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Applications of visualization

It is advisable to start the analysis by scanning the data for pat-
terns and potential errors.1–3 Data exploration generally forms 
the first step toward understanding the data. Visualization 
as a key technique was discovered shortly after computers 
became widespread.4 Those visual displays are largely static.

Once exploration of the data has revealed patterns to 
be captured by the model, candidate model classes are 
assessed for their suitability of capturing these features of 
the data. A model class denotes a set of equations with 
parameters of unknown values. The model class is imple-
mented in a visualization tool that allows variation of the 
model parameters and visualization of the resulting model 
for the given set of parameters. Visualizing a model helps 
the modeling scientist to understand its characteristics and 
the influence of different parameter values on the shape of 
the outputs. Berkeley Madonna is an ideal tool for this pur-
pose for its simplicity and ease of implementation of a model.

When it is established that the candidate model class can 
capture the essential features seen in the data, the param-
eters can be estimated, typically in successively refined 
iterations. For example, the modeler might start by develop-
ing a suitable pharmacokinetic (PK) model, followed by a PD 
model for placebo subjects and finally a full PKPD model for 
all data, active and placebo.2,3

With the final parameter estimates available, the model 
needs to be qualified with evidence that the data could 
have been generated by the particular model. Visualiza-
tion techniques such as plots of observed vs. predicted 
data are employed.5 Generally, it is not sufficient to demon-
strate that the model captures the average or typical profile: 
it should also capture the variability of the data such that 
future experimental scenarios can be simulated with said 
variability. Visual predictive checks show the variability of 

simulations from the model against the variability observed 
in the data.6–9 This technique is purely graphical; the judg-
ment is based on visual inspection. The visual impression 
can vary depending on visualization parameters such as 
binning intervals and quantiles chosen for comparison. The 
technique has found its way into standard modeling soft-
ware such as NONMEM10 and Monolix.11

A good model captures all relevant features of the data—
and not more: making it as simple as possible, but not simpler 
(often credited to Einstein). From this stage onwards, all further 
information comes from the model and simulations thereof. 
Different doses and concentrations can be simulated along 
with the (model-predicted) PD responses and their variability.

At this point, the model can exert its full potential: clini-
cal teams and decision makers will query the model to esti-
mate and quantify results of different scenarios: what can 
be expected if we give a higher or lower dose, if we treat 
patients longer, or if we change the study inclusion criteria? 
How many subjects can be expected below or above a cer-
tain threshold? What is the risk of seeing any safety param-
eter below a critical threshold?

Many colleagues in clinical teams and project teams are not 
familiar with pharmacometric concepts, let alone techniques. 
Frequently, analyses are based on concentration–response 
or dose–response figures (or, worse, tables) with readouts 
taken at single time points (often with last observation car-
ried forward!). There is thus, very often, a communication gap 
between research scientists, toxicologists, occasionally stat-
isticians, translational and later development physicians vs. 
kinetically minded numerical data analysts, also known as 
pharmacometricians. The question, therefore, is how best to 
bridge this communication gap?

We believe the answer is in better model and data 
visualization.
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Population or other pharmacometric models are a useful means to describe, succinctly, the relationships between drug 
administration, exposure (concentration), and downstream changes in pharmacodynamic (PD) biomarkers and clinical 
endpoints, including the mixed effects of patient factors and random interpatient variation (fixed and random effects). However, 
showing a set of covariate equations to a drug development team is perhaps not the best way to get a message across.

Visualization of the consequences of the knowledge encapsulated within the model is the key component. Yet in many 
instances, it can take hours, perhaps days, to collect ideas from teams, write scripts, and run simulations before presenting the 
results—by which time they have moved on. How much better, then, to seize the moment and work interactively to decide on a 
course of action, guided by the model.

We exemplify here the visualization of pharmacometric models using the Berkeley Madonna software with a particular focus 
on interactive sessions. The examples are provided as Supplementary Material.
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Key principles

The key principles of good visualizations were established 
by eminent researchers in the field, in particular the works 
by Tufte.12–14 These general principles apply directly to clinical 
data visualization. Some of the key principles are summa-
rized as follows15,16:

•	 Provide a clear message. 
•	 Restrict visualizations to a few different types: varying 

types of display asks for familiarization with each new 
type of graph, requiring more time to understand and 
interpret correctly. 

•	 Show the quantity of interest: if the measure of interest 
is the placebo-corrected treatment effect, show it (not 
the separate effect of active and placebo treatment—
this leaves it to the reader to interpret the difference). 

•	 Colors should be used only if they help interpretation: 
use intuitive colors, if any (for example green for clinical 
response (green = good), yellow for stable disease and 
red for disease progression (red = bad) or blue for male 
and pink for female data. 

•	 Use plotting symbols such that they help interpretation: 
if the categories have an order (e.g., dose groups), use 
symbols with an intuitive meaning or ordering (letters A, 
B, C; dash (two edges), triangle (three edges), square 
(four edges), etc., or even, if space permits, more than 
one character, e.g., the dose administered in milligrams). 

•	 Use lines only for ordered data (time profiles, ordered 
categories) but not for data with no inherent order (sex, 
race, etc.). 

•	 Auxiliary faint lines help reading values more accu-
rately, e.g., faint gray horizontal and vertical lines going 
through the axis tick marks. 

•	 Indicate thresholds of interest: for change from base-
line, indicate the line of no change (y = 0) or a par-
ticular threshold of interest (e.g., 75% reduction from 
baseline). 

•	 For a time axis, 
•	 Choose appropriate time intervals and axis tick 

marks, e.g., 24 h, weekly, 28 days or dosing intervals.
•	 Indicate dosing events, if not too many (small sym-

bols—preferably arrows—or faint vertical lines). 
Alternatively, indicate the duration of treatment with 
a bar.

For PK/PD visualizations in particular,

•	 For the modeling results to have an impact, it is vital to 
communicate efficiently the final model’s features to the 
clinical team and the decision makers. By means of both 
static and interactive graphics, clinical scientists can be 
guided toward a more complete kinetic understanding of 
dose–concentration–time–response relationships. 

•	 To enable understanding of the model components, 
show them individually: absorption, elimination, time 
around Cmax (PK), placebo response, circadian 
rhythm (PD), etc., are understood more easily if they 
are not overlaid by other components. 

•	 Show the quantity of interest: not only estimated 
response and confidence intervals but e.g., the esti-
mated percentage of patients crossing an efficacy or 
safety threshold as a function of time, drug concentra-
tion, or dose (or combination thereof). 

The impact of interactive visualization

Model visualization is, nowadays, an integral part of the 
model development process and its importance is well recog-
nized.5,17,18 Previously, scenarios were shown and discussed 
that were prepared beforehand, limiting the discussion. Now 
computers are faster and software is available to move to the 
next level, interactive model visualization. Interactive visual-
ization allows what-if questions to be answered on the spot, 
providing the results of interest (almost) in real time. Ques-
tions about the impact of different doses, regimen, patient 
characteristics, or inclusion criteria can be answered in a 

Figure 1 Clinical trial simulation for blood pressure change. Simulated drug concentrations and blood pressures (a, bottom and top curves) 
and fraction of patients experiencing a positive outcome (b, reduction of blood pressure by at least 20 mm Hg 72 h after start of treatment). 
Ten simulations are overlaid showing percentages of successful outcomes for doses from 0 to 200 mg. Colors indicate subjects (panel a) and 
simulated studies (panel b).
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meeting, making the discussion substantially more effective 
and efficient. We have illustrated some of the principles out-
lined earlier with applications in Berkeley Madonna.

Bonate19 defines the steps for model development as 
problem analysis, experimental conduct, data collection and 
cleaning, model formulation, model fitting, model checking, 
validation, interpretation, and communication (with itera-
tions). We have focused on the steps that help understanding 
and communicating the model, including the exploration of 
alternatives as well as interpretation and communication.

Working with clinical teams
What are typical questions asked by drug development 
teams? 
A typical well-defined question is “what is the minimum con-
centration or dose required to reduce blood pressure by at 
least 20 mm Hg prior to dosing on day 3 of treatment in at 
least 80% of all patients treated?.” Alternatively, “what dose 
and/or regimen is required to prevent a flare in patients’ dis-
ease symptoms in at least half the patients in the 6 months 
after start of treatment?” or “if we design a phase 3 study like 
this (…) what can we expect the results to look like? How 
certain will we be?”; “How many patients should we study 
and when should the measurements be taken to achieve a 
statistically significant outcome with at least 80% chance?.”

Ideally, it should be possible to answer questions like these 
in a meeting with the key thought leaders of the clinical or 
project team. With appropriate simulation tools, this is pos-
sible. We introduce here two examples to exemplify what’s 
possible; both have been used with project teams. We then 
return to the foundations, building on the basics to enable 
tutees to implement such simulations for themselves.

In Figure 1, 100 simulated concentration–time profiles 
are shown (left, bottom curves, and right-hand side axis) 
together with the corresponding simulated blood pressure 
measurements (top curves, left-hand side axis). The right-
hand side figure has the statistical evaluation of 100 simu-
lated patients for doses from 0 to 200 mg (in steps of 10 mg): 
the percentage of patients reaching a reduction from base-
line of at least 20 mm Hg at 72 h after start of treatment. Ten 
such simulations were run and overlaid, illustrating the vari-
ability in the expected outcome. In this example, doses of 
120 mg achieved the desired effect, on average (i.e., in about 
half the simulated studies), while doses of 150 mg achieved 
the desired effect in all 10 simulated studies—a more robust 
outcome and therefore better to test in reality.

