to division) at the bottom.
Furthermore, as the entire cell cycle is captured, each cell
image in the single-cell tower can be oriented to place
the new cell pole (the pole produced from the previous
division) on the right-hand side (Stewart et al., 2005).
Figure 1 shows representative single-cell tower images
for nine proteins of known function that exhibit a wide
array of dynamic localization, e.g. unipolar, bipolar, Z-ring,
etc. Each single-cell tower image qualitatively recapitu-
lates known protein localization behavior, although there
is significant cell-to-cell variation in cell-cycle-duration,
cell size and cell shape between the individual single-cell
tower images.

To benchmark the performance of our high-throughput
imaging, we used several metrics:

i. First, we qualitatively compared our time-lapse images
with the snapshot images generated in the original
ASKA study of 192 proteins. In all cases, these images
were consistent with the published results.

ii. For proteins of particular interest to our lab, we com-
pared our images with other localization studies. Our
tower images for many proteins, including H-NS, Tsr
and FtsZ (Fig. 1), are consistent with previous reports
(Sourjik and Berg, 2000; Errington et al., 2003; Wang
et al., 2011). Nevertheless, some well-known proteins
(MukB, MreB, MinD, Ssb) showed aberrant localiza-
tion patterns in both our imaging and the original ASKA
study, suggesting that the ASKA fusion was not func-
tional. In these cases, we supplemented the ASKA
collection with strains that show the accepted localiza-
tion pattern as described above, although we have not
yet supplemented the collection in all cases where we
know that the ASKA fusion shows aberrant localization
(for example, MinC, MukE).

iii. Finally, we used the localization pattern of number of
fusions to benchmark the performance of the segmen-
tation and cell linking. The Z-ring associated protein
FtsZ is a useful tool in evaluating the ability of the
segmentation algorithm to accurately recognize cell
division as the Z-ring is known to rapidly depolymerize
from the new cell pole (the pole that originated from
the last division, i.e. the center of the mother cell) at the
beginning of the cell cycle. Manual inspection of the
data revealed that this depolymerization event obvi-
ously occurred in the first frame of the cell cycle in 870
out of 974 complete cell cycles inspected. To determine
whether the membrane is included in the segmented
area, we inspected the single-cell tower images for
proteins known to localize near the cytoplasmic mem-
brane. Although the maximum fluorescence intensity is
significantly reduced due to localization to the relatively
large surface area of the membrane, single-cell tower
images of known membrane-associated proteins such
as NupG (nucleoside transporter), QseC (sensory his-
tidine kinase), NanT (siliac acid transporter), and NikB
(nickel transporter subunit) all show obvious cytoplas-
mic membrane localization.

Determination of mean localization dynamics

To identify common motifs in protein localization patterns
in the presence of significant cell-to-cell variation, we
developed a quantitative method for uniformly character-
izing mean localization dynamics: For each protein in the
collection, the single-cell tower images were computation-
ally interpolated to a reference cell cycle of uniform size
and cell-cycle duration, and then the mean and standard
deviation of all interpolated single-cell tower images were
computed. We refer to the normalized mean image as the
consensus localization pattern, shown to the left of each
single tower image collection in Fig. 1. This method allows
for quantitative comparison between protein localization
patterns as well as a measure of cell-to-cell variation. The
consensus localization pattern captures many features of
the qualitative behavior found in the single-cell tower
images, though it is important to note that the consensus
localization pattern is not necessarily a representative cell
cycle but rather a mean over cell-to-cell variation.

To evaluate the efficacy of consensus localization pat-
terns in the study of localization dynamics, we carefully
examined several proteins whose localization had previ-
ously been analyzed. To determine if consensus localiza-
tion patterns could retain the spatial details of the single-
cell tower images, we focused on several proteins
with specific, well-characterized patterns: FtsZ, SeqA and
MinD.

FtsZ, the tubulin-like protein that polymerizes to form
the cytokinetic Z-ring, is positioned at midcell with a
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Fig. 1. Consensus localization patterns and single-cell tower images for proteins HisG, MreB, MinD, UidR, SeqA, H-NS, Tsr, MalI and FtsZ.
Single-cell tower images capture protein localization dynamics in single cells. For each protein, 9–15 complete cell cycles are shown in false
color. For SeqA, like many proteins in the collection, the single-cell tower images display significant cell-to-cell variation in protein localization,
despite qualitative similarities. To visualize average dynamics and to facilitate the quantitative comparison between protein localization
patterns, we compute the consensus localization pattern by computing the mean localization pattern over all single-cell data for each protein.
This figure is available in colour online at wileyonlinelibrary.com.
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precision of 2% of cell length (Errington et al., 2003;
Lutkenhaus, 2007). For proteins like FtsZ, for which there
is minimal cell-to-cell variation in the protein localization,
the consensus localization pattern captures a detailed
picture representative of the structure in single cells. For
instance, the ring-like structure of FtsZ is revealed by
bright symmetric foci at midcell (Fig. 1). Furthermore, it is
clear from the consensus localization pattern that the
radius of the ring contracts at the end of the cell cycle.

Proteins like SeqA(replication initiation regulator), which
form punctate foci and short filaments, are not as precisely
positioned and thus show more cell-to-cell variation in the
single-cell tower images (Fig. 1). Consequently, the con-
sensus localization pattern for SeqAis more representative
of the probability that a focus is at a particular location in the
cell rather than a representative protein localization pattern
for a single cell (Onogi et al., 1999).

