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ABSTRACT  
Tyrosine kinase inhibitors (TKIs) have emerged as a potential treatment strategy for glioblastoma 
multiforme (GBM). However, their efficacy is limited by various drug resistance mechanisms. To 
devise more effective treatments for GBM, genetic characteristics must be considered in 
addition to pre-existing treatments. We performed an integrative analysis with heterogeneous 
GBM datasets of genomic, transcriptomic, and proteomic data from DepMap, TCGA and CPTAC. 
We found that poor prognosis was induced by co-upregulation of heat shock protein family A 
member 5 (HSPA5) and fibroblast growth factor receptor 1 (FGFR1). Co-up regulation of these 
two genes could regulate the PI3K/AKT pathway. GBM cell lines with co-upregulation of these 
two genes showed higher drug sensitivity to PI3K inhibitors. In the mesenchymal subtype, the 
co-upregulation of FGFR1 and HSPA5 resulted in the most malignant subtype of GBM. 
Furthermore, we found this newly discovered subtype was correlated with homologous 
recombination deficiency (HRD) In conclusion, we discovered novel druggable candidates within 
the group exhibiting co-upregulation of these two genes in GBM, suggest potential strategies 
for combination therapy.
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Introduction

Glioblastoma multiforme (GBM) is a highly malignant 
brain tumor with a poor prognosis, characterized by 
rapid growth, invasiveness, and resistance to treatment. 
Recent advances in high-throughput sequencing tech-
nology have significantly progressed the understanding 
of cancer genomes, leading to a radical advancement in 
the molecular classification of cancer. Prominent 
mutations, such as MGMT promoter methylation, p53, 
RB1, and IDH1 have been recognized in studies of GBM 
(Wakimoto et al. 2014; Chen et al. 2017; Zhang et al. 
2019). Furthermore, GBM has been intricately classified 
based on transcriptome profiling according to cell 
type, enabling personalized treatment strategies for 
patients based on subtypes.

Based on transcriptional profiling characteristics, GBM 
has been classified into subtypes: classical, neural, pro-
neural, and mesenchymal (Sidaway 2017). The classical 
subtype is characterized by the expression signature 

genes EGFR, AKT2, SMO, GAS1, GLI2, NOTCH3, JAG1, and 
LFNG (Verhaak et al. 2010). EGFR amplification is associ-
ated with the proliferation and survival of tumor cells 
through the PI3K/AKT/mTOR and RAS/RAF/MEK/ERK 
pathways, with mutated known genes including PTEN, 
CHKN2, and PDGFRA (Verhaak et al. 2010; Park et al. 
2019; Saito et al. 2019). For the proneural subtype, the 
expression signature includes PDGFRA, OLIG2, DDL3, 
SOX2, and NKX2-2, reflecting characteristic expression 
features. Mutation information indicates alterations in 
key neurodevelopmental pathways due to mutations 
in TP53, PI3K, IDH1, and PDGFRA (Verhaak et al. 2010; 
Alentorn et al. 2012; Steponaitis and Tamasauskas 
2021). For the neural subtype, the expression signature 
includes MBP/MAL, NEFL, SLC12A5, SYT1, GABRA1, and 
NOTCH1, among others, which are known as important 
signaling factors in neuron development and differen-
tiation. Lastly, for the mesenchymal subtype, the 
expression signature includes YKL40, MET, CD44, 
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MERTYK, TRADD, RELB, and TNFRSF1A (Verhaak et al. 
2010). TNF-α, NF-κβ, STAT3, and CEBPB have been 
reported as related signaling pathways (Olmez et al. 
2018; Yamini 2018; Tan et al. 2019). These signaling path-
ways are known to induce inflammatory responses. 
Mutation information has been reported for NF-κβ and 
NF1 (Verhaak et al. 2010).