Figure 2 has a simulation of the proportion of patients 
exhibiting at least one flare or exacerbation episode of their 
symptoms, for a randomized treatment withdrawal after 56 
days with 18 patients per arm. Because of the random selec-
tion of patients with different demographic characteristics 
and random variation in drug and system parameters, the 
simulated trial outcome varied from one simulation to the 
next. If the simulation was repeated 100 times and the results 
overlaid, the degree of variability one would expect to have in 
the trial outcome is visualized. The team can thus select the 
right dose and the right measurement times and minimize 
the likelihood of an inconclusive study. These simulations can 
be performed in a fraction of a second for a single trial or 
in about 10 s for 100 runs on a standard office computer, 

giving the team the chance to adjust the study design there 
and  then. By the end of the meeting, the design is drafted 
and the team moves on to the practical work of setting up and 
running the study. This example is from the phase III planning 
for the anti-IL-1β monoclonal antibody, canakinumab (Ilaris) 
in cryopyrin-associated periodic syndromes. How was this 
done?

The model comprised the pharmacokinetics of the drug 
linked to a PD model for the probability of a flare in inflam-
matory symptoms, with parameters estimated by nonlinear 
mixed effects modeling in NONMEM.20 The model was then 
translated from NONMEM10 to the Berkeley Madonna soft-
ware21 to enable, using a binomial (event) function, the simu-
lation, accumulation, and plotting of inflammatory flares.

In this tutorial, the reader will be taken through the process 
of building a model, using a strategy that was already known 
among the Romans: Divide and conquer. Models can be quite 
complex, and understanding the components first before put-
ting together the full picture makes the task easier and allows 
appreciation of the contributions of the different model com-
ponents.2,3,22 There is first a general description of how to get 

Figure 2 Fraction of patients experiencing no flares of 
inflammatory symptoms. Panel a shows a single trial simulation 
for 150 mg canakinumab, where 2 × 18 patients were treated 
from time zero, then randomized 1:1 to placebo at 56 days (red) 
or continued treatment (black). Panel b shows the simulation 
repeated 100 times.
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started with the software via the PK, followed by PD and the 
inclusion of interindividual variability in parameters. Arrays of 
equations will be introduced, in order to simulate, simultane-
ously, several dosing arms of a study, for example. The arrays 
can be up to 3-dimensional, thereby allowing multiple dose 
levels, many individual patients, plus other key factors, as 
required. At the end of the tutorial, the introductory examples 
are reintroduced. In the end, tutees will be able to run and 
use the examples to create their own interactive simulations.

PHARMACOKINETICS

Berkeley Madonna comes with a fast ordinary differential 
equation (ODE) solver and a visualization interface. The 
graphical user interface facilitates studying the effect of 
setting parameters to different values. The key components 
are the model visualizer, typically showing particular effects 
(e.g., drug concentration or a PD effect) over time, a slider 
to modify model parameter values by using the mouse, 
and an ODE solver that remains largely invisible. The sys-
tem is arguably far from perfect, but the simplicity is part 
of the appeal. Models have to be coded in the Berkeley 
Madonna language. The key component, the differential 
equation system, is similar to other model specification lan-
guages such as NMTRAN (NONMEM), Monolix,11 or other 
systems.

On startup, Berkeley Madonna displays just a text editor 
with four lines, inserted by default (unless the options are 
customized):

METHOD RK4 
STARTTIME = 0 
STOPTIME=10 
DT = 0.02 

These lines specify the integration method (Runge–Kutta 4),  
the start time and the stop time of the integration interval, and 
DT or Δtime (delta time), the time intervals to be used in the 
numerical solving of the differential equation system. We rec-
ommend users to set the starting time to be before the first 
dose to prevent issues with calculating dose inputs (more on 
this topic follows later). Negative times are allowed.

A PK compartment can be defined by initializing it and 
then defining a differential equation with inputs (positive 
terms) and losses (negatives). The differential equation can 
be written as d/dt(comp1) as in the example above, or more 
succinctly using “prime” notation, i.e., comp1’. The amount of 
drug present in compartment 1 (comp1) at time STARTTIME 
is defined as 0. Negative times can be used, unlike in soft-
ware such as NONMEM version 7.2 and earlier, which can 
facilitate better displays for PD when there are baseline or 
screening data. Then, a dose of 100 units is added into that 
compartment every 24 h, starting at time 0.

init comp1 = 0
d/dt(comp1)= pulse(100, 0, 24 )
; 100 mg from 0 h every 24 h

There are several syntax options for defining differential 
equations. The following statements are equivalent (excerpt 
from the help file):

x’ = expression 
d/dt(x) = expression 
FLOW x = expression 
x(t) = x(t - dt) + (expression) * dt 
x = x + dt * (expression) 

The pulse function adds the specified amount of drug 
almost instantaneously, thus mimicking an injection. How-
ever, please note that it specifies the input as an isosce-
les triangle with a base of two integration steps (2*DT or 
DTMAX).

Clicking the “Run” button or pressing Ctrl-R will cause 
Berkeley Madonna to solve this differential equation sys-
tem and open a graphics window that shows the amount of 
drug in compartment 1 over time. At this point in time, one 
should change STOPTIME to 100 (hours) to be able to see 
the 24-h dosing interval (the default is 10 time units, h here, 
thus showing a single dose only). Pressing Ctrl-R or clicking 
“Run” once more reruns the differential equation solver and 
displays the new result. An analogous example is shown 
in the first Supplementary Video S1 describing a one- 
compartment central administration PK model.23

To mimic an oral drug, a second compartment is added 
and initialized with 0. An absorption rate constant, ka, and 
an elimination rate constant, ke, are defined; these move the 
drug around the system: absorption is defined as a transfer 
from comp1 (subtraction from the depot) to comp2 (addition 
to the central compartment or blood), and elimination as dis-
appearance from comp2. We use variable names such as ka 
in computer code to denote the parameter ka.

ka=0.1  �; definition of absorption rate  
; constant 

ke=0.2    �;  definition of elimination rate  
;  constant 

init comp1=0 
init comp2=0  ; compartment 2 (central compartment) 

d/dt(comp1)= pulse(100, 0, 24) - ka*comp1 
d/dt(comp2)= + ka*comp1 - ke*comp2 

Closing the graphics window and running the solver once 
more displays the amount of drug in both compartments 
(Figure 3). Alternatively, we could have double-clicked into 
the graphing area to select comp2 from the list of variables 
to be displayed on the “Y Axes.” Rerunning the solver is still 
necessary. Figures can be transferred to Office documents 
by simply using copy/paste then setting the background grey 
to be transparent. We will show later how to create publica-
tion quality graphical outputs.

We can now start modifying the display. Clicking on one 
of the buttons labeled “comp1” and “comp2” underneath the 
graph will make the corresponding compartment’s curve 
appear and disappear. Holding the shift key and clicking will 
move the corresponding y-axis to the left or right, respec-
tively. The two axes can have different ranges such that 
the visualization can change when variables are moved to 
another side.

Next, one can define a slider: a tool to modify, interac-
tively, the parameter value. Clicking on Parameters-Define 
Sliders will open an interaction dialogue. Clicking on ka 
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and then “>>Add>>” will add ka to the slider, similarly ke. 
Clicking “OK” will display the slider. Now, we can modify the 
parameters ka and ke interactively: clicking on the slider 

and moving it to the left and to the right will modify the 
parameter value and solve the differential equation system 
in (almost) no time.

Figure 3   Visualization of parameter sensitivity. (a) One-compartment first-order model code showing drug amounts in the depot (black) and 
in the central compartment (red). (b) Two-compartment model with depot (black), central (red), and peripheral (green) compartments. (c,d) 
Drug amount in the depot (c) and drug concentration in the central compartment (d) for absorption processes of zero (green), first (black), 
and second (red) order. The effect of different (e) clearances (0.1, 0.2, … 1 liter/h, left) and (f) volumes (1, 2, 3, 4, 5 l) on drug concentrations. 
Effect of the intercompartmental transfer rate constant (0, 0.2, …, 1/h), (g) semilogarithmic and (h) linear.
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Clicking the “O” button above the graph in the graphics 
window will cause all subsequent curves to overlay, thus 
displaying multiple absorption rates. Moving the slider and 
setting ka to 0.1, 0.11, … 0.2 yields a graph with the con-
centration–time profiles for the different absorption rate 
constants overlaid (for both compartments). Alternatively, 
instead of moving the slider manually, a batch run can be 
executed by selecting Parameters-Batch runs from the menu 
and specifying 11 runs of ka moving from 0.1 to 0.2. Figure 3 
shows examples of varying parameters and overlaying simu-
lation results.

Adding a peripheral compartment and intercompartmental 
transfer rate constants, k23 and k32, is now straightforward. 
The code (header omitted) is as follows.

ka = 0.4�; absorption rate constant (transfer  
; from comp1 to comp2) 

ke = 0.1�; elimination rate constant (from  
; comp2) 

k23 = 0.3�; compartment 2 to 3 transfer rate  
; constant 

k32=0.2�; compartment 3 to 2 transfer rate 
; constant 

init comp1=0 
init comp2=0 
init comp3=0 

d/dt(comp1)=-ka*comp1 +pulse(100, 0, 24) 
d/dt(comp2)=�+ka*comp1 –k23*comp2 +k32*comp3 

-ke*comp2; central 
d/dt(comp3) = +k23*comp2 –k32*comp3; peripheral 

Supplementary Videos S2 and S3 provide examples 
of both two-compartment distribution24 and first-order 
absorption.25

These are the basics of the Berkeley Madonna system. In the 
following, we are going to cover various aspects in more depth.