A third instructive example is MinD, the ATPase of the
min-system, which oscillates between poles with a period

of roughly 1 min (Lutkenhaus, 2007). The consensus locali-
zation pattern averages over these oscillations, revealing a
minimum at midcell, but does not capture the oscillations
that occur on a time scale much faster than our frame-
capture rate. In conclusion, the consensus localization
pattern effectively captures the cell-to-cell mean protein
concentration, but some important features are not cap-
tured as a consequence of cell-to-cell averaging.

To evaluate the efficacy of the analysis of the consen-
sus localization pattern in determining the timing or order-
ing of events during the cell cycle, we examined the
localization dynamics of two specific cellular processes
where the ordering of protein localization has previously
been described. In the first example, we analyze the
dynamic co-localization of MukB, an SMC-like protein
involved in chromosome segregation, and SeqA, a regu-
lator of replication initiation (Hiraga et al., 1989; Lu et al.,
1994). This analysis is shown in Fig. 2A. To focus on the
long axis positional dynamics, we display mean protein

Fig. 2. Cell-cycle timing probed by consensus localization patterns. To demonstrate the ability of consensus localization patterns to determine
cell-cycle timing, we analyze the localization patterns of proteins in two processes where the cell-cycle ordering of protein localization is
already known. Consensus location patterns are represented as kymographs.
A. SeqA and MukB are proteins implicated in chromosome replication and segregation. Consistent with previously reported results, the
kymographs show MukB arriving at the quarter-cell position prior to SeqA.
B. FtsZ, MinD and SlmA are proteins implicated in cytokinesis. Both MinD and SlmA are known to inhibit FtsZ-dependent Z-ring formation. The
kymographs show significant FtsZ localization at midcell only after MinD and SlmA are depleted from midcell, consistent with the known
mechanism of z-ring regulation. This figure is available in colour online at wileyonlinelibrary.com.
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localization as a kymograph. The MukB kymograph
shows maxima in fluorescence intensity on either side of
midcell throughout the cell cycle, whereas SeqA appears
initially centered around midcell, before moving to the
quarter cell positions at time 0.7 cell cycles (because the
single-cell towers have variable cell-cycle length, the con-
sensus image time must be measured relative to the cell
cycle). This conclusion is consistent with previous results
(Ohsumi et al., 2001).

In the second example, we return to the cytokinetic
Z-ring. The MinCDE system (Lutkenhaus, 2007) and
SlmA, a nucleoid occlusion factor (Bernhardt and de Boer,
2005), are both inhibitors of Z-ring formation. The kymo-
graphs in Fig. 2B both appear to be consistent with the
accepted model that the Z-ring forms only after MinD and
SlmA are depleted at midcell. Again, these results are
consistent with previous detailed analyses, and therefore
support the efficacy of the analysis of the consensus
localization pattern in determining cell-cycle timing.

Public database for localization data

To allow for efficient visualization and sharing of our
dynamic protein localization library, we have developed a
publicly accessible online database with all the raw and
processed data, as well as analysis scripts, organized in
a searchable list (http://mtshasta.phys.washington.edu/
localizome). The database is organized by gene name,
such that each individual fusion has a unique page with
consensus localization patterns for multiple induction con-
ditions, as well as the single-cell tower images and addi-
tional analyses for each, which can be easily browsed and
downloaded.

Comparison of consensus localization patterns at the
genome scale

Although the consensus co-localization technique dem-
onstrated in Fig. 2 works well for the comparison of a
small number of proteins, we also want to efficiently
compare the localization dynamics for any set of proteins
in the collection. To do this, we compute the distance
between all consensus localization patterns to generate a
distance matrix, shown in Fig. 3 and described in more
detail in the Experimental procedures. Briefly, all proteins
in the localization library are indexed as rows and
columns of a large matrix. The entry in the matrix corre-
sponding to arbitrary proteins A and B (row ‘A’, column
‘B’) is defined as the distance between the proteins, DAB,
where distance is calculated by subtracting the two con-
sensus localization patterns from each other, such that
similar patterns have distance D = 0 while orthogonal pat-
terns have distance D = 1 (due to normalization). This
metric explicitly compares localization throughout the cell

cycle. To find proteins with similar dynamic localization
patterns to a protein of interest, we find the smallest
elements (the shortest distances) in the row correspond-
ing to the protein of interest. The 10 most similar locali-
zation patterns for each protein are included in the online
database for each protein in the localization library. The
proteins are ordered in the matrix by hierarchical cluster-
ing to group proteins with similar localization patterns,
giving the distance matrix a block-diagonal structure.
Blue blocks along the diagonal of the matrix represent
groups of proteins with similar localization patterns. For
example, proteins IlvE and YneH both appear to form
unipolar inclusion bodies that result in nearly identical
consensus localization patterns (Fig. 3). Hierarchical
clustering groups these proteins together, with others, in
cluster with a dark blue diagonal block representing a
group of patterns that are both highly similar to each
other while significantly distinct from the other patterns in
the library. In contrast, DNA-binding proteins UidR (tran-
scriptional repressor), H-NS (global transcriptional regu-
lator) and Ssb (single-stranded binding), which are all
known to localize to the nucleoid, all cluster to the top-left
corner of the distance matrix.

