
Frontiers in Microbiology 01 frontiersin.org

Dissemination and prevalence of 
plasmid-mediated high-level 
tigecycline resistance gene tet 
(X4)
Shaqiu Zhang 1,2,3*†, Jinfeng Wen 1†, Yuwei Wang 4†, 
Mingshu Wang 1,2,3, Renyong Jia 1,2,3, Shun Chen 1,2,3, 
Mafeng Liu 1,2,3, Dekang Zhu 1,3, Xinxin Zhao 1,2,3, Ying Wu 1,2,3, 
Qiao Yang 1,2,3, Juan Huang 1,2,3, Xumin Ou 1,2,3, Sai Mao 1,2,3, 
Qun Gao 1,2,3, Di Sun 1,2,3, Bin Tian 1,2,3 and Anchun Cheng 1,2,3*
1 Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, 
Chengdu, China, 2 Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, 
Chengdu, China, 3 Key Laboratory of Animal Disease and Human Health of Sichuan Province, 
Sichuan Agricultural University, Chengdu, China, 4 Mianyang Academy of Agricultural Sciences, 
Mianyang, China

With the large-scale use of antibiotics, antibiotic resistant bacteria (ARB) 

continue to rise, and antibiotic resistance genes (ARGs) are regarded as 

emerging environmental pollutants. The new tetracycline-class antibiotic, 

tigecycline is the last resort for treating multidrug-resistant (MDR) bacteria. 

Plasmid-mediated horizontal transfer enables the sharing of genetic 

information among different bacteria. The tigecycline resistance gene tet(X) 

threatens the efficacy of tigecycline, and the adjacent ISCR2 or IS26 are often 

detected upstream and downstream of the tet(X) gene, which may play a crucial 

driving role in the transmission of the tet(X) gene. Since the first discovery of 

the plasmid-mediated high-level tigecycline resistance gene tet(X4) in China 

in 2019, the tet(X) genes, especially tet(X4), have been reported within various 

reservoirs worldwide, such as ducks, geese, migratory birds, chickens, pigs, 

cattle, aquatic animals, agricultural field, meat, and humans. Further, our 

current researches also mentioned viruses as novel environmental reservoirs 

of antibiotic resistance, which will probably become a focus of studying the 

transmission of ARGs. Overall, this article mainly aims to discuss the current 

status of plasmid-mediated transmission of different tet(X) genes, in particular 

tet(X4), as environmental pollutants, which will risk to public health for the 

“One Health” concept.
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Introduction

The discovery of antibiotics is a milestone event in human 
medicine. With the large-scale use of antibiotics, while reducing the 
morbidity and mortality of bacterial infections, strains carrying 
different antibiotic resistance genes (ARGs) appeared and spread 
rapidly (Davies and Davies, 2010; Ahmad and Khan, 2019). The 
global sales of antimicrobials are estimated to reach 104,079 tons in 
2030, an increase of 11.5% since 2017 (Tiseo et  al., 2020). 
Antimicrobial resistance (AMR) is one of the public health issues of 
widely concern around the world, and ARGs are regarded as new 
environmental pollutants (Plantinga et al., 2015; Zhang et al., 2020c).
Tetracycline have many desirable properties of antibiotics, such as 
their excellent anti-bacterial activity and oral benefits. They have 
been widely used in the treatment of human and animal infections 
or as animal growth-promoting feed additives (Roberts, 2003). 
However, only a small part of tetracycline can be absorbed after 
entering the body, and more than 75% of tetracycline will be excreted 
in the form of a prototype or metabolite (Liao et al., 2021).