Drug administration models

Bolus. Oral administration (tablet or capsule) is modeled as a 
bolus input into a compartment from which the drug is trans-
ferred into a central sampling compartment, e.g., the blood 

Figure 4 Pharmacodynamics. Placebo effects and circadian rhythms. Placebo effects with (a) different rates of increase and (b) placebo 
effects (black), circadian rhythm (red), and the combination of both effects (green). The indirect response model: (c) Pharmacodynamic effect 
(above) and concentration–time profile (below). (d) Time-delayed effect vs. drug concentration (hysteresis). Graphs c and d show a typical 
subject (middle line) and the 90 and 95% prediction intervals.
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stream. A bolus is a direct addition of the drug into the central 
(blood) compartment.

The following code defines parameters for the amount of 
drug administered (dose), the dosing interval (dose_int), 
and the number of doses (ndoses). Furthermore, the PK 
parameters for absorption (ka) and elimination (ke) are 
parameterized.

METHOD RK4 
STARTTIME=-1 
STOPTIME=100 
DT=0.02 

; Parameter definitions 
dose=100          ; �dose amount 100 mg from 0 h 

onwards 
dose_int=24    ; dosing interval 
ndoses=3           ; number of doses 

; PK parameters 
ka=0.1 ; absorption rate constant 
ke=0.1 ; elimination rate constant 

; dosing input. Set to zero after ndoses 
; administered 
dosingperiod = if time < ndoses*dose_int-DT  
then 1 else 0 
input = pulse(dose,0,dose_int)*dosingperiod 

d/dt(comp1)=-ka*comp1 +input  ;  dosing 
compartment 
d/dt(blood)=+ka*comp1 -ke*blood  ;  blood 
compartment 

init comp1 = 0 
init blood = 0 

One may want to copy the code into an “Equation Win-
dow” in Berkeley Madonna and run it. Defining a slider allows 
modifying the parameter values with nearly instantaneous 
display of the result.

Infusion. Implementing an infusion model is relatively sim-
ple. The rate of change for the amount of drug entering the 
compartment is either equal to the infusion rate (during 
the infusion time) or zero outside the infusion time window. 
Dividing the current time by 24 and assessing if the remain-
der of the integer division is less than the infusion duration 
defines whether the current time is in the first 2 h (duration 
of the infusion) of the 24-h period (the dosing interval) our 
outside (when no infusion takes place). The modulo func-
tion provides the remainder of an integer division such that 
a 2-h infusion every 24 h with a rate of 7 units/h is coded 
as follows.

; infusion every 24 h for 2 h with rate 7 
ke=1  ; elimination rate constant 
init comp1=0 
comp1_in=if (time>=0) and (mod(time, 24) < 2)  
then 7 else 0 
d/dt(comp1)=comp1_in -ke*comp1 

Berkeley Madonna’s strength for visualization becomes 
apparent when the infusion model parameters are put on the 

slider: the user can change them easily by moving the slider 
with the mouse.

; infusion with parameters that can be put
; on the slider
ke=1               ; elimination rate constant 
inf_rate=7         ; units/h 
inf_duration=2    ; duration of infusion 
inf_freq=24          ; infusion every X h 
init comp1=0 

; indicator for infusion ongoing: 1 (true) 
; or 0 (false):
is_inftime=(time >= 0)  and  (mod(time, inf_ 
freq) < inf_duration); 
d/dt(comp1)=inf_rate*is_inftime -ke*comp1; 

One can now visualize a two-compartment infusion model 
by putting the infusion parameters on a slider, using overlay 
mode (click “O” in the graph window), displaying the compart-
ments’ drug amounts by clicking the corresponding buttons 
underneath the graph window, and overlaying the profiles for 
2-h infusions of 7 (units/time, e.g., mg/h) every 24 h with 1-h 
infusions of 7 mg/h every 12 h. You are encouraged to experi-
ment: can you overlay oral administration and infusion and 
adjust the infusion rate such that the maximum concentra-
tions in the central compartment are very similar? Figure 3  
shows some examples, including less common configura-
tions such as a second-order absorption model.

Absorption modeling

Delayed absorption. A delay in absorption of an oral drug, 
i.e., a time window between drug administration and start of 
absorption (during which the drug travels to the absorption 
site), is easily implemented by shifting the time interval for 
drug administration by the corresponding period of time. The 
code to be adapted is

tlag=0.5 ; absorption delay (lag) time 
d/dt(comp1) = pulse(100, tlag, 24) -ka*comp1 

Absorption limitation. If the drug amount that can be 
absorbed in a given period of time is limited (saturable 
process), the absorption can be capped at a value absmax 
and the absorption amount takes the value of absmax if 
the usual first-order absorption amount exceeds absmax: 
the absorption is defined as the minimum of the two 
quantities.

METHOD RK4 
STARTTIME=-1 
STOPTIME=100 
DT=0.02 

dose=100 
ka=1 
ke=0.05 
absmax=20 
abs_amount=min(absmax, ka*comp1) 

init comp1=0 
init comp2=0 
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d/dt(comp1)= pulse(dose, 0, 24) -abs_amount 
d/dt(comp2)= -ke*comp2 +abs_amount 

PD EFFECTS
Circadian rhythm
Circadian rhythms are commonly observed in PD 
responses.  Consider, e.g., heart rate or total lymphocyte 
count, both of which change in a regular 24-h (circa diem = 
about a day) cycle. Some patterns are shown in Figure 4. 
A circadian pattern can be implemented by scaling the  
24-h period length to the period length of a regular cosine 
wave, 2π:

amp     = 1; amplitude, maxi change up and down 
tshift = 10; time of maximum 
circ   = �amp*cos(2*pi*(TIME-tshift)/24) 

; circadian wave 

Circadian rhythms can be additive but frequently  
are  multiplicative; heart rate might vary by 10% dur-
ing the  day instead of by 10 beats/min. The PD effect is 
thus  multiplied  by the circadian component, (1+circ), 
where an amplitude of 0.1 denotes 10% variation during 
the day.

Placebo effect
Treatment with a placebo can affect a measured response 
even though no active drug was administered; this can take 
many different shapes. A placebo effect can—with time—
appear and disappear.

If the placebo effect appears at baseline and disappears 
gradually, a simple exponential form might suffice:

placebo_effect = exp(-exp(a)*time) 

A more general placebo effect can gradually appear and 
only partially disappear. The following model defines the 
shapes that are shown in Figure 4 (top left).

BL=100       ; baseline value 
maxdown=0.1 �; max. decrease from baseline 

; as fraction of BL 
maxup=0.1       �; max. increase from baseline  

; as fraction of BL 
ratedown=1    ; rate of decrease 
rateup=0.3    ; rate of increase 

; derived parameters 
down = maxdown*(1-exp(-ratedown*time)) 
up   = maxup*(1-exp(-rateup*time)) 

Figure 5 Visualization of transit compartments. Drug amounts present in each of 15 transit compartments with (a) a single dose and (b) three 
doses. Drug amounts in plasma with (c) 3, 6, 9, 12, and 15 transit compartments and (d) with transfer rates of 0.1, … 0.5/h for three transfer 
compartments and three doses.
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placebo = 1+(up-down)
; placebo effect, multiplicative to Y 
Y               = BL * placebo
; response, comb. of BL and plac. effect 

Response modeling
Functions provided by Berkeley Madonna can be called as 
in any other programming language. Writing a user-defined 
function, as one would in, e.g., R,26 is not possible. Currently, 
the only way to define one’s own function is to write a “plug-
in” function in C or C++, compile it, and then make the library 
file available for the software to call. The necessary docu-
mentation is available from the developers, but neither author 
has used this to date.

To characterize a PD effect as an Emax function of the drug 
concentration in the central compartment (direct effect), one 
would code

V2            = 33 ; Volume of distribution 
C2            = A2/V2; concentration in compartment 
E0            = 25 ; Base effect 
Emax   = 50 ; Maximum effect 
EC50   = 40 ; Conc. required to reach Emax/2 
PD            = E0 +Emax*C2/(C2+EC50); PD response 

Similarly, a logistic response (typically a probability esti-
mate) can be coded as PD = exp(a + b*slope)/(1 + exp(a + 
b*slope)).

An indirect effect requires an effect compartment with rates 
of appearance and disappearance. Note that there should be 
no drug transfer from a PK compartment to the PD compart-
ment. Thus, adding a PD compartment will not change the 
code of the PK compartments and the code to be added is 
rather short:

; PD effect compartment 
PD_in              = 0.1 
PD_out           = 0.1 
init PD       = 0 
d/dt(PD) = PD_in*C2 -PD_out*PD 

Figure 4 (row 2) illustrates a time-delayed effect and 
the associated variability (90 and 95% prediction intervals 
derived from 1.645 and 1.96 SDs around the (here single) 
random effect on absorption). The left side shows the PK 
profiles (below) and the associated PD response (above). 
The time shift (hysteresis) in the maximum concentration 
and the maximum effect is apparent. The right side shows 
evidence of hysteresis by plotting the PD effect (y) against 
drug concentration (x). Without hysteresis (i.e., an imme-
diate effect), the graph would display a line moving from 
the left to the right: a particular drug concentration would 
always relate to the same PD effect. Since the PD effect 
(change) most often lags behind the driving force, the blood 
concentration (change), hysteresis polygons generally run 
counter-clockwise.