To evaluate the efficacy of the distance matrix in the
comparison of localization patterns, we again examined
proteins with previously described spatial and temporal
localization patterns. For proteins with relatively distinct
consensus localization patterns like FtsZ and SeqA, the
top match in the collection of consensus images was the
same protein imaged under other induction conditions.
After itself, the best match for FtsZ is FtsA, which is known
to bind to FtsZ whenever FtsZ is localized (Errington
et al., 2003). Both results support the use of the distance
matrix in the identification of protein with similar localiza-
tion patterns.

Day-to-day variation and protein
copy-number dependence

Defining the distance between localization patterns
permits us to discuss the error in the localization patterns in
a quantitative way. For this analysis, we focus on 48 strains
from the collection that we imaged multiple times under
identical induction conditions. To estimate the error from
analyzing a finite number of cells, we divided each single-
cell tower data set randomly into two subsets and com-
puted the consensus localization pattern for each subset.
The average distance between subsets was D = 0.01
(Note: identical patterns have distance 0 and orthogonal
patterns have distance 1). To estimate the day-to-day
variation, we computed the distance between two data sets
taken under the same induction conditions but on different
days. The average distance between matching pairs of
proteins was D = 0.03.
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Fig. 3. Virtual co-localization of all protein
pairs measured by distance between
consensus localization patterns.
(A) The distance matrix is visualized as a
heat map with (B) schematic representation of
block diagonal form and (C) a magnified
region of the distance matrix. Consensus
localization patterns that are identical have a
distance of zero (dark blue, see colorbar).
Representative examples of consensus
localization patterns and their positions in the
distance matrix are shown above and below
the matrix. This figure is available in colour
online at wileyonlinelibrary.com.
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To investigate the dependence of localization on the
amount of protein in the cell, we compared localization
patterns of the ASKA plasmid expression constructs for
high (500 μM) and low (50 μM) IPTG induction conditions.
The average distance between matching pairs of proteins
was D = 0.03, essentially identical to the day-to-day error.
Therefore, as we observed qualitatively, protein abun-
dance does not appear to impact the majority of localiza-
tion patterns.

Classifying localization patterns by PCA

To identify common motifs in protein localization associ-
ated with distinct localization mechanisms and cellular
functions, we initially attempted to group localization pat-
terns using the sorted distance matrix alone. Although the
distance metric is effective at identifying similar localization
patterns, it fails to identify distinct groups of localization
patterns. An alternate and fruitful approach is dimensional
reduction by PCA, which identifies the dominant patterns of
localization (Cohen and Moerner, 2007; Ringnér, 2008).
Briefly, the principal components (PCs) of the localization

library are a set of orthogonal basis images constructed
such that any consensus localization pattern in the collec-
tion can be represented as a unique linear combination of
PCs added to the mean consensus localization for the
entire collection (shown schematically in Fig. 4A). The PCs
are sorted by their power, where by definition the first PC,
i.e. the PC with the highest power, represents the largest
variance from the mean consensus localization pattern.
For each protein in the collection, the contribution of the i’th
PC to that protein’s consensus localization patterns is
quantified by a projection coefficient Ai. The first 20 PCs for
the entire localization library are shown in Fig. 4B.

The PCs should not be interpreted as consensus locali-
zation patterns but maps of protein redistribution from the
mean consensus localization pattern. To emphasize this
point, we use distinct color maps for fluorescence inten-
sity (always positive) versus PC (positive and negative).
Each PC sums to exactly zero at each time point, and for
a positive projection coefficient Ai protein is depleted from
green regions and enriched in red regions (vice versa for
negative coefficients). For instance, the second PC con-
trols the relative localization of protein between the mem-

Fig. 4. Consensus localization pattern diversity analyzed by PCA.
A. Schematic view of PCA of consensus localization patterns. In PCA, each consensus localization pattern A is represented as a sum PCi with
projection coefficients Ai. The PCs are ordered by their significance (power) in representing the library of consensus localization patterns. The
PC with the highest power is labeled PC1.
B. Visualization of the first 20 PCs. The PCs should not be interpreted as localization patterns, but rather as the redistribution of protein from
the mean consensus localization pattern.
C. The power spectrum for the first 200 PCs. There are 17 PCs with power greater than the power corresponding to a single consensus
localization pattern. This figure is available in colour online at wileyonlinelibrary.com.
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brane and the nucleoid: When projection coefficient A2 is
positive, protein in the mean consensus localization
pattern is depleted from the nucleoid and enriched toward
the membrane.

To analyze the diversity in library of consensus locali-
zation patterns, we normalized the PCA, such that power
corresponds to the number of consensus localization pat-
terns that have significant contribution from a particular
PC. Therefore, a PC with power one corresponds to the
covariance contribution of a single consensus localization
pattern. For the entire localization library, 17 PCs were
identified with powers greater than the power correspond-
ing to a single localization pattern (power spectrum is
shown in Fig. 4C). To determine whether these less sig-
nificant PCs were noise or legitimate differences in protein
localization, we randomly generated two nonoverlapping
subsets of the cell-cycle data. We repeated PCA on each
subset, and then compared the resulting PCs from each
subset. The PCs remained correlated beyond the power
cut-off, consistent with these patterns corresponding to
significant variation in protein localization (see Supporting
Information Fig. S1).