Among these GBM subtypes, the mesenchymal 
subtype, characterized by traits associated with inflam-
matory responses within the tumor and increased vascu-
larization, is associated with a higher correlation with 
tumor invasion and metastasis (Das and Marsden 2013; 
Zanotto-Filho et al. 2017). Treatment of the mesenchy-
mal subtype is challenging due to its potential for malig-
nancy (Behnan et al. 2019). The mesenchymal subtype of 
GBM is associated with various signaling pathways. 
Receptor tyrosine kinases (RTKs), which are part of 
these signaling pathways, are known to functionally 
regulate tumor cell growth, cell cycle progression, and 
other processes (Pearson and Regad 2017). RTK inhibi-
tors are widely used in many cancer types. Notable 
uses include imatinib (Gleevec) in gastrointestinal 
stromal tumors, erlotinib in non-small cell lung cancer, 
lapatinib (Tykerb) in HER2-positive breast cancer, sorafe-
nib (Nexavar) in hepatocellular and renal cell carcinoma, 
and sunitinib (Sutent) in renal cell carcinoma, gastric 
cancer, and neuroendocrine tumors.

According to recent reports, a clinical trial was 
attempted with the FDA-approved drug bevacizumab 
targeting VEGFR2 in patients with recurrent GBM. 
However, clinical trials have not yet demonstrated sig-
nificant superiority of RTK-targeted therapy using RTK 
inhibitors alone or in combination (Qin et al. 2021). 
Therefore, continuous research is needed to explore 
drug combination strategies based on molecular and 
cellular biology mechanisms, considering the genetic 
characteristics within the tumor. At the in-silico level, 
integrating heterogeneous data, including transcrip-
tomics, genomics, and proteomics, from currently avail-
able databases, such as The Cancer Genome Atlas 
(TCGA), the Cancer Dependency Map (DepMap), and 
Clinical Proteomic Tumor Analysis Consortium (CPTAC), 
can facilitate the proposal of novel therapeutic strat-
egies (Liu et al. 2020; Li et al. 2022).

Here, we proposed and identified combinatorial 
druggable target genes based on the existing transcrip-
tion-based ones, as well as their interaction with tran-
scriptomic expressions. We collected publicly available 
data, including cell lines, transcriptome, genome, and 
drug sensitivity data at the cell line level. In particular, 
we analyzed the expression patterns of RTK-related 
genes closely associated with GBM and identified the 
characteristics of cellular signaling pathways interacting 

with these genes. Furthermore, we found out that the 
candidate genes were associated with Homologous 
Recombination Deficiency (HRD) signature using muta-
tional signature analysis (Lee et al. 2018). Thus, we pro-
posed more refined subtypes through integrated 
analysis of transcriptomics, genomics, proteomics, and 
other data at the transcription-based subtype level. 
This study provided new candidates in specific subtype 
of GBM and offered personalized treatment strategies 
for patients with GBM based on this evidence.

Materials and methods

Data collection

The following data was collected from a public database. 
(Figure 1). Dependency Map (DepMap, https://depma-
p.org/portal/): {RNA expression (n = 19,221), Mutation 
(n = 18,784), CNV(n = 25,368), CERES (n = 17,386), PRISM, 
and, Metadata}, Genotype-Tissue Expression (GTEx, 
https://www.gtexportal.org/home/): {RNA expression (n =  
19,221)}, UCSC Xena (TCGA dataset, https://xenabrowser.-
net): {RNA expression (n = 20,531), Mutation (n = 40,544), 
CNV(n = 24,777), and, Metadata}, and Clinical Proteomic 
Tumor Analysis Consortium (CPTAC, https://proteomics.-
cancer.gov/data-portal): {protein expression (n = 11,141) 
and phospho-protein (n = 101,266)}.

Cell line level analysis

A gene effect dataset involving 20,252 genes across 24 
glioblastoma cell lines was utilized. CERES, a measure 
of gene dependency, was employed through CRISPR- 
Cas9 screens provided by DepMap to assess their neces-
sity for cell survival (https://github.com/cancerdatasci/ 
ceres). Specifically, a score lower than −0.5 represents 
depletion in most cell lines, while a score lower than 
−1 represents strong killing. To narrow down candidate 
genes, we filtered genes focusing on those with CERES 
scores below −1 across all glioblastoma cell lines.

Patient level analysis

RNA sequencing data was obtained from TCGA-GBM, 
comprising 11 normal samples, 577 primary tumor 
samples, and 13 recurrent tumor samples. Integration 
was done with 40 randomly selected GTEx (dbGaP 
Accession phs000424.v8.p2) brain datasets to account 
for differences in sample numbers between tumor and 
normal samples for DEG analysis. The TCGA-GBM data 
was represented as in log2(x + 1) transformed RSEM nor-
malized count. and the GTEx brain data as expected 
count data. Batch effects were removed by using 
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ComBat-seq (Zhang et al. 2020) To investigate the 
potential relationship between 30 Cancer Gene Signa-
tures (CGSs) and 63 well-known Receptor Tyrosine 
Kinases (RTKs) (Robinson et al. 2000).