Tigecycline belonged to tetracycline-class drugs, is a new class 
of glycylcycline antibiotics, approved by the FDA in 2005 (Wenzel 
et al., 2005; Stein and Babinchak, 2013; Hirabayashi et al., 2021). It 
has broad-spectrum anti-bacterial activity, especially against 
multidrug-resistant (MDR) gram-negative bacteria (Zha et  al., 
2020). Tigecycline is also considered as a drug of last resort to 
combat bacterial infections, and which is mainly used for the 
treatment of infections within skin tissue, anti-tumor, bacterial 
pneumonia, and complex intra-abdominal (Olson et  al., 2006; 
Kaewpoowat and Ostrosky-Zeichner, 2015; Zhao et  al., 2021). 
Furthermore, it is a third-generation tetracycline-class antibiotic, 
which was improved by adding a 9-tert-butyl-glycylamido side-
chain modification structure to the central framework of 
minocycline, and thereby forming a steric hindrance, overcoming 
normal mechanisms of resistance to tetracyclines, such as parts of 
the efflux pump mechanism[tet(A-E), tet(K)] and ribosome 
protection mechanism[tet(M)] (Chopra, 2002; Livermore, 2005; 
Linkevicius et al., 2016). Tigecycline can act on bacterial ribosomes 
and inhibit bacterial protein synthesis by interfering with aminoacyl-
tRNA binding to ribosomes (Chopra and Roberts, 2001). We have 
gathered, appraised, and reviewed the accessible relevant literature 
from online sources, including Science Direct, PubMed, and Google 
Scholar. The keywords were included but not limited to tet(X) genes, 
Escherichia coli (E. coli), ISCR2, IS26, antibiotic resistant bacteria 
(ARB), AMR, ARGs, MDR, plasmids, environmental pollutants, 
public health, resistance contact, clinical and veterinary settings. 
Moreover, the cited references were also explored for further 
referencing. This article summarized the mechanisms of tigecycline 
resistance and the prevalence of the plasmid-mediated high-level 
tigecycline resistance gene tet(X4) among the environment, animals, 
and humans. In addition, the origin of the tet(X) and the importance 
of mobile genetic elements (MGEs) during the dissemination of the 
tet(X) are discussed. The purpose of this article is to collect and 
organize the information available so far in one platform, and to 
provide a bridge for readers to understand that the prevalence of 

plasmid-mediated high-level tigecycline resistance genes, which can 
contaminate the natural environment, and further risking to public 
health. Moreover, we also made a positive outlook for the 
transmission of ARGs by viruses.

Mechanism of tigecycline 
resistance

At present, the main mechanisms of bacterial resistance to 
tigecycline are efflux pump mechanism, cell membrane pore 
channel protein variation, ribosome protection mechanism, and 
drug-degrading enzyme mechanism (Figure 1).

Efflux pump mechanism

An active efflux pump is a protein transport system of bacteria, 
it can excrete antibiotics entering the bacteria from itself, reducing 
antibiotic concentration in bacteria, so as to promote the growth of 
ARB (Venter et al., 2015; Bankan et al., 2021). There are five main 
efflux pump families involved in the active efflux of antibiotics, one 
is the ATP binding cassette (ABC) superfamily, which is the 
“primary active” transporter that directly uses ATP binding and 
hydrolysis to drive the free efflux of drugs (Rempel et al., 2019). The 
other four families are secondary active transport proteins, which 
are energy-acquiring transporters with proton pumps, including the 
major facilitator super (MFS) family, multidrug and toxic 
compound extrusion (MATE) family, small multidrug resistance 
(SMR) family, and resistance modulation division (RND) 
superfamily (Kumar et  al., 2016; Lamut et  al., 2019). In Gram-
negative bacteria, overexpression of MFS family and RND family 
efflux pumps plays a significant role in tigecycline resistance, such 
as Tet(A), AcrAB-TolC, OqxAB, and AdeABC (Ruzin et al., 2007; 
Zhong et al., 2014; Chen et al., 2017), Tet(A) and AcrAB-TolC efflux 
pumps have been studied relatively comprehensively (Munita and 
Arias, 2016), their coding genes can be located on chromosomes or 
plasmids and can be  transmitted via plasmids or transposons 
(Sheykhsaran et al., 2019). As a tetracycline efflux pump gene, tet(A) 
has no effect on tigecycline sensitivity (Fluit et al., 2005), but studies 
showed the double frameshift mutation of tet(A) can make strains 
resistant to tigecycline at a low level (Hentschke et  al., 2010; 
Akiyama et al., 2013). A new RND type efflux pump gene cluster, 
named tmexCD1-toprJ1, was first identified in Klebsiella pneumoniae 
(K. pneumonia) in 2020. TmexCD1-toprJ1 is widely present in 
K. pneumoniae, leading to a 4–32 fold increase in the minimal 
inhibitory concentration (MIC) of K. pneumoniae to tigecycline and 
eravacycline (Lv L. et al., 2020).