Identification of common localization patterns for
DNA-binding proteins

To explore the diversity of localization patterns in more
detail, we next focused on a subset of proteins that is of
general interest and also exhibit large variability in consen-
sus localization patterns: DNA-binding proteins. To con-
struct this subset, we generated a list of all known DNA
binding proteins by gene ontology classification (The Gene
Ontology Consortium, 2000) and reexamined our data only
for these proteins. From this collection of consensus locali-
zation images, we removed all the patterns with large
polar-located protein aggregates (likely nonfunctional),
leaving 164 consensus localization patterns. We then
recalculated the PCs for this subset of DNA-binding protein
localization patterns. The resulting PCs for DNA-binding
proteins were labeled ‘PCD’ to distinguish them from the
PCs of the entire collection described above.

Figure 5A shows the first four PCDs; the power spec-
trum for the PCDs is similar to the PCs described above,
but we only describe the first four here for conceptual
illustration. We have also labeled each PCD with a quali-
tative descriptor of its effect on the mean DNA-binding
protein localization pattern (described in detail below). C
and D of Fig. 5 show the projection coefficients for the
DNA-binding protein consensus localization patterns
along the first four PCDs: A large positive projection along
an axis indicates that the protein localization pattern is
well represented by the associated PCD with a positive
projection coefficient. We show representative patterns
for positive and negative projections along each axis.

Note that these patterns are not derived from any spe-
cific proteins, but rather are constructed from the PCs
themselves (Fig. 5B).

The first PCD (‘Midcell’) captures the longitudinal
arrangement of the protein. When the projection coeffi-
cient is positive, the protein is localized toward the middle
of the nucleoid with respect to the long axis of the cell.
When the projection is negative, the protein is on average
spread (more) uniformly over the entire length of the
nucleoid. To identify proteins with distinctive localization
behaviors, we have labeled outliers in Fig. 5C, i.e. pro-
teins with large positive or negative projections, e.g.
MukB, SeqA, MalT and YgeV.

The second PCD (‘Ter’) characterizes whether the
pattern is similar to the movement of the chromosome
terminus, which moves from the new pole (previous divi-
sion site) early in the cell cycle to midcell. The known
binding site for the transcription factor MalI is located
∼ 120 kb from the terminus (Reidl et al., 1989); therefore,
we would expect its localization dynamics to be similar to
the terminus. Indeed, as is shown in Fig. 5C, MalI has the
largest positive projection coefficient along the ‘Ter’ PCD

axis of any of the DNA binding proteins, although a number
of other transcription factors show similar localization
behavior, e.g. NagC, PerR and YjiE (see Fig. 1 for MalI
single-cell tower images and consensus localization
pattern).

The third PCD (‘Surface’) characterizes the distribution
of protein along the short axis of the cell, roughly whether
the protein is localized on the outside surface of the nucle-
oid or near the core of the cell. Using this projection, the
Z-ring inhibitor SlmA appears to be localized on the
outside of the nucleoid, consistent with its reported role of
regulating the positioning of the cytokinetic Z-ring (see
Fig. 2) (Bernhardt and de Boer, 2005). By contrast, a
number of proteins that form punctate foci, e.g. MalT,
MalI, PerR, etc., all appear to be localized near the core of
the nucleoid, suggesting that their gene targets are typi-
cally inside the nucleoid.

The fourth PCD (‘Origin’) characterizes whether or not
the pattern is similar to the movement of the origin of
replication, oriC, which is well localized to midcell at the
beginning of the cell cycle and rapidly moves to the quarter-
cell positions following replication (Reyes-Lamothe et al.,
2008). As an example, the protein SeqA regulates the
initiation of chromosome replication by coating and
sequestering the newly replicated origins, and therefore
we would expect it to have a similar localization pattern as
oriC. Indeed, as is shown in Fig. 5D, the SeqA projection
with the ‘Origin’ PCD is located far above the x-axis, along
with a number of other factors, including MukB, a protein
thought to be involved in the chromosome segregation
process (Hiraga et al., 1989). Proteins below the x-axis in
Fig. 5D (negative coefficients) like MalI tend to be localized
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far away from the origin of replication for most of the cell
cycle.

Protein partitioning at cell division

In addition to characterizing mean protein localization
throughout the entire cell cycle, this large collection of
single-cell data also allows us to quantitatively character-
ize how individual proteins are partitioned at cell division,
including the consideration of the equivalence of daughter
cells produced by the parent. To characterize the symmetry
of partitioning, we compared the amount of protein distrib-
uted between the two daughter cells, shown in Fig. 6A, for
three representative proteins: UidR (transcriptional repres-
sor), HisG (ATP phosphoribosyltransferase) and MalI
(transcriptional repressor). To quantitate the asymmetry,

we measure the integrated intensity (roughly the amount of
protein) in the new-daughter (the cell with the new pole)
and in the old-daughter. Figure 6B shows a plot of old-
daughter integrated intensity versus new-daughter for
UidR, HisG and MalI, demonstrating three distinct partition-
ing behaviors: UidR partitions nearly symmetrically, HisG
almost always partitions completely to the old-daughter,
and MalI has a mixed population of completely old-
daughter and completely new-daughter partitioning.