The association between multi-omics data within 
the cell signaling pathway

The interaction between HSPA5 and FGFR1 was ana-
lyzed to investigate RNA-protein interactions 
through multi-omics analysis. Based on the expression 
levels of HSPA5 and FGFR1, four distinct groups were 
classified: co_up (both HSPA5 and FGFR1 up-regu-
lation), co_down (both HSPA5 and FGFR1 down-regu-
lation), HSPA5_up (only HSPA5 up-regulation), and 
FGFR1_up (only FGFR1 up-regulation). Gene 
expression (DEG) and protein expression (DEP) ana-
lyses were conducted to analyze the TCGA and 
CPTAC datasets. Genes that showed no expression 
across all samples were excluded. For the DEG analy-
sis, the ‘limma’ package was utilized for the analysis 
(Ritchie et al. 2015), and for the CPTAC dataset, t- 
tests were employed to investigate activated path-
ways within each group (|FC| ≥ 1, p-value ≤ 0.05). 
Additionally, the ‘PhosR’ package (Kim et al. 2021), a 
part of R’s Bioconductor suite, was used to analyze 
protein phosphorylation. This analysis was executed 

only when more than half of the replicates in at 
least one condition possessed the corresponding 
phosphosites. In instances of missing values for phos-
phosites, imputation was performed by sampling from 
the empirical normal distribution, constructed using 
the quantification values of phosphosites from the 
same condition.

Drug screening

The 32 glioblastoma cancer cell lines were categorized 
into four groups based on the expression levels of 
FGFR1 and HSPA5, using the expression data from CCLE 
(22Q2) for each cell line. We downloaded and utilized 
the ‘primary-screen-replicate-collapsed-logfold-chan-
ge.csv’ file from the DepMap portal. We examined the 
expression patterns of 32 GBM cell lines based on the 
expression levels of HSPA5 and FGFR1, using expression 
data from CCLE (22Q2) for each cell line. Additionally, 
expression patterns were investigated based on 
mesenchymal and cell morphology. Drugs exhibiting stat-
istically significant differences were also identified.

Statistical analysis

A proportional hazard model was used to identify genes 
that could potentially interact with RTK genes in GBM. 

Figure 1. Research scheme. Genomes, transcriptomes, and proteomes were downloaded from DepMap, GTEx, TCGA, and CPTAC for 
utilization as follows: (1) Data preprocessing, (2) Discovery of genes significantly interacting with RTK and related genes, (3) Classifi-
cation of signal transduction system and genome, and (4) Drug screening.
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Additionally, Pearson correlation analysis was conducted 
to examine the correlation between Clinically Significant 
Gene Sets (CSGs) and RTK genes, requiring a Pearson’s 
correlation coefficient of at least 0.4. Using the chi- 
square test, we conducted analysis on the association 
between the expression of HSPA5 and FGFR1 and the 
transcription-based subtypes (classical, neural, pro-
neural, and mesenchymal). Additionally, Fisher’s exact 
test was conducted when the frequency was less than 
5. A significance level of p ≤ 0.05 was applied to all stat-
istics, and R package version 4.1.2 was used.

The analysis pipeline and datasets are provided 
through https://github.com/Honglab-Research/SPde.

Results

FGFR1 and HSPA5 co-upregulation indicates 
poor prognosis

For this study, we collected data from publicly available 
databases, including DepMap, Genotype-Tissue 
Expression (GTEx), TCGA, and CPTAC (Material and 
Methods). Using multi-omics data, we conducted sub-
typing based on gene expression and performed inte-
grated analysis of genomic, transcriptomic, and 
proteomic data to extract characteristics at the patient 
level. Finally, we analyzed drug responses according to 
subtype at the cell line level using PRISM database. 
(Figure 1).