Arrays

Berkeley Madonna allows the definition of arrays and, in 
particular, arrays of differential equations. This is a powerful 

tool that can be used for many purposes, including derivation 
and visualization of a larger number of differential equation 
systems.

Transit compartments
The following code defines a transit compartment model,19 
with a variable number of transit compartments that can be 
changed interactively by the user. The array structure allows 
for an elegant implementation of a transfer compartment 
model. The code below parameterizes the number of transfer 
compartments as ntransit. Note that this allows putting ntran-
sit on a slider and modifying it interactively! You are encour-
aged to do just that now.

METHOD RK4 
STARTTIME=-1 
STOPTIME=5*24 
DT=0.02 

dose=100; dose amount, mg 
ndoses=1; number of doses 
dose_interval=24; dosing interval, h 

ka=1; absorption rate constant, 1/h 
ktr=0.25�; transfer rate const btw transit 

; comp. 
kout=0.25; transfer rate constant, 1/h 

ntransit=15; number of transit compartments 

Figure 6 Visualization of target-mediated drug disposition. Total 
target (upper three curves), free target (center three curves), and free 
drug concentrations (lower three curves) on logarithmic scale. The 
colors indicate the doses of 75 (black), 150 (red), and 300 mg (green).
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init transit[1..ntransit]=0 
init Aplasma=0 

dosetime=if(time<ndoses*dose_interval-DT) 
then 1 else 0 
; indicator for dosing period 

d/dt(transit[1])=pulse(dose, 0,
dose_interval)*dosetime   -ktr*transit[1] 

d/dt(transit[2..ntransit])= 
ktr*transit[i-1] -ktr*transit[i] 

d/dt(Aplasma)=ktr*transit[ntransit]  
    -kout*Aplasma 

Figure 5 shows the drug amounts present in each of 15 
transit compartments, the effect of the choice of the num-
ber of transit compartments on the drug amount in plasma, 
and the effect of different transfer rates for a given number of 
transfer compartments.

Arrays can have up to three dimensions. We will illustrate 
their use in the following sections.

PK interacting with PD: target-mediated drug disposition
We have so far implicitly focused on modeling of molecular 
entities where the PD does not affect the PK. Some com-
pounds, particularly drugs based on proteins but also some 
small molecules, can have the PK interacting with the PD due 
to quantitatively important amounts of drug binding to one or 
more targets. In this example, a drug is set to bind directly 
with a target according to a reaction,

drug + target complexes�

noting that while the drug enters the system by doses and 
is eliminated, the target (e.g., a receptor) is continuously sup-
plied by the body and eliminated at a rate different from the 
drug. The complexes, formed by a reversible reaction, are 
also eliminated but at a rate different from that of the drug or 
the free target. The quantities of interest are the concentration 
of the free drug, CFD, and the total and free concentrations 
of the target, CTT and CFT. When running the code below in 
Berkeley Madonna, these quantities can be visualized over 

time. Note that the time unit here is days, based on a theoreti-
cal monoclonal antibody.27,28 The code also illustrates the use 
of arrays to display the PK and PD profiles for different doses. 
Since the differential equations are stiff, we use a particular 
differential equation solver, STIFF. We will describe the vari-
ous types of differential equation solvers in more detail later. 
The DTOUT parameter allows the user to have displayed all 
integration time points (DTOUT = 0, the default) or only at 
selected time intervals.

METHOD STIFF 
DTMIN = 1e-3 

DTMAX = 0.1 
DTOUT = 0 
TOLERANCE = 1e-3 
STARTTIME = -28 
STOPTIME = 84 

; �All DE written in terms of molar mass of
; substance, 
; �not concentration, in order to maintain
; mass balance 
; �but note kon is second order with respect
; to concentration. 
; �Mass to moles and back requires molecular
; weight. 

S’[1..n] = +�input[i]-ka*S[i] 
;injection site 

D’[1..n] = �-kon/V*D[i]*T[i] +koff*TD[i] 
-keD* D[i] +ka*S[i];drug 

T’[1..n] = �-kon/V*D[i]*T[i] +koff*TD[i] 
-keT *T[i] +RateT;target 

TD’[1..n]= �+kon/V*D[i]*T[i] -koff*TD[i] 
-keTD*TD[i];complexes 

INIT S[1..n] = 0 
INIT D[1..n] = 0 
INIT T[1..n] = �RateT/keT; initial, rate in 

; divided by elimination 
INIT TD[1..n]= 0 

Figure 7 Simulation interactive. (a) One (black), two (red), and three doses (blue) administered to a population-typical subject. (b) Simulated 
profiles with variation in body weight and pharmacokinetic parameters CL, V2, and ka. Colors indicate subjects.
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CTD[1..n] =  0.15*(D[i]+TD[i])/V 
     ; µg/mLtotal, free plus complex
CTT[1..n] =  190 *(T[i]+TD[i])/V 
  ; ng/mLtotal, free plus complex

CFT[1..n] = 190 * T[i]/V
  ; ng/mL free target
CFD[1..n] = 0.15* D[i]/V
  ; ng/mL free drug
DoseD[1..n] =  150*2^(i-2)
   ; mg doubling doses of antibody via 
array
DoseD[4..n] =  0
  ; extra arrays for color control
n=7
   ; use 7 arrays to rotate through 7 colors
tau = 28; days inter-dose interval
startt = 0 ; days start time for dosing
kon = 1
   ; per Molar per time 2nd order rate const. 
Kd =  1.5 
  ; nM equilibrium dissociation constant 
koff =  Kd*kon; Kd=koff/kon so can 
  ; reparameterise to kon&Kd 
keD =  0.03 
  ; (per d) could also be set as CL/V 
keT =  0.5 
   ; (per d) elimin. rate constant for 
target 

keTD =  0.1 
   ; (per d) elimin. rate constant for 
complexes 

RateT =  50; (nmoles/d) input rate, or 
  ; expression, of the target 
V = 7; (L) volume in which binding 
  ; reaction takes place 
ka = 1     ; (per d) absorption rate constant 
input[1..n] =  pulse(DoseD[i]/0.15,startt, tau)

Figure 6 shows that after doses of 75, 150, and 300 mg 
at 28-day intervals, the PK are distinctly nonlinear, exhibiting 

different profiles at low compared with higher doses. As the 
dose increases, the half-life appears to increase as the dis-
position of the drug changed from being controlled mainly by 
the elimination of the drug–target complexes, to being mainly 
the clearance of the free drug. Also, as the dose increases, the 
total target concentration increases, but only up to a limit—no 
more complexes could be formed than there is target available 
to capture. Given that the total target cannot increase indefi-
nitely, the free target must therefore be suppressed in a dose-
dependent manner according to the laws of mass balance (Le 
Chatelier’s principle). Also noticeable is that the lowering of 
the free target concentration is greater on the first dose than 
the second and subsequent doses, due to the reversible for-
mation and accumulation of drug–target complexes.

The next stage would be to quantitate links between either 
the formation of drug–target complexes or the suppression of 
free target, with clinical outcomes.

Supplementary Video S4 provides an example for the 
binding model,29 describing how to set up equations for the 
second-order association reaction and first-order dissocia-
tion. The turnover components are not included, these being 
described above, but insight is given for how there can be 
differences in apparent experimental target or ligand binding 
(as described by an EC50, for example) vs. an underlying true 
KD for the biochemical reaction. The situation is analogous to 
that observed in enzyme kinetics.

Interindividual variation
Interactive Monte Carlo study or trial simulation, with param-
eters sampled randomly from distributions, is possible in 
Berkeley Madonna. However, only rudimentary tools are 
available, in particular the generation of uniformly and nor-
mally distributed random numbers. Multivariate normal dis-
tributions are not available directly but can be implemented.

The following code generates variability around population 
parameters and shows the results. The array conc contains 
the simulated concentrations to be visualized. Note also that 
we give one dose to the first subject, two to the second, and 
three to all others by putting the number of doses into a vector.

Note that we use a switch, MC, that is either 1 to switch on 
Monte Carlo generation of random numbers or 0 to switch it 

Figure 8 Canakinumab pharmacokinetic and probability of disease flare or exacerbation profiles. Both dosing arms received treatment up 
to 56 days in period 1. Thereafter, half were randomized to placebo (red) or continued treatment (black). The posology was 150 mg every 8 
weeks or 2 mg/kg body weight if the body weight was <40 kg.
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off. In practice, we always draw random numbers and per-
form the calculations on the full array, but if MC is set to 0, all 
subjects are identical to the population-typical subject. This 
method is obviously not efficient but generally feasible on a 
standard office computer. The resulting graphs for MC set to 
0 and 1 are shown in Figure 7.