To investigate asymmetric partitioning for the entire
localization library, we calculate the mean integrated inten-
sity in old- and new-daughter cells for each protein in the
collection, Iold and Inew respectively, which are plotted in
Fig. 6C. Using the mean integrated intensity, we quantify
the partitioning asymmetry fraction of protein partitioned to
the old-daughter: χold = Iold / (Iold + Inew). For robustness, we

Fig. 5. Identification of common localization patterns for DNA-binding proteins.
A. Schematic view of PC representation of a consensus localization pattern A as projection coefficients (Ai) of the DNA-binding protein PCD.
The PCDs are labeled by their qualitative effect on protein localization, e.g. the ‘Middle’ redistributes protein toward the center of the nucleoid
with respect to the cell long axis, while ‘Surface’ rearranges protein to the outer surface of the nucleoid with respect to the short axis of the
cell.
B. To visualize the effect of each PCD on protein localization, we generated representative patterns shown on each axis of C and D.
C. Projections of consensus localization patterns for along PCD1 (‘Midcell’) and PCD2 (‘Ter’). Outlying patterns are labeled by gene name.
D. Projections of consensus localization patterns for PCD3 (‘Surface’) and PCD4 (‘Origin’). Outlying patterns are labeled by gene name. This
figure is available in colour online at wileyonlinelibrary.com.
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limited this analysis to proteins in which more than 100
complete cell cycles were collected (773 of 869 proteins).
The majority of proteins (480) in the collection appear to
partition symmetrically (χold = 0.5 ± 0.02) between daugh-
ter cells. In contrast, there are 258 proteins with χold signifi-
cantly larger than 0.52, i.e. showing preference for the
partitioning of these proteins to the old daughter, and 35
proteins with χold < 0.48, indicating enrichment of proteins
to the new-daughter cell. (A complete list of asymmetrically
partitioned proteins can be found in the Supporting Infor-
mation Fig. S1.)

Discussion

In this study, we present a quantitative, genome-scale
perspective on protein localization dynamics in bacteria.
Our high-throughput time-lapse microscopy and fast, reli-
able, automated image analysis allow us to collect hun-
dreds of complete cell cycles for nearly every protein that
exhibits nondiffuse localization during the cell cycle. This
approach has revealed many new insights into spatiotem-
poral organization in the bacterial cell that are unattain-
able by any other approach.

Protein localization patterns reveal complex
reproducible spatial structure

Although the original ASKA snapshot imaging study
revealed punctate cellular distribution for a large number
of fluorescently tagged proteins, this study was unable to
establish the reproducibility of positioning in individual
cells and to what extent variation between cells was the
result of cell cycle-related dynamics (Kitagawa et al.,
2006). Our analysis reveals that virtually all the proteins
that are nondiffuse do exhibit reproducible positioning
from cell to cell, although there is a significant range in the
precision of positioning. For example, because the nucle-
oid is well organized within the cell (Wiggins et al., 2010),
DNA binding proteins that target specific regions of the
chromosome exhibit differential localization as a conse-
quence of nucleoid organization. Both H-NS and MalI
form discrete puncta in the nucleoid, but MalI moves
between the new pole and midcell with high precision,
whereas H-NS puncta are less precisely positioned
throughout the nucleoid (Fig. 1). It should be noted that
the consensus localization patterns may show a more
spread localization pattern as a consequence of aligning
the single-cell tower images by new and old pole: The
E. coli chromosome is oriented in a left-right (LR) fashion
along the long-axis of the cell, and upon division the
daughter chromosomes tend to be oriented <LR-LR>
(Wang et al., 2006). Therefore, if a protein binds specifi-
cally to a site that is away from midcell, aligning the cells
by pole age will not maintain the <LR-LR> orientation and

Fig. 6. Asymmetric protein partitioning at cell division.
A. Representative consensus localization patterns and single-cell
tower images illustrating symmetric protein partitioning (UidR),
enrichment to the old-daughter cell (HisG) and enrichment to the
new-daughter cell (MalI).
B. Scatter plot of integrated intensity of the new-daughter and
old-daughter cells immediately following division for all single-cell
data of UidR, HisG and MalI.
C. The mean new-daughter (Inew) and mean old-daughter (Iold)
integrated intensity for all proteins in the localization library, where
green dots represent symmetric partitioning between daughter
cells, red dots represent enrichment to the old-daughter cell and
blue dots represent enrichment to the new-daughter cell. For
reference, the positions of UidR, HisG and MalI are indicated.
This figure is available in colour online at wileyonlinelibrary.com.
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cause the consensus pattern to be a mix of <LR> and
<RL> orientations. This mixed population will lead to the
mean protein localization appearing symmetric about
midcell, thus (more) uniformly spread along the length of
the chromosome.

Protein localization patterns reveal temporal structure

Bacterial cells also appear to show robust temporal
organization in addition to spatial organization. Note that
the consensus localization patterns, the distance matrix
and the PCA described here all include spatial and tem-
poral structure, and therefore the analysis of temporal
organization has been implicit throughout. Visual inspec-
tion of consensus localization patterns is consistent with a
number of known cell-cycle events: the formation of the
Min-system minimum at midcell (MinD), Z-ring formation
and contraction (FtsZ), initiation of replication and chro-
mosome segregation of oriC (SeqA), chromosome segre-
gation of ter (MalI), and the depolymerization of Z-ring
(FtsZ). The localization dynamics of all proteins in the
collection can be directly compared with these known
markers for cell-cycle timing using the online database.