We discovered 477 genes associated with survival 
across 24 GBM cell lines based on CERES dependency 
scores from the DepMap database (Supplementary 
Figure 1). Next, we analyzed differentially expressed 
genes (DEGs) between tumor (TGGA-GBM) and normal 
samples (Integrated data; TCGA-GBM normal and GTEx 
normal brain data, Material and Methods). We then con-
ducted Cox analysis to confirm whether changes in the 
expression of these genes affected the survival of 
patients with GBM. As a result, we successfully identified 
30 genes that are clinically significant in GBM, and we 
termed them Clinically Significant Gene Sets (CSGs). 
(Figure 2(A)).

We investigated the correlation between the CSG and 
61 well-known RTK genes. Only HSPA5 and BUD31 were 
associated with prominent RTK genes in GBM. (Figure 2
(B)). In particular, HSPA5 showed positive correlations 
with two GBM RTK genes, FGFR1 and VEGFA (R = 0.50 
and 0.52, respectively). We categorized 590 TCGA-GBM 
patients into four groups: co_up (HSPA5 and FGFR1 upre-
gulated), co_down (HSPA5 and FGFR1 downregulated), 
h_up (only HSPA5 upregulated), and f_up (only FGFR1 
upregulated). Survival analysis was performed based 
on the expression patterns. The prognosis was worse 

for the co_up group, compared to other groups in 
TCGA GBM data, whereas the prognosis for the 
co_down group showed no difference (Figure 2(C and 
D), p = 0.0016 and p = 0.14, respectively). We validated 
our data using the Chinese Glioma Genome Atlas 
dataset. similarly, the results showed that the prognosis 
was worse when comparing the co_up group with other 
groups (Supplementary Figure 2, p < 0.0001). In addition, 
49% (123/249) of cases classified as WHO Grade IV, the 
highest grade, were found in the co_up group (chi- 
square test, p-value = 1.634e-07, Supplementary Figure 
3B).

We investigated the association between the classifi-
cation based on expression (proneural, neural, classical, 
mesenchymal) in GBM and the expression patterns 
identified in this study. The co_up patient group exhib-
ited the highest prevalence of the mesenchymal 
subtype, followed by the classical subtype. In survival 
analysis, the prognosis was worse in the co_up group 
(M_coup) compared to the other groups in the 
mesenchymal subtype; in the proneural subtype, the 
prognosis was better in the co_down group (M_codn) 
(Figure 2(E and F), p = 0.027 and p = 0.0014, respectively).

Cell signaling pathways resulting from the 
interaction between HSPA5 and FGFR1 at the 
transcriptome and proteome levels

Based on the four groups identified in our study, we 
investigated cell signaling pathways. In the co_up 
group, we observed the activation of the PI3 K/AKT 
pathway. (Supplementary Figure 3A and Figure 3). Fur-
thermore, it consistently observed at the protein level 
with a high correlation. (Figure 3, r = 0.79)In addition, 
we identified consistent expression patterns between 
RNA and protein expression in genes related to cell 
adhesion, RTK, and other relevant genes (co_up vs 
co_down, p ≤ 0.05, Figure 3). Since cell adhesion is rel-
evant in the mesenchymal subtype, we inferred that 
the co_up group identified in this study was affected 
downstream of the PI3K-AKT pathway. Additionally, we 
examined the activation of intracellular signaling path-
ways by investigating phosphoprotein activity. The 
co_up group contained a total of 18 regulatory protein 
modules regulated by four kinases. (Supplementary 
Figure 4A). These modules represent clusters where 
similar dynamic phosphorylation profiles and kinase 
regulations are shared among phosphorylation sites, 
delineating specific groups within a protein signaling 
network. (Ref). Notably, only two modules displayed sig-
nificant differences between the co_up and co_down 
groups. Module 7, predominantly regulated by MAPK, 
exhibited enhanced activity in the co_down group, 
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while Module 8, regulated by AKT, displayed increased 
activity in the co_up group. (Supplementary Figure 
4B). Consequently, we discovered that the co_up 
group activates the AKT pathway and deactivates the 
MAPK pathway. Furthermore, utilizing transcriptome 
data from 693 CGGA, we confirmed that the upregula-
tion of FGFR1 and H9,SPA5 leads to the activation of 

the PI3 K/AKT pathway. We also identified the downre-
gulation of the MAPK pathway in the co_up group. (Sup-
plementary Figure 3B).