METHOD RK4
DT=0.2
STARTTIME = -1
STOPTIME  = 4*28; days

MC = 1    �; Monte-Carlo switch (1=on) for
	          ; variability 
N = 200      
; number of patients in each arm of trial 

dose=1
idose[1..N] = dose; mg/kg 

taudist = 28

tau[1..N] = taudist; days btw doses

Ndoses[1] = 1;  one dose for first subject
Ndoses[2] = 2;  two doses for second subject
Ndoses[3..N] = 3;  all other subjects

BW = 70; body weight mean and std. deviation
BW_sdv = 10

; simulate body weights 
init WT[1..N] = IF MC=1 THEN
   NORMAL(BW,BW_sdv) else BW
next WT[1..N] = WT[i]; 

; dosing
trtflag[1..N]=if (time<Ndoses[i]*tau[i]-DT)
  then 1 else 0
input[1..N]=pulse(idose[i]*WT[i], DT,
 tau[i]) * trtflag[i] 

init S[1..N] = 0
init D[1..N] = 0 
d/dt(S[1..N])= input[i] -ka[i]*S[i]
d/dt(D[1..N])= ka[i]*S[i]-D[i]*CL[i]/V2[i] 
conc[1..N]=D[i]/V2[i]; display concentration

; population parameters and 
; std. deviations (random effects)
CLpop = 0.2
CLsd = 0.2; standard deviation
V2pop = 3
V2sd = 0.3
kapop = 0.3
kasd = 0.3

; Generate random effects (uncorrelated)
init eta_CL[1..N]=NORMAL(0,1)*CLsd
init eta_V2[1..N]=NORMAL(0,1)*V2sd
init eta_ka[1..N]=NORMAL(0,1)*kasd
next eta_CL[1..N]=eta_CL[i];
next eta_V2[1..N]=eta_V2[i];
next eta_ka[1..N]=eta_ka[i]; 
CL[1..N]=CLpop*exp(eta_CL[i]*MC);L/d

V2[1..N]=V2pop*exp(eta_V2[i]*MC);L
ka[1..N]=kapop*exp(eta_ka[i]*MC);/d

The calculation time depends on the granularity of the evalu-
ation of the ODE system and the number of calculations to be 
carried out. On a standard office computer, simulating up to 
1,000 PK profiles interactively is feasible within just a few sec-
onds. If the granularity is lowered by increasing DT, even more 
subjects can be simulated. The lower granularity may become 
visible as stair steps in the graph, however. The parameter DT 
can be put on a slider to study the effect of different values of DT.

Statistical evaluation
Statistical evaluation of the simulations is possible, but only 
in rudimentary form. The user is largely restricted to calculat-
ing means and SDs of arrays. This enables one to calculate 
confidence intervals for arrays, similar to

m       = �arraymean(CD[*]) 
sd      = �arraystddev(CD[*]) 
int_high= m+1.96*sd 
int_low = m-1.96*sd 

The value 1.96 corresponds to the 97.5th percentile of the 
normal distribution such that the interval (q2.5%, q97.5%) 
yields the 95% confidence interval estimate. We used R to 
calculate the 97.5% quantile by entering qnorm(0.975).

Statistical tests or quantile functions to obtain the critical 
values for a statistic are not implemented. More sophisticated 
statistical evaluations would therefore require exporting the 
simulated data to a text file (e.g., csv) and evaluating it using 
another software system.

Multivariate normal random numbers
A pharmacometric model frequently comprises a covariance 
matrix that has off-diagonal elements. Berkeley Madonna 
does not offer a routine to draw multivariate normal random 
numbers. However, it is possible, with some effort, to draw 
multidimensional normal random numbers.

Unfortunately, Berkeley Madonna requires SDs for the 
generation of normally distributed random numbers (in con-
trast to what the documentation states in versions up to 13 
January 2010).21 The SDs have to be derived from the covari-
ance matrix using the Cholesky decomposition. The decom-
position derives a matrix Z, Z~m x m, from a given positive 
definite (covariance) matrix y, y~m x m, such that ZTZ = y. 
If a random variable x contains m independent normally 
distributed variables of length n, x~n x m, then xZ follows 
a multivariate normal distribution with covariance matrix y.30 
Note that the Cholesky decomposition is particular for the 
given covariance matrix; if the matrix changes, the Cholesky 
decomposition and the random number generation must be 
updated manually.

For example, R can calculate the Cholesky decomposition 
by using the command chol.

# R code for Cholesky decomposition 
COV <- matrix( 
      c(	  1.1,   0.6,  -0.1, 
	    0.6,  8.3,  -0.7, 
            -0.1, -0.7,   4.0 
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       ), 
       3, 3) 
CH <- chol(COV); Cholesky decomposition, 
transposed 
t(CH) %*% CH; yields COV matrix again 
COV - t(CH) %*% CH; close to 0 (up to 
numerical inaccuracy) 

Now, if we intend to generate three-dimensional correlated 
normal random numbers, the Cholesky decomposition from 
the matrix COV above is given as

	 CH11	 CH12	 CH13	 1.049	 0.572   −0.095 
CH =	CH21	 CH22	 CH23 =	 0.000	 2.824  −0.229 
	 CH31	 CH32	 CH33	 0.000	 0.000    1.985 

and the 3 one-dimensional vectors of standard normal ran-
dom numbers are named eta1, eta2, and eta3, we can type 
the matrix multiplication into Berkeley Madonna:

N=47; number of subjects 
rn=3; number of random effects 

; random normal numbers N(0, 1) 
init r[1..N, 1..rn]=normal(0, 1) 
next r[1..N, 1..rn]=r[i, j] 

CH[1,1]= 1.0488 
CH[1,2]= 0 
CH[1,3]= 0 

CH[2,1]= 0.572 
CH[2,2]= 2.824 
CH[2,3]= 0 

CH[3,1]=-0.095 
CH[3,2]=-0.229 
CH[3,3]= 1.985 

; random effects, eta ~ MVN(0, COV) 
eta1[1..N]=�CH[1,1]*r[i,1] +CH[2,1]*r[i,2] 

+CH[3,1]*r[i,3] 
eta2[1..N]=�CH[1,2]*r[i,1] +CH[2,2]*r[i,2] 

+CH[3,2]*r[i,3] 
eta3[1..N]=�CH[1,3]*r[i,1] +CH[2,3]*r[i,2] 

+CH[3,3]*r[i,3] 

The code above yields the three-dimensional normal ran-
dom variate (eta1, eta2, eta3) with covariance matrix COV. 
The method is cumbersome, slow (calculations are carried 
out at each integration step!), and somewhat error-prone, but 
the authors do not know of a better alternative using Berkeley 
Madonna.

That the method works can be assessed within Berkeley 
Madonna by calculating the empirical covariance matrix of 
the random effects that should be close to the covariance 
matrix COV. The (i,j)th element of the empirical covariance 
matrix is given as the average of the element-wise product of 
the random effects eta[i] and eta[j]:

; Testing for plausibility: 
; �Derivation of the empirical covariance
; matrix, Omega 

Omega[1..rn, 1..rn]=0; Initialization 

p11[1..N]=eta1[i]*eta1[i] 
Omega[1,1]=arraymean(p11[*]) 

p22[1..N]=eta2[i]*eta2[i] 
Omega[2,2]=arraymean(p22[*]) 

p33[1..N]=eta3[i]*eta3[i] 

Omega[3,3]=arraymean(p33[*]) 
; Omega[i,j]=mean(eta[i] * eta[j]) 
p12[1..N]=eta1[i]*eta2[i] 
Omega[1,2]=arraymean(p12[*]) 

p13[1..N]=eta1[i]*eta3[i] 
Omega[1,3]=arraymean(p13[*]) 

p23[1..N]=eta2[i]*eta3[i] 
Omega[2,3]=arraymean(p23[*]) 

; make Omega symmetric 
Omega[2,1]=Omega[1,2] 
Omega[3,1]=Omega[1,3] 
Omega[3,2]=Omega[2,3] 

Simulating a large number of subjects should yield an 
empirical covariance matrix close to the matrix specified. 
Looking at the numerical values by clicking the button  in 
the visualization window will show mean covariances close to 
the original covariance matrix, COV.

The blood pressure model
The Berkeley Madonna code for the blood pressure model 
introduced earlier is shown in its entirety below. It is also avail-
able for download online, complete with figures and sliders.

The code illustrates many of the aspects introduced in this 
paper, including PK and PD modeling, administration of a 
specified number of doses, simulation using random effects, 
the use of arrays, and evaluation of statistics (whether or 
not a particular clinical target is reached and how often it is 
reached in the simulated subjects at a specified time point of 
interest, here 72 h after start of treatment).

{ 
Simulation of PK (one compartment, oral 
absorption) and  PD (blood pressure)
including random effects. 
Clinical trial simulation can be conducted 
by using the  parameter plot and
simulating doses, for example from  0 to 200 mg  
(show dose versus SuccessPercentT maximum). 