Protein localization to cell poles

While the localization patterns and timing of the proteins
discussed above are well known, the behavior of many
proteins remains uncharacterized (Lybarger and Maddock,
2001). For instance, much less is known about the mecha-
nism by which factors are targeted to the cell poles. Strik-
ingly, visual inspection of the proteins with bipolar
localization clearly reveals a wide distribution in the arrival
times at the new pole, ranging from proteins arriving at
midcell before cell division, to proteins that show little
enrichment at the new pole after an entire cell cycle
(Fig. 7).

Protein localization patterns are diverse but overlapping

Analysis of the consensus localization pattern library
demonstrates a significant diversity of protein patterning,
consistent with the existence of a large number of mecha-
nisms responsible for protein localization. This diversity
can be observed in several contexts: consensus localiza-
tion patterns, distance clustering and PCA. Visual inspec-
tion of the consensus localization patterns shows many
qualitatively distinct protein localization patterns, even
among proteins with similar functional classifications, e.g.
the DNA-binding proteins UidR, H-NS and MalI in Fig. 1.
From a more quantitative perspective, the distance matrix
also reveals diversity of protein patterning (Fig. 3). The
sorted distance matrix shows a complex block diagonal
structure where blue blocks along the diagonal represent

clusters of protein with similar localization patterns. Unfor-
tunately, detailed analysis of the distance matrix reveals
a key shortcoming of distance-based clustering as a tool
for determining similarity: There exist large off-diagonal
regions of the distance matrix that are also blue (near-
zero distance), indicating strong overlap among clusters.

By contrast, the PCA representation identifies common
modes of variation between patterns, even if the mutual
distance between the patterns is large (Fig. 4). Further-
more, PCA provides a quantitative description (through
the projection coefficients and the PC) of exactly how
overlap between the particular modes of localization leads
to diversity in consensus localization patterns, as demon-
strated explicitly for the DNA-binding proteins. Analysis
of the PC power spectrum reveals 17 PCs with power
greater than the contribution of a single pattern, implying
qualitatively that at least 17 patterns are required to rep-
resent the observed data. If there where only a handful of
distinct localization mechanisms in the bacterial cell, we
would have expected only a small number of PCs with
high power. Instead, the observation of 17 PCs with power
above the level of a single pattern suggests a large
number of distinct localization mechanisms. Although
these PCs cannot be directly interpreted as a count of
localization mechanisms, it is indicative of the significant

Fig. 7. Diversity in polar localization timing. Representative
consensus localization patterns for proteins that localize to the cell
poles reveal a wide range of localization timing. Arrows indicate the
qualitative arrival time of proteins to the new cell pole. Proteins like
PerR, ZapA, TolQ and KdtA arrive at midcell (the nacent new pole)
prior to division, but with significantly different arrival times, while
YgeD, Tap, WcaB arrive at the new cell pole well into the following
cell cycle. Proteins such as SelA appear to never significantly
accumulate at the new cell pole. This figure is available in colour
online at wileyonlinelibrary.com.
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complexity, both spatially and temporally, in protein pat-
terning in bacterial cells.

Asymmetric partitioning of protein at cell division
appears widespread

Using the large collection of single-cell complete cell-cycle
data, we are also able to quantify how protein is parti-
tioned during cell division, quantitatively measuring the
equality of daughter cells. In general, the partitioning of
complexes at cell division is a problem of central impor-
tance to a great number of cellular processes. Many
mechanisms have been identified in eukaryotic cells to
regulate the partitioning of mRNA, proteins, chromo-
somes and organelles, either to ensure equal partitioning
between daughter cells (e.g. chromosomes) or asymmet-
ric partitioning (e.g. ash1) (Bobola et al., 1996), especially
in the context of development in multicellular organisms
(Jan and Jan, 1998). Experimental evidence has gener-
ally supported a symmetric model for E. coli cell division,
predicting equal partitioning of proteins and DNA, at least
up to stochastic fluctuations. This symmetric partitioning
model for factors with high mobility, diffuse localization
and high copy number (proteins, high-copy plasmids) is
consistent with a passive, diffusion-driven partitioning
mechanism. But for larger complexes with low mobility
and low-copy number (e.g. low-copy plasmids and the
chromosome), symmetric partitioning is believed to be a
result of an active process that ensures equal copy
number in the daughter cells. These active mechanisms
are of particular interest in prokaryotic cells as they lack
the typical molecular motors that drive analogous pro-
cesses in eukaryotic cells (Shapiro et al., 2009).