Cell membrane porin variation

The 1-acyl-3-glycerol phosphatidyl transferase encoded by the 
plsC gene is located on the cell membrane of E. coli, and its 
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primary function is to catalyze the synthesis of phospholipids, and 
then participate in the biosynthesis of bacterial cell membranes 
(Lu et  al., 2005). By inducing Acinetobacter baumannii 
(A. baumannii) to be  resistant to tigecycline, the researchers 
performed whole-genome sequencing analysis of the strains 
before and after induction, and found three factors that could 
reduce the sensitivity of tigecycline, which were the frameshift 
mutation of plsC and omp38 as well as SNP synonymous mutation 
(Li et al., 2015). A new abrp gene was found in A. baumannii, 
which encodes the C13 family of peptidases and makes the 
bacteria less sensitive to tigecycline (Li et al., 2016).

Ribosome protection mechanisms

The rpsJ gene can encode the production of the ribosomal 
structural protein S10. When there is a 12 bp deletion in rpsJ, the 
amino acid Rath at positions 53–56 of the S10 protein will 
be removed, resulting in a change in the binding site of tigecycline 
and bacteria, making bacteria resistant to tigecycline (Beabout 
et al., 2015; Bender et al., 2020). In addition to the S10 protein, 
mutations in the S3 and S13 proteins can also make bacteria 

resistant to tigecycline (Lupien et al., 2015). In K. pneumoniae, 
mutations in the ramR operon, ramA, lon, and rpsJ genes result in 
decreasing bacterial sensitivity to tigecycline (Fang et al., 2016). 
Mutation of rpsJ in Enterococci also leads to resistance to 
tigecycline (Cattoir et al., 2015). Mutations in the rff, ropB and 
adeS genes in A. baumannii can affect the normal function of the 
ribosome and thus confer tigecycline resistance to the strain (Hua 
et al., 2021).

Mechanism of drug enzymatic 
degradation

Tet(X) is a FAD-dependent monooxygenase that 
regioselectively hydroxylates tetracycline substrates, leading to the 
non-enzymatic breakdown of an unstable compound (Ghosh 
et al., 2015). Tet(X) can only produce effect in the presence of 
FAD, NADPH, Mg2+, and O2 at the same time (Moore et al., 2005). 
Researchers proved that tigecycline was a substrate of Tet(X) by 
X-ray crystallography (Volkers et al., 2011), and in fact, Tet(X) can 
effectively degrade almost all tetracycline antibiotics, making 
bacteria resistant to tetracycline (Ghosh et al., 2015; Xu et al., 