Scenario: 
Simulate nsim patients. Evaluate if suc-
cess (reduction of bp by at least 20 mmHg) 
is achieved at a specified
time point (e.g., 72 h after start of 
treatment). 
} 

METHOD RK4 

STARTTIME = -1 
STOPTIME=6*24 
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DT = 0.1 

; Parameter setting 

dose=130 ; dose amount (mg) 
ndoses=4 ; number of doses to administer 
nsim=100 ; number of patients to simulate 

evaltime=3*24 ; evaluation at this many  
; hours after start of treatment 
PD_threshold=-20 
; minimum change desired (success=PDchange 
; < PD_threshold) 

; PK parameters 
CL=1 
ka=0.1 
ke=0.1 
V1=1 

; random effects (standard deviations) 
eta_ka=1.0 ; 
eta_V1=0.2 ; 
eta_ke=0.01 ; 
eta_BL=0.1; random variation at baseline
; (multiplicative) 

; PD parameters 
E0=125 ; baseline mean 
Emax=-40 
EC50=20 ; ng/mL 

; Random effects 
; individual random effects
; only generated at the start 

; vector of individual ka values 
init eta_ka_vec[1..nsim]= normal(0, eta_ka); 
next eta_ka_vec[1..nsim]=eta_ka_vec[i]; 
ka_vec[1..nsim]=ka*exp(eta_ka_vec[i]) 

; vector of individual ke values 
init eta_ke_vec[1..nsim]= normal(0, eta_ke); 
next eta_ke_vec[1..nsim]=eta_ke_vec[i]; 
ke_vec[1..nsim]=ke*exp(eta_ke_vec[i]) 

; vector of individual volumes 
init eta_V1_vec[1..nsim]= normal(0, eta_
V1); mean, sd, seed 
next eta_V1_vec[1..nsim]=eta_V1_vec[i] 
V1_vec[1..nsim]=V1*exp(eta_V1_vec[i]) 

; PK 

init depot[1..nsim]=0 
drug2depot=pulse(dose, 0, 24) * 
 (if (TIME < ndoses*24-DT) then 1 else 0) 
depot2central[1..nsim]=ka_vec[i]*depot[i] 
d/dt(depot[1..nsim])=drug2depot 
- depot2central[i] 

init central[1..nsim]=0 
d/dt(central[1..nsim])=depot2central[i] 
- ke*central[i] 

; �conc=amount/volume. error term added. 

conc[1..nsim]=central[i] / V1_vec[i] * 
exp(normal(0, 0.01)) 

; PD 

init BL_vec[1..nsim]=E0*exp(normal(0, eta 
_BL)); 
; add reff to baseline 
next BL_vec[1..nsim]=BL_vec[i] 

; PD effect 
PD_change[1..nsim] = Emax * conc[i] / 
(conc[i] + EC50) 
PD[1..nsim] = BL_vec[i] + PD_change[i] 

; Treatment evaluation 

; �For the current time, assess for each
; patient if the  desired effect 
; is reached (declare success). 
; �NOTE: for increases desired, change less
; than to larger 
; �than,-Inf to +Inf in the constant below, 

and evaluate the 
; �min (not the max) of SuccessPercentT in
; the parameter plot. 

Success[1..nsim] = PD_change[i] < 
PD_threshold 

; �Derive percentage of patients with
; success. 

SuccessPercent = 100*arraymean(Success[*]) 

; �If we are at the specified evaltime (or
; close to it), 
; �copy SuccessPercent into SuccessPercentT, 
; �otherwise set it to a very low number
; such that taking the maximum 
; �will not be affected by values not 
; �close to the time of evaluation. 
; �This is the quantity of interest. 

SuccessPercentT = if (abs(time-evaltime) < 
DT) then; SuccessPercent else -Inf 

; The End. 

The PK-flare model
The code for the example outlined in the introductory 
Figure  2 and the corresponding PK and flare probability 
profiles in Figure 8 is given below, annotated to allow the 
reader to follow directly. The exacerbation or flare prob-
abilities control binomial flare events which are accumu-
lated to the Kaplan–Meier curves in Figure 1. Please note 
there are a number of tricks annotated within, e.g., to con-
trol the display of the seven available colors. The Berkeley 
Madonna file, complete with figures and sliders, is available 
online.

{ 
Canakinumab (ACZ885) PK flare model using 
parameters as in Supplementary material 
Table II of Lachmann JEM 2009; 206(5) 1029-36.
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In vivo regulation of interleukin 1β in 
patients with cryopyrin-associated periodic 
syndromes. 
} 

N = 18			    
  ; number of patients in each arm of trial 
M = 7			    
  ; number of arms (only 2 used, but 7 to  
  ; control colours across arrays) 
Dose[1..N,1..2] = if WT[i,j]<40  
  then 2*WT[i,j] else 150  
  ; mg or 2 mg/kg for paediatrics <40 kg 
Dose[1..N,3..M] = 0	  
  ; unused dose arrays 
tau = 56		   
  ;days inter-dose interval 
StartP2 = 56		   
  ; days, start time of study Part 2,  
  ; initiation of counting of flares 
STARTTIME= -28		   
  ; start time, best if before zero 
STOPTIME = 224		   
  ; days to end of study Part 2,  
  ; period where flare events are counted 
NdosesP2[1..N,1] = 3	  
  ; number of doses in Part 2 
NdosesP2[1..N,2..M] = 0	  
  ; number of doses in Part 2 
visitfreq = 7	 ;visit frequency in days 
MC = 1	 ;Monte-Carlo switch (1=on) 
init WT[1..N,1..M] = IF MC=1 
  THEN RANDOM(10,80) ELSE 70;kg body weight 
next WT[1..N,1..M] = WT[i,j] 

zz[1..o]  = 1.1	 ;dummy variable for 
  ; controlling the 7 available colours. For  
  ; example, if plotting 2 functions, use  
  ; 5 dummies so colour returns to black 
o=5			    
METHOD RK4		  
  ; integration method must be fixed  
  ; step size for flare counting model 
DT = 1; Integration time step 
  ; (Euler, RK2, RK4 methods)   
DTOUT = 0; Output time interval 
  ; (0=store every step) 

input[1..N,1..M] = PULSE(Dose[i,j]*F[i,j], 
  DT,1000); first dose 
input2[1..N,1..M]= IF TIME<=(2*DT+StartP2+ 
  Tau*(NdosesP2[i,j]-1)); Part 2&3 doses 
 THEN PULSE(Dose[i,j]*F[i,j],StartP2,Tau)  
  ELSE 0 

S'[1..N,1..M] = input[i,j] +input2[i,j]- 
ka[i,j]*S[i,j]; subcutaneous injection site 

  ;central compartment
D'[1..N,1..M] = ka[i,j]*S[i,j]  
  -D[i,j]*CL[i,j]/V2[i,j]	  
  +PS[i,j]*(T[i,j]/V3[i,j]-D[i,j]/V2[i,j]) 

  ;peripheral compartment 
T'[1..N,1..M] = PS[i,j]*(D[i,j]/V2[i,j] 
  -T[i,j]/V3[i,j]) 

init S[1..N,1..M] = 0 
init D[1..N,1..M] = 0 
init T[1..N,1..M] = 0 

CTD[1..N,1..M]=D[i,j]/V2[i,j] 
  ; concentration total drug 
Pflare[1..N,1..M] = 1-CTD[i,j]^HILL/ 
  (KIEF[i,j]^HILL+CTD[i,j]^HILL) 
  ;probability of flare 
Visit = PULSE(DT,-28,visitfreq) 
  ; returns 1 for a visit, else 0 
Flare[1..N,1..M]=BINOMIAL(Pflare[i,j],1)* 
  Visit; Flare event coinciding with a visit 
Part3[1..N,1..M](t+dt) = 
    IF TIME <= (DT+StartP2) THEN 0  
    ELSE Part3[i,j] + Flare[i,j]	  
  ; count transfers to Part 3 during Part 2 

init Part3[1..N,1..M] = 0 
  ;initialise Part 3 counter 
limit Part3 <= 1 
  ;cannot transfer patient to  
  ; Part 3 more than once! 
Part3a[1..N]=Part3[i,1] 
  ;separate first arm from 2D array 
Part3b[1..N]=Part3[i,2] 
  ;and second arm 
Part3aSum = 1-ARRAYSUM(Part3a[*])/N 
  ;sum up across N patients in first arm 
Part3bSum = 1-ARRAYSUM(Part3b[*])/N 
  ;sum up across N patients in second arm 

Trial = 1 
  ;counter for replicating the trials 

  ; Parameters ACZ885 in Muckle-Wells  
  ; disease, for 70 kg patients 
CLmean[1..N,1..M]=0.181*(WT[i,j]/70)^1.0 
  ; L/d 
init CL[1..N,1..M]=CLmean[i,j]* 
  exp(sCL[i,j]*MC)	 ;L/d 
next CL[1..N,1..M]=CL[i,j] 

V2mean[1..N,1..M] = 5.07* 
  (WT[i,j]/70)^1.0; L 
init V2[1..N,1..M]=V2mean[i,j]* 
  exp(sV2[i,j]*MC); L 
next V2[1..N,1..M]=V2[i,j] 

{ variance-covariance matrix from Nonmem 
0.0442		  CL 
0.0556  0.0869	 V2 
Choleski decomposition (from S-Plus) is 
varmat1 <- matrix(c(0.0442, 0.0556, 0.0556, 
0.0869), 2, 2) 
dput(chol(varmat1)) 
structure(.Data = c(0.210237960416286, 0.,  
  0.264462230749899, 0.130229522408659),  
  .Dim = c(2, 2), .Dimnames=NULL, rank=2) 
} 
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vA[1..N,1..M]=NORMAL(0,1) 
vB[1..N,1..M]=NORMAL(0,1) 
sCL[1..N,1..M] = 0.210*vA[i,j] +  0.0*vB[i,j] 
sV2[1..N,1..M] = 0.264*vA[i,j] +  0.130*vB[i,j] 

PSmean[1..N,1..M] = 0.103*(WT[i,j]/70)^0.667 
  ;L/d 
init PS[1..N,1..M]=PSmean[i,j]* 
  exp(sPS[i,j]*MC)	 ;L/d 
next PS[1..N,1..M]=PS[i,j] 

V3mean[1..N,1..M] = 1.74*(WT[i,j]/70)^1.0 
  ; L
init V3[1..N,1..M]=V3mean[i,j]* 
  exp(sV3[i,j]*MC); L/d 
next V3[1..N,1..M]=V3[i,j] 