The majority of proteins in our collection appear to
partition symmetrically between daughter cells, although
approximately 40% of proteins demonstrate significant
asymmetry in partitioning. For proteins with strong enrich-
ment to the old-daughter cell, one mechanism of asym-
metric partitioning appears to be consistent with an
aggregation at the pole model: All protein fusions with the
partitioning fraction χold > 0.62 appear to form inclusion
body-like structures at the old pole, e.g. HisG shown in
Fig. 5A. There have long been observations that proteins
with polar localization tend to remain at the poles, which
would constantly contribute to enrichment of protein to the
old-daughter (Baneyx and Mujacic, 2004; Lindner et al.,
2008). Furthermore, recent work visualizing cell growth
has found evidence of asymmetry in the growth rates
between old- and new-daughters as defined by pole age
(Stewart et al., 2005). Because it is known that both over-
expression and protein fusions can promote the formation
of inclusion bodies, some of the old-pole localization pat-
terns are likely artifactual (Landgraf et al., 2012). For
weaker old-daughter bias (0.52 < χold < 0.62), a broad

range of cellular localization patterns is observed, includ-
ing bipolar localization. Proteins like Tsr and Tap, which
are known to localize to both poles, show a bias toward
partitioning to the old-pole as a result of the finite rate of
protein localization to the new pole (see Figs 1 and 7 for
Tsr and Tap consensus localization patterns respectively)
(Ping et al., 2008).

The partition plot in Fig. 6C reveals an unexpected
feature of protein partitioning: 35 proteins partitioned pref-
erentially to the new-daughter cell (χold < 0.48). To our
knowledge, this observation has never been reported
before in E. coli. Intriguingly, 16 of the proteins that tend to
asymmetrically partition to the daughter cell with the
newest pole are transcription factors (TFs), such as MalI
shown in Fig. 6A, suggesting that the daughter cells may
be differentially regulated as a function of cell age. It
should be noted that this observations pertain to E. coli, a
bacterial species without any obvious morphological dif-
ferentiation between distinct cell types.

Many transcription factors form punctate foci that move
with the chromosomal loci

Although the consensus localization patterns for most TFs
show a broad distribution of fluorescence, examination
of the single-cell tower images reveals an unexpected
feature: Nearly all of these asymmetrically partitioned TFs
appear to form punctate, well-localized foci. This observa-
tion is surprising because the typical number of TF binding
sites is much too small to localize enough fluorescent
protein to observe punctate foci using our imaging technol-
ogy. Although the formation of punctate foci could be an
artifact of either overexpression and/or the exogenous
C- and N-terminal fusions, we observe this unexpected
localization behavior at basal and high-induction levels,
suggesting that TFs may in fact play some uncharacterized
physiological role in addition to transcriptional regulation.
For example, it has recently been reported that GalR, a TF
involved in galactose metabolism, is also directly involved
in maintaining chromosome structure (Qian et al., 2012).
The TF localization behavior we observe may be evidence
for a new global model of bacterial TFs either (i) playing a
role in chromosome structure in addition to gene regula-
tion, or (ii) explicitly using higher-order chromosome struc-
ture as a regulatory mechanism. The latter could involve a
single transcription factor regulating a large number of
genes, the spatial sequestration of repressed genes or
other uncharacterized mechanisms of spatially dependent
regulation. As the localization of transcription factors was
unexpected, we performed one additional experiment to
investigate whether the observed foci were an artifact of
the ASKA collection fusion: We analyzed the localization of
MalI from a second fusion, MalI-Venus, expressed from the
endogenous locus. The results from this second construct
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were consistent with the ASKA results, suggesting that, at
least in the case of MalI, the localization results are not
purely artifactual. Further work beyond the scope of this
manuscript needs to be done to isolate exactly how these
novel localization behaviors and partitioning affect gene
expression throughout the cell cycle.

Conclusion

The observation of broad spatial and temporal complexity
of protein localization throughout the bacterial cell cycle,
including at cell division, provides strong support for the
emerging view of the bacterial cell as a highly structured
system. The observation of these phenomena in E. coli
suggests that complex cellular structure and asymmetric
cell division, once considered the hallmarks of complex
multicellular organisms, have primitive precursors in bac-
terial cells with even the simplest life cycles.

Experimental procedures

Bacterial strains and growth conditions

Nearly all strains (864/869) imaged in this study are from the
ASKA C-terminal GFP fusion library (Kitagawa et al., 2006). In
the cases of slmA, mukB, mreB, minD and ssb, which are
nonexistent or known to show aberrant localization in the
ASKA collection, we supplemented the library with additional
fusions, which were grown identically to ASKA strains except
with appropriate antibiotics (Fu et al., 2001; Ohsumi et al.,
2001; Bendezu et al., 2008; Reyes-Lamothe et al., 2010; Cho
and Bernhardt, 2013). ASKA strains were grown in 96-deep
well pates overnight to saturation in Luria-Bertani media (LB)
supplemented with 34 μg ml−1 chloramphenicol (Cm34) at
30°C. The strains were then diluted 1:25 into M9 minimal
media (1X M9 salts, 2 mM MgSO4, 0.1 mM CaCl2, 0.2%
glycerol, 10 μg ml−1 thyamine HCl, 0.2% casamino acids) with
Cm34 and allowed to grow to mid-log (doubling time approxi-
mately 45 min). Prior to imaging, the fusion expression was
induced with a 0, 50 or 500 μM concentration (as annotated in
the online database) of Isopropyl β-D-1-thiogalactopyranoside
(IPTG) for 40 min. Almost all strains were imaged under 2/3 or
all of the induction levels.