The effect of PI3 K inhibitor on subtypes separated by 
FGFR1 and HSPA5 gene expression patterns. We sought 
to validate our findings using the DepMap PRISM and 
CCLE datasets. Initially, we categorized 32 GBM cell 

Figure 2. Co-regulation of HSPA5 and FGFR1 and survival characteristics across GBM subtypes. (A) Forest plot with HRs. Only 
selected 30 Clinically Significant Gene Sets(CSGs) from Cox analysis are shown. The HRs are presented as the centers of the error bars. 
The error bars range from the lower to the upper 95% confidence limit. A positive association between gene expression and mortality 
rate is displayed in a pink color. A negative association is displayed in a blue color. (B) Correlation analysis of RTK and CSG. Color 
gradient indicates correlation coefficient(r). We restricted the color gradient range to – 0.4–0.4 for display.(C) Survival analysis of 
the entire data set compared to co_up in TCGA data. (D) Survival analysis of the entire data set compared to co_down in TCGA 
data. (E) Integrated analysis of the expression pattern between the transcription-based subtype and HSPA5 and FGFR1. Count indicates 
The number of patients corresponding to each subtype within each group. (F) Differences in survival analysis according to the HSPA5 
and FGFR1 expression patterns in the mesenchymal and proneural subtypes.
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lines into four groups based on FGFR1 and HSPA5 expres-
sion.(Supplementary Table 1)

Next, we compared the effect of ECM-related 
adhesion inhibitors between co_up and co_down 

group, targeting molecules upstream of the PI3 K/ 
AKT pathway. However, PF-573228 (ECM-related 
adhesion inhibitor) showed higher drug sensitivity 
in the co_down group (Supplementary Figure 5A 

Figure 3. Co-upregulation of HSPA5 and FGFR1 activates the PI3 K/AKT pathway. RNA and protein expression was schematized 
according to the PI3 K/AKT pathway. The expression patterns were classified as co_up, co_down, FGFR1_up, and HSPA5_up based on 
the expression patterns of FGFR1 and HSPA5, whose trends are displayed.

ANIMAL CELLS AND SYSTEMS 221



and Supplementary Table 2). Instead, we noticed that 
all PI3 K inhibitors exhibited higher drug sensitivity in 
the co_up group compared to the co_down group. 
Particularly, the co_up group exhibited high drug 
sensitivity when treated with PIK-93, in contrast to 
the co_down group (Figure 4(A), p = 0.027). Although 
not all MAPK inhibitors yielded similar results, 
SB-203580 exhibited significantly high drug sensi-
tivity in the co_down group (Figure 4(A) and 
p = 0.009).

Compared to cell lines with the mesenchymal 
subtype, cell lines simultaneously categorized as co_up 
(M_coup) displayed increased sensitivity to PI3 K inhibi-
tors (Figure 4(B) and XL-147: p = 0.006). Moreover, we 
confirmed that the M_coup group, in comparison to 
the mesenchymal subtype, exhibits higher sensitivity 
to PI3 K and HDAC inhibitors (Figure 4(B) and CUDC- 
907: p = 0.037). Based on the association between 
HSPA5 and FGFR1 interaction and the PI3K-AKT 
pathway, these results suggest an association with PI3 
K inhibitors.

Genomic characteristics in subtypes separated by 
FGFR1 and HSPA5 gene expression patterns
We analyzed the relationship between the expression 
patterns of HSPA5 and FGFR1 and the genomic data 
(Figure 5(A)). As a result, in the Mesenchymal subtype, 
we observed prominent mutations of the NF1 gene in 
the co_up group, while in the Proneural subtype, 
Mutations of the IDH1 and TP53 were detected in the 
co_down group. Furthermore, the CGGA data showed 
the co_up group comprised 53% (153/286) of IDH Wild 
Type cases (chi-square test: p-value = 5.253e-09 and Sup-
plementary Figure 3B). The results were consistent with 
our previous findings.