{ variance-covariance matrix from Nonmem 
0.366		  PS 
0.0153  0.000651	 V3 
varmat1 <- matrix(c(0.366, 0.0153, 0.0153,  
0.000651), 2, 2) 
dput(chol(varmat1)) 
structure(.Data = c(0.604979338490167, 0.,  
0.0252901198877037, 0.00337784488477104),  
  .Dim = c(2, 2), .Dimnames=NULL, rank=2)   
} 
vC[1..N,1..M]=NORMAL(0,1) 
vD[1..N,1..M]=NORMAL(0,1) 
sPS[1..N,1..M]=0.605*vC[i,j]+0.0*vD[i,j] 
sV3[1..N,1..M]=0.0253*vC[i,j] 
  +0.00338*vD[i,j] 

kamean=0.438	 ; per day 
ska=sqrt(0.185)	 ; stdev of ka 
init ka[1..N,1..M]=kamean*
  exp(normal(0,ska*MC)); per day 
next ka[1..N,1..M]=ka[i,j] 

Fmean = 0.663 
sF = sqrt(0.0881) 
init F[1..N,1..M]=Fmean*  exp(normal(0,sF*MC))
next F[1..N,1..M]=F[i,j] 

KIEFmean = 1.13; µg/mL ACZ885 for 
  ; 50:50 probability of flare 
sKIEF = sqrt(1.58E-02) 
init KIEF[1..N,1..M]=KIEFmean* 
  exp(normal(0,sKIEF*MC)) 
next KIEF[1..N,1..M]=KIEF[i,j] 

 HILL = 4.22

  �;display CTD       ;Comment in or out to     
;display function automatically. 

  ;display Pflare	 ;Or select manually. 
display Part3aSum, Part3bSum, zz 

MODEL FITTING, ESTIMATING PARAMETERS

Berkeley Madonna allows simple least squares fitting of 
models to data. Data can be imported (Menu File-Import 
Dataset). The column indices for the x- and the y-variable 
must be specified. Selecting the menu (Parameters-Curve 

Fit) pops up a window that lets the user specify what 
parameters to use for fitting the model. Two guesses 
(original terminology of the input window) for the param-
eter values have to be given (why two remains unclear) and 
the fitting can start. It generally converges relatively quickly.

However, a least squares fit ignores the correlation struc-
ture in the data: it takes all observations as independent of 
one another, thus the association to the subjects is ignored. 
The parameter estimates can help, though, in finding the 
range of reasonable parameter values, e.g., to use them as 
starting values in NONMEM.

ODE SOLVERS

A variety of algorithms are available for solving the differential 
equation system. They all have strengths and weaknesses.31 
The Runge–Kutta 4 algorithm is robust for linear systems and 
is the default for a new project.

The Euler method is the oldest32 and numerically the 
easiest. The Runge–Kutta method (here with two and four 
stages) is quite fast and generally robust.31 The Rosenbrock 
algorithm33 serves better for stiff systems, but it can be 
quite slow and prone to error due to the need for very small 
step sizes (DT) at certain points in the integration. To quote 
Mathworks, “An ODE problem is stiff if the solution being 
sought is varying slowly, but there are nearby solutions that 
vary rapidly, so the numerical method must take small steps 
to obtain satisfactory results” (http://www.mathworks.com/
company/newsletters/articles/stiff-differential-equations.
html). The auto-stepsize method is an in-between solution 
for partially stiff systems. Note, however, that, as the name 
suggests, the stepsize varies with time between the limits 
DTMIN and DTMAX. This can lead to odd profiles around the 
time of dosing if the time points evaluated do not contain the 
exact time of dosing.

Increasing DT or DTMAX can substantially reduce calcula-
tion time, but at the expense of accuracy; the setting to be 
used is thus a compromise, but there must be sufficient accu-
racy to trust the results. The sensitivity of the results to the 
change can be visualized by putting DT on a slider and vary-
ing its value.

PRACTICAL TIPS AND TRICKS

Berkeley Madonna comes with comprehensive documen-
tation. However, the material is concise and examples are 
kept to a minimum. This section provides practical tips for 
applications.

Defining scenarios
Sets of parameters—model alternatives or scenarios—can 
be put on a slider, too. The idea is to move between scenar-
ios by moving only a single slider that defines the scenario 
(and modifies a set of parameters). For example, consider 
the illustration of two competing models. Instead of having 
to modify the set of parameters one by one using the slider, 
one can modify the model number which in turn triggers set-
ting all parameters to the corresponding values. Here is a 
simple example in which setting model to 1 or 2 changes the 
parameters ka and ke.

http://www.mathworks.com/company/newsletters/articles/stiff-differential-equations.html
http://www.mathworks.com/company/newsletters/articles/stiff-differential-equations.html
http://www.mathworks.com/company/newsletters/articles/stiff-differential-equations.html
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model=1; model selection switch 
ka=if model=1 then 0.3 else 0.2 
ke=if model=1 then 1 else 0.8 

Alternatively, the parameters can be vectorized: 

model=1; model selection switch 

kavec [1]=0.1 
kavec [2]=0.5 
kavec [3]=1.0 

kevec [1]=1 
kevec [2]=2 
kevec [3]=5 

; �set parameter values depending on the
;  value of model (!) 
ka=kavec[model] 
ke=kevec[model] 

This approach is helpful for comparing different scenarios 
and overlaying them. It has to be ensured when defining the 
slider that the parameter “model” cannot be set to an illegal, 
non-integer value or a value outside the range.

Customizing graphs
Graphs in Berkeley Madonna can be customized. Double-
clicking on a particular area such as an axis or the graphing 
area will pop up a window in which axis labels, tick marks, 
axis scales (logarithmic or linear), or transformations (Fou-
rier) can be specified. The graph can also be zoomed into 
by selecting an area with the mouse. Un-zooming works like 
“undo”, clicking on the button labeled “Z” takes the zoom one 
step back at a time.

Overlaying profiles
Different profiles can be overlaid. Clicking on the square but-
ton labeled “O” will keep the existing profiles and overlay them 
with the next profile selected. It is noteworthy that moving a 
slider to a new position will always create a new profile. If two 
parameters have to be changed to see another profile, it might 
be undesirable to see the profile after having changed the first 
parameter. An alternative is to open the parameter window 
(Parameters-Parameter Window), enter the values using the 
keyboard, and finally clicking “Run” in the parameters window.

Parameter plots
Parameter plots allow studying the effect of a parameter sys-
tematically. For example, one can evaluate an effect (mini-
mum, maximum, or average) for different doses. The function 
is accessible from the menu (Parameters-Parameter Plot).

The menu allows definition of the parameter to vary the 
variable(s) of interest and the statistic of interest (“Y Axes:”). 
For example, one can vary dose in 11 steps from 100 to 200 
(obtaining the sequence 100, 110, 120, … 200) and show mini-
mum, mean, and maximum concentration or PD effect. The 
result is a plot with dose on the x-axis and concentration on 
the y-axis, showing three lines (minimum, mean, and maximum 
concentration per dose). This feature allows relationships to be 
reviewed and the identification of thresholds, e.g., the largest 
dose such that the maximum effect is below a critical level.

In contrast to sliders, the parameter window is only updated 
after clicking the “Run” button, as repeated simulations are 
required.

Note that the statistics (min, max, mean) are calculated 
across all time points, which is may not be what is required. 
To calculate, e.g., the average trough concentrations for a set 
of doses at trough time (evaltime), 3*24 = 72 h, we calcu-
late the statistic of interest, concstat, at each integration 
step, but we only store it into stats if we have arrived at 
the time of evaluation. Occasionally, the time of evaluation is 
missed by a tiny margin due to numerical inaccuracies such 
that we simply test if we have arrived in the vicinity of eval-
time, not further away than a single integration step size, DT.

An example is given below. The statistics of interest, stats 
(equal to the average of the vector conc at time 72 h), can 
be displayed in a parameter plot against dose by showing 
min(stats) against a sequence of doses. Using the mini-
mum is required since all values of stats that are not at the 
time of evaluation, 72 h, are set to a large value, Inf; averag-
ing would yield nonmeaningful values.

Note that in order to obtain the maximum concentration at 
72 h, stats must be set to a value that is certainly lower than 
the maximum concentration, e.g., -Inf, and the maximum of 
stats should be shown in the parameter plot.

ka=0.1 
ke=0.2 

dose=10 

init depot=0 
d/dt(depot)=pulse(dose, 0, 24) - ka*depot 

init blood=0 
d/dt(blood)=ka*depot - ke*blood 

conc[1..100]=blood + normal(0, 0.1) 

concstat = arraymean(conc[*]) 
evaltime=3*24; evaluation at this time 
stats = if (abs(time-evaltime) < DT) then 
concstat else +Inf 

Seemingly inconsistent parameter values
It can be confusing at times to be clear about what parameter 
values the profiles shown correspond to. When the slider is 
moved, the curves are updated on releasing the mouse but-
ton. When values are entered into a parameter window, the 
profiles are updated after clicking on the “Run” button. The 
same occurs when using the parameter plots window. In such 
cases, parameter values and profiles shown are inconsistent.

In addition, there is the equation or code window that 
defines the parameters and their initial values. If a slider is 
present, the values on the slider are the current parameter 
values and the values in the code are ignored. If values are 
entered into the parameter window, the slider is updated 
directly.