96-well format slide preparation

Forty-eight strains were imaged in a single experiment.
Approximately 1 μl of each induced liquid culture was spotted
onto large-format (2.4375″ × 3.6875″) agarose pads (0.2%
agarose in growth media, without IPTG) supported by a glass
slide using a 48-tyne pinner. The spots were allowed to dry
prior to the addition of the coverslip to ensure that each strain
remained isolated from its neighbors during imaging. The
coverslip was sealed using VALP (1:1:1 Vaseline, lanolin,
paraffin wax) to minimize the pad from drying. Sealed slides
were equilibrated for 1 h at 30°C prior to imaging to reduce
drift and allow for fluorescent protein maturation. The average
cell cycle duration for all strains under these growth condi-

tions was approximately 60 min, and a distribution of dou-
bling times for each strain is available on the online database.

Imaging

All imaging was performed on a Nikon Ti-E inverted wide-field
fluorescence microscope with an encoded XY-stage and the
Nikon Perfect Focus System. Image capture was performed
using an Andor Neo sCMOS camera, selected for its large
field of view (2560 × 2160 pixels) and high sensitivity, and a
60X Plan-Apo oil-immersion objective (1.4 NA). The cali-
brated pixel size was 108 nm, meeting the Nyquist Criterion
of two pixels per diffraction-limited spot. Fluorescence exci-
tation was generated by a high-intensity mercury lamp.
Image acquisition was controlled by NIS-Elements. Due to
finite exposure time, duration of stage translocation between
samples and the autofocus time, 48 strains could be imaged
at 6–8 min intervals.

Cell segmentation and linking

Phase contrast images were segmented to determine
regions corresponding to cells and the linking of these
regions to determine cell boundaries. Phase images were
smoothed and thresholded to determine the boundaries of
regions containing clumps of cells. The resulting image was
processed using the MATLAB magic contrast filter: at each
pixel, the minimum intensity value in a region, centered on
the pixel of interest, radius rm = 6 pixels, is subtracted from
the pixel of interest. The image is thresholded upward and a
standard watershed is then applied and masked by the cell
clumps mask. All internal boundaries between putative cell
regions are then divided into segments. Twenty characteris-
tics of each segment are computed, including second deriva-
tive of the phase image over the segment, length, mean
intensity, etc. A probability of existence is assigned to each
boundary segment using a maximum likelihood model (MLM)
evaluated on the segment characteristics. All segments with
existence probabilities above 99% are turned on, all segment
with existence probabilities below 1 × 10−4 are turned off and
the remaining segments are resolved in the next step. The
remaining boundaries are analyzed using an MLM, which
considers the shape of the resulting regions. Ten region char-
acteristics are computed for each putative region. The com-
bined likelihood of the segments and regions is maximized
together to determine the cell boundaries. Additionally, the
MLM can be user trained. To train the MLM, we assigned the
existence of segments and regions by hand on a training data
set, and then we optimized a parameterized model to predict
the probability of a given boundary exists and the probability
that a particular region is a cell. To get optimal performance
from the algorithm, one typically has to train the algorithm for
cell species, growth conditions, pixel size and magnification.
To generate cell-cycle trajectories, segmented regions must
be linked between successive frames. Regions with the most
overlap between successive frames are linked. After linking,
errors and inconsistencies are resolved. For instance, the
splitting of one region into two is only allowed if this splitting
persists for more than a frame. If the splitting is not persistent,
the regions are merged to resolve the lining error. Only cells
that are tracked without errors from division to division are
kept for analysis.
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Consensus localization towers

Segmented fluorescence images are background subtracted
by subtracting the mean fluorescence, throughout the frame,
in regions outside of cells. The cell image and mask in each
frame are then rotated to align the major axis of the mask with
the x-axis and placing the old pole (the new pole is created in
the last division) on the left-hand side. The rotated cells are
then arranged vertically in time, forming a cell tower. Each
cell tower is then interpolated onto a reference image tower
by the following method: The fluorescence channel and cell
mask are first dilated four times using linear interpolation. For
each frame of the cell stack, a reference configuration [a
rectangle with y width 36 pixels with circular caps with the
same length (× width) as the observed cell region] is gener-
ated. Dilation and shift transformation are applied to each
column of the fluorescence image to match the reference
configuration. The dilation and shift are those required to map
the column of the region mask to the column of reference
configuration. The closest frames are interpolated to gener-
ate an eight-frame life cycle of the cell where the cell length
interpolates smoothly between 104 pixels and 208 pixels. The
intensity values are scaled in frames 2–7 to leave the areal
mean of intensity constant throughout the cell cycle to com-
pensate for the bleaching or the loss of fluorescent protein
through proteolysis.

The distance matrix

The distance Mij between consensus localization patterns Ii

and Ij is defined as Mij = [(Ii − Ij)•(Ii − Ij)]1/2, where Ii is the inten-
sity normalized consensus tower image.

Calculation of PCs

Beginning with consensus localization tower images for all
fusions in the collection, we compute mean localization for all
towers:

I N Imean i
i

N

=
=

∑1
1

For each consensus image, we then calculate the differ-
ence from the mean localization pattern:

�I I Ii i mean= −

We then build the covariance matrix from the mean-
subtracted images:
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N

=
=
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And finally, we diagonalize the covariance matrix:

I CI Be e
− =1

The values in matrix B are the coefficients of the orthogo-
nal PCs; we sort the PCs from highest to lowest power by
their associated coefficients. The highest coefficient PC rep-
resents the localization pattern with the highest variance from
the mean localization, and the remaining are the next highest
variance with respect to the mean under the strict condition
that they are orthogonal to each other.
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