Additionally, we analyzed mutation signatures to 
examine the characteristics of mutation signatures 
between the transcriptome-based subtype analysis and 
the expression patterns of HSPA5 and FGFR1. In GBM 
overall, we identified several mutation signatures in 
the mutation signature analysis, including single base 
substitution SBS2 associated with APOBEC enzymes, 
SBS18 related to reactive oxygen species damage, 

Figure 4. Verification of the response to PI3 K and MAPK inhibitors through the HSPA5 and FGFR1 interaction. (A) Box plots 
illustrate the extent of changes in cell viability when applying a compound within each group. A lower cell viability indicates higher 
drug sensitivity. The lower y-value indicates better drug sensitivity. The drug response differences to PIK-93 and SB-203580 were 
demonstrated according to the HSPA5 and FGFR1 expression patterns (p ≤ 0.05). (B) Drug response differences to PIK-93, CUDC- 
907, and XL-147 are shown according to the mesenchymal and proneural subtypes (p ≤ 0.05).
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SBS30 linked to base excision repair, SBS32 associated 
with azathioprine-induced immunosuppression, and 
SBS44 related to DNA mismatch repair. We discovered 
SBS19 and SBS40, whose functions are not yet known. 
Furthermore, we identified a common signature includ-
ing SBS19 and its unknown function and base excision 
repair related SBS30 in the expression patterns of 
HSPA5 and FGFR1 within both the mesenchymal and 
proneural subtypes. Specifically, within the mesenchy-
mal subtype, only SBS3 related to HRD signature was 
found in the co_up group.

Therefore, to explore the relationship between the 
newly discovered group (M_coup) and germline 
mutations in homologous recombination-related genes, 
we conducted chi-square tests on 58 HRD-related 

genes. Approximately 12% (6/52) of cases in the newly 
discovered group (M_coup) possessed ERCC4 germline 
mutations. (p-value = 0.055) (Supplementary Table 4). 
However, we could not find differentially expressed 
genes related to HRD (Supplementary Table 5).

Discussion

GBM is a type of cancer that shows a very poor prognosis 
and is very challenging to treat. GBM subtypes are 
divided based on transcriptional criteria, and treatment 
strategies tailored to each subtype are necessary. 
Despite the treatment strategies targeting RTKs pro-
posed in the past, clinical reports have indicated their 
lack of effectiveness. Therefore, detailed classifications 

Figure 5. Co-regulation of HSPA5 and FGFR1 at the genomic level. (A) A oncogrid of the relationship between the HSPA5 and 
FGFR1 expression pattern, transcription-based subtype, clinical information, and genomic mutations. (B) Utilizing the mutation 
data within the genome, we analyzed the mutation signature resulting from the differences in HSPA5 and FGFR1 expression in the 
mesenchymal and proneural subtypes.
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of GBM are necessary in addition to the existing 
subtypes.

In this study, we discovered poor GBM prognosis due 
to the interaction between HSPA5 and FGFR1 within the 
existing subtypes. Especially in the mesenchymal 
subtype, we suggested a potential direction for treat-
ment strategies by presenting characteristics and 
mutation signature features according to the co-regu-
lation and expression of HSPA5 and FGFR1.

Temozolomide is currently known as an important 
chemotherapeutic for GBM treatment, but its limitations 
are highlighted by drug resistance (Chien et al. 2021; Roh 
et al. 2023; Teraiya et al. 2023). Other treatment methods 
have been studied, including clinical trials for targeted 
therapies, such as bevacizumab, which targets VEGF 
(Fu et al. 2023) and EGFR (erlotinib, lapatinib, and 
gefitinib) inhibitors that focus on EGFR, and PI3 K/AKT/ 
mTOR inhibitors aimed at the PI3 K/AKT/mTOR signaling 
pathway (Pan and Magge 2020). However, the clinical 
efficacy of treatments targeting RTK exhibits limitations, 
regardless of their single or combined use (Qin et al. 
2021; Shao et al. 2023). While the PI3 K inhibitor has 
been approved by the FDA as an anticancer drug, its 
widespread clinical application is limited due to frequent 
and severe side effects (Lin et al. 2021; Yu et al. 2023).

Despite the classification of GBM subtypes based on 
existing transcriptional standards, the need for effective 
treatments persists. Hence, integrated analysis of multi- 
omics data encompassing transcriptomes, genomes, 
and proteomes is needed. Through our integrated analy-
sis, we have proposed a new GBM subtype driven by the 
co-regulation of HSPA5 and FGFR1 in existing GBM sub-
types. FGFR1 has shown genomic abnormalities not 
only in GBM, but in most types of cancer as well, and its 
increased expression has been reported in GBM (Morrison 
et al. 1994; Yamaguchi et al. 1994; Jimenez-Pascual and 
Siebzehnrubl 2019). HSPA5 is recognized for its role in 
managing oxidative stress protection and cell survival, 
and its elevation has been observed in a variety of 
cancers, including GBM (Iglesia et al. 2019).