Similarly, if parameters are modified in the parameters win-
dow but the “Run” button is not yet pressed, the visualization 
window is not updated and the currently shown model does 
not correspond to the currently displayed parameter values. 
Showing the parameters inside the graph by clicking on the 
square labeled “P” shows the parameters that were used for 
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the current graph. The parameters window places an asterisk 
next to values that differ from the source code setting and 
these values can be reset by clicking on the “Reset” button in 
the parameters window.

Initialization of arrays
Berkeley Madonna offers multidimensional arrays as data 
structure. They are defined by assigning values to the ele-
ments. Thus, assigning

x[1]=1 
x[2]=2 

creates a vector of length 2. Assigning x[1,1]=11, etc. 
creates a two-dimensional array or matrix. Initialization or 
declaration is therefore not necessary. The array expands in 
size as additional elements are defined. However, if an ele-
ment is not assigned a value, e.g., if only x[1] and x[3] are 
assigned values, uncontrolled things can happen. To catch 
such accidental omissions, one can initialize an array with a 
large number, e.g., infinity, by coding x[1..n]=+Inf. The 
omission will become obvious in subsequent calculations 
since results will be implausible.

Exporting Berkeley Madonna results for presentations 
and reports
At some point in time, the work must be documented—
reverting to static visual displays. Graphics formats and 
options such as editing of graphs are fairly limited in Berke-
ley Madonna. The most striking “feature” is that all graphics 
windows have gray backgrounds. Using copy and paste to 
insert the graph into a slide set or a report will keep the gray 
background, making the graph hard to see.

Some office products allow pasting the graph into the 
document, double-clicking on it, and setting the “transpar-
ent color”: clicking on the gray background of a Berkeley 
Madonna graph will make it transparent. Whether setting 
the transparent color is possible depends on the graph for-
mat: e.g., bitmaps do not allow such modification. Using the 
“paste special” option instead of paste or Ctrl-V to insert the 
graph allows the user to select the particular graph format, 
e.g., Windows Metafile (called “Picture (enhanced metafile)” 
in current MS Office versions.

If multiple Berkeley Madonna graphs are created for the 
same presentation or report, it is advisable to set the size of 
the graph window in Berkeley Madonna to a particular size 
and never change it again. The font size is fixed and indepen-
dent of the size of the window, and if the window is enlarged, 
the font size shrinks relative to the graph size. Thus, if graphs 
copied into a report originally had different sizes and are 
modified to have the same size, they will have different font 
sizes (for axis labels and tick marks, etc.).

It is possible to create publication quality figures directly 
from Berkeley Madonna. If one prints to a virtual printer such 
as Adobe Acrobat or PDFLite, a portable document format 
with vector graphics is produced. As suggested above, selec-
tion of an appropriate size of figure on the screen and suit-
able font size, together with printing to a smaller paper size, 
such as A5, A6, A7, or a custom size, is important for achiev-
ing a clear product.

For more freedom to adapt the graph to one’s needs, it 
is common practice to export the table of data underlying a 
graph to a text file. In the Berkeley Madonna graph window, 
clicking on the icon shows two squares partially overlaid. The 
resulting table gives the data shown in the visual display. 
The menu “File-Save Table As” now allows storing the data 
to a text file. Reading the data into another system such as 
R adds more options for the creation of a graph. Note that 
scripting is more reproducible than mouse clicks.

Licensing model
The Berkeley Madonna system offers a free version that is 
only slightly restricted in functionality: the code and the setup 
(screen layout) cannot be saved. The unrestricted version 
(version 8.3.18 as of this writing) can be purchased online 
and is priced quite reasonably. Version 9 is available as a 
beta version.21

Older versions of the software, such as version 8.0.1, are still 
in use at some institutions. The example code herein has been 
checked to ensure it runs in both 8.0.1 and 8.3.18, but the two 
have one distinct difference important to mention. The pulse 
function, very often used for drug input, has its isosceles tri-
angle centered on the defined time in version 8.0.1. Therefore, 
if the start time is set to 0 and a pulse is administered at time 0, 
only half the quantity will enter the system. One should either 
delay the pulse by one integration step (DT or DTMAX depend-
ing upon the integrator), or set the start time to be before the 
first dose by at least one integrator time step. In version 8.3.18, 
the pulse has been redefined to be delayed by one integrator 
time step. If a defined finite number of doses is administered 
over a period of time, the modeler should check the last dose 
is administered correctly. It is possible, depending upon how 
the code is written, to experience half a pulse as the last dose.

Berkeley Madonna sources
The Berkeley Madonna documentation is quite compact but 
contains basically everything needed. The help menu con-
tains submenus “Equation help” and others that are well 
worth studying.

The only Berkeley Madonna user group of which the 
authors are aware was created on LinkedIn.34

One of us, Philip Lowe, created some years ago a series 
of short videos, each of 10–15 min.23–25,29 These demonstrate 
how to write and run models for the PK of a drug with one 
and two compartments, how to import and display data, 
simulate variability between individuals and a implement a 
drug-target binding model. The Supplementary Videos S1–
S4 are available online.

DISCUSSION

PKPD models can be and often are very complex. The 
modeler knows the model “inside out”, having spent time 
developing it. Now it is time for the modeling to make an 
impact: it must be communicated to the decision makers 
in the clinical team, pharmacologists, medical doctors, and 
managers.

If the model is not understood and only results are pre-
sented, the team might not believe the results—the back-
ground motivation is entirely lacking. Thus, the right balance 
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between too little and too much detail is vital. The main com-
ponents of the model must be motivated, frequently with a 
focus on the PD part.

As before, divide and conquer often proves a useful strat-
egy. Illustrating the model components one by one, placebo 
effect, circadian rhythm, development of tolerance, etc., 
makes the model easier to understand and allows compar-
ison with data (eye-balling is often sufficient to gain confi-
dence). Once the components are understood, the full model 
can be presented. Limiting it to population-typical illustrations 
suffices, at least in the beginning. Varying parameters such 
as dose, body weight, or baseline PD will catch the attention 
and show how sensitive the PD response can be to these 
variations. Interactive displays are much more eye-catching 
than static slides.

Once the model is understood and confidence established, 
it is time to tackle the questions, as outlined in the introduc-
tion. This is frequently the time when we move from model-
ing, as in creating the structure and estimating parameters, 
to simulation. The distinction is not always clear to the non-
pharmacometrics audience. The distinction must be made 
between

1.	 Simulation of a single large population to assess, e.g., 
the estimated percentage of subjects reaching a cer-
tain threshold in an efficacy or safety parameter. Esti-
mation is based on counts: if 75 out of 1,000 simulated 
subjects reach the threshold, the estimate for the per-
centage reaching the threshold is 7.5%. Simulation for 
different doses will yield an estimated dose–response 
curve. 

2.	 Repeated simulation of a study; e.g., 100 replicate sim-
ulations of a two-arm study with 40 subjects per arm. 
Such simulations allow for the estimation of uncertain-
ties and power of a statistical test: how often was the 
difference between the two treatment arms statistically 
significant? 

Simulation exercises can require more computing time than 
model parameter estimation, particularly if many hundreds of 
trials are simulated to gauge uncertainty in the predictions. 
Interactivity is thus only possible with reasonable comput-
ing time. The often used solution is to simulate anticipated 
scenarios and present static slides. However, in particular 
for exploration of scenarios with clinical teams, interactive 
simulation is highly desirable such that answers can be given 
almost instantaneously, keeping the discussion flowing.

Variations in the setting are important: they help under-
standing the sensitivity of the expected outcome as a depen-
dency of the tuning parameters. With a better understanding 
of the relevance of the different parameters, the team can 
move toward decision making with better confidence. Interac-
tive simulation helps since, if particular scenarios of interest 
are not covered, they can be simulated directly, avoiding the 
break in the discussion which would occur if the modeler had 
to go back to the office to produce the desired results.

CONCLUSION

There is a fundamental difference between static and inter-
active graphics. Static graphics must be prepared before the 

discussion takes place, e.g., with the clinical or project team. 
Either the modeler prepares many visualizations, most of 
which will then not be used, or the risk is taken that a particu-
lar graph will not be available when the discussion requires 
it. Tools such as Pharsight’s DMX (drug model explorer) help 
navigation through a large number of simulation scenarios 
prepared prior to the discussion.

The other possibility is the use of a tool that allows for visu-
alization and even simulation interactively. Such tools include 
Berkeley Madonna and, recently, Monolix with its Model Visu-
alizer MLXPlore.35 Both allow for interactive visualization by

1. 	 Providing a suitable user interface, a slider that allows 
setting the parameters of the model to various values

2. 	 Providing fast differential equation solvers, allowing for 
real-time calculation of even complex models.

Our experience shows that preparing all potentially inter-
esting scenarios is unrealistic since too much computing and 
setup time is required, yet there is still a good chance that a 
scenario of interest is missed.

On the other hand, the creativity of team discussions is 
largely unlimited if a tool is available that shows the effects of 
the suggested scenario immediately, be it a different dosing 
regimen or different compound characteristics such as slow 
release formulations and the effect on the PD response.

Until this day, a modeling and simulation scientist requires 
a variety of tools: for data manipulation, data visualization, 
model fitting, qualification, visualization, simulation, and 
evaluation of simulated scenarios. A lean, integrated envi-
ronment that allows for interactive, real-time visualization, 
simulation, and statistical evaluation comes closer to reality 
with computers becoming faster. Once such tools penetrate 
the pharmacometrics community, model development as well 
as visualization, scenario exploration and ultimately decision 
making will be raised to a new level.
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