Phillips et al. (2006), Verhaak et al. (2010), and Wang 
et al. (2017) have classified existing GBM subtypes 
through criteria, such as expression signatures, chromo-
some gain/loss, and mutated genes (Phillips et al. 2006; 
Verhaak et al. 2010; Wang et al. 2017). With the current 
ability to correlate RNA and protein expression through 
integrated multi-omics data analysis, classification criteria 
should be expanded based on the conclusions obtained 
from this study. Additionally, the mutation signature pre-
sented by Alexandrov et al. (2013) can serve as a method 
to describe the characteristics of mutation types occur-
ring in specific mutation-inducing processes and to rep-
resent the classification features of GBM subtypes.

In this study, we discovered that the interaction 
between HSPA5 and FGFR1 regulates PI3 K/AKT cell sig-
naling. Specifically, we found co-regulation of RNA and 
protein in both cell adhesion and RTK, which are 
highly relevant to the upstream mesenchymal side 
(Mathew et al. 2014,; Behnan et al. 2019). Therefore, reg-
ulating PI3 K/AKT in downstream signal transduction 
could enable new treatment strategies (Figure 3).

Additionally, mutation signature analysis showed 
only SBS3 in mesenchymal subtype cases where HSPA5 
and FGFR1 were co-upregulated (Figure 5). SBS3 is 
related to HRD, a major DNA repair mechanism within 
tumors. Reports have linked HRD components to poor 
GBM prognosis (Knijnenburg et al. 2018; Lim et al. 
2020). In cases of GBM with HRD, treatment strategies 
have been suggested that either utilize a PARP inhibitor 
or combine it with temozolomide (Berte et al. 2016; Bisht 
et al. 2022). Therefore, our study suggests the possibility 
of combined drug use including PI3 K and PARP inhibi-
tors, along with existing treatments for GBM (Zhang 
et al. 2021). We wanted to assess the effects of a PARP 
inhibitor on the M_coup cell line, but there was no avail-
able data on the administration of this compound to the 
M_coup cell line (Supplementary Table 3).

Most drugs showing significant differences in drug 
sensitivity between the co_up and co_down groups 
target the PI3 K/AKT or MAPK pathways. We could ident-
ify other RTK inhibitors such as R-428 and TELATINIB 
(Supplementary Table 2 and Supplementary Figure 5B). 
However, due to limitations in in-silico based analysis, 
we could not compare which drug was more effective 
within the same cell.

We anticipate that the PI3 K inhibitor, consistently 
associated with the co_up group from transcriptomics 
to phosphoproteomics levels, would be most effective 
in that group. However, experimental validation is 
necessary to confirm this (Supplementary Figure 4B).

Therefore, in our subsequent study, we intend to 
utilize a mouse model to compare the efficacy of candi-
date drugs. Although the ERCC4 germline mutation was 
not significant in this study, the high proportion of 
approximately 12% and the low p-value (0.055) 
suggest that it may still serve as a promising molecular 
marker in M_coup group. (Supplementary Table 4). 
Therefore, we aim to collect samples from M_coup 
patients to assess the prevalence of ERCC4 germline 
mutations within these patient groups and investigate 
whether this mutation can serve as a molecular marker 
for the newly discovered subtype.

Furthermore, we anticipate identifying candidate 
genes capable of overcoming RTK drug resistance mech-
anisms in other cancer types. Consequently, we con-
ducted analyses for 12 cancer types including LUAD, 
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BRCA, COAD, PAAD, KIRC, STAD, ESCA, UCEC, LUSC, LIHC, 
and BLCA. Among these, significant correlations 
between RTKs and CSGs were observed in 8 cancer 
types. Based on these findings, we are planning the 
next stage of research (Supplementary Table 6).

We identified co-regulation of HSPA5 and FGFR1 in 
the existing transcription-based GBM classification, and 
we further refined the existing mesenchymal subtype 
based on their expression characteristics. In addition, 
our mutation signature proposes a more detailed 
classification at the genomic level. Therefore, this 
refined classification can improve the categorization of 
clinical treatment strategies and provide information 
on drugs that can be combined with existing treatments.
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