FIGURE 1

The figure was created with “BioRender.com” showing antibacterial mechanism and drug resistance mechanism of Tigecycline. (A) Tigecycline 
can act on bacterial ribosomes. After entering bacteria, tigecycline reversibly binds to the 16S rRNA in the 30S subunit of the ribosome, preventing 
tRNA from entering the A site, which eventually inhibits the process of transcription and translation in protein synthesis. There are four main 
tigecycline resistance mechanisms: (B) efflux pump overexpression; (C) cell membrane porin mutation; (D) ribosomal protection and (E) degrading 
enzyme mechanism. Among them, the expression product of plasmid-mediated tet(X4) gene belongs to the core member of degradative enzyme 
mechanism, and the Tet(X4) can catalyze the selective hydroxylation of tigecycline in the presence of FAD, Mg2+, O2 and NADPH, thus making 
tigecycline ineffective.
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2022). Tet(X) gene was originally isolated from the anaerobic 
bacteria Bacteroides fragilis (Speer et al., 1991), however, according 
to recent reports, tet(X) appeared in Riemerella anatipestifer 
(R. anatipestifer) as early as the 1860s (Zhang et al., 2021a). In 
2004, the tet(X) gene and its variant tet(X2) were discovered in 
anaerobic Bacteroides, then pointing out Tet(X) can degrade 
tigecycline, although it showed low levels of resistance to 
tigecycline, this phenomenon would still exist when tet(X) was 
transferred into E. coli (Guiney et al., 1984; Yang et al., 2004). 
Various tet(X) gene variants mediate different levels of tigecycline 
resistance. Compared with the Tet(X-X7), the enzymatic activity 
of the Tet(X4) has increased significantly. Researchers found five 
key residues (H231, M372, E43, R114, D308) could affect Tet(X4) 
enzyme activity in the tetracycline and FAD binding regions of the 
Tet(X4) (Xu et al., 2019). Subsequently, a new study has identified 
five mutants (L282S, A339T, D340N, V350I and K351E) in the 
structural domain of Tet(X2) when compared to Tet(X4), and 
demonstrated that the MIC of tigecycline increased 2–8 folds, 
when these five amino acid residues were mutated in the Tet(X2)-
producing strain (Cui et al., 2021).

The plasmid-mediated tigecycline resistance genes tet(X3) and 
tet(X4) were first isolated from animal samples in 2019, which 
mediate high levels of antibiotic resistance to tigecycline, the MIC 
value can reach 32–64 mg/l (He et  al., 2019). Tet(X4) is most 
commonly found in mobile plasmids and occasionally in 
chromosomes (Sun J. et al., 2019, 2020; Li et al., 2020b). Since the 
report of tet(X3/4), the degradative enzyme mechanism has gained 
more and more attention (He et  al., 2019; Xu et  al., 2022). At 
present, bismuth drugs and plumbagin can be  used as Tet(X) 
inhibitors to improve the sensitivity of strains to tigecycline, which 
provides a new therapeutic strategy for the treatment of tigecycline-
resistant bacterial infections (Deng et al., 2022; Xu et al., 2022).

Origin and spread of tet(X4)

Although, the tet(X) gene was first isolated from the anaerobic 
Bacteroidetes, the current study points the origin of the tet(X) to 
R. anatipestifer, the tet(X) and its variants share the same ancestry 
with the monooxygenase gene carried in the chromosomes of 
Flavobacteriaceae bacteria. In Zhu’s study, 170 of 212 strains of 
R. anatipestifer carried the tet(X) gene (Zhu et al., 2018). Among 
6,692 strains isolated from 13 different hospitals, almost all of the 
tet(X)-positive strains belonged to the Flavobacteriaceae. They 
then performed a phylogenetic analysis of the different 
evolutionary patterns of tet(X), in which one of the pathways 
involving the Flavobacteriaceae produced a major evolutionary 
branch, suggesting that it can be  considered as the potential 
ancestral source of tet(X) (Zhang et al., 2020a). Umar et al. collect 
57 non-repetitive sequences of R. anatipestifer in GenBank, of 
which tet(X) gene was detected in 47 genomes, and they have high 
similarity when compared with tet(X4) gene (Umar et al., 2021). 
The same finding was also reported in other study (Cui et al., 
2021). When analyzing the evolutionary trajectory of the tet(X) 

gene, they found that most of the tet(X)-positive strains belonged 
to the Flavobacteriaceae, it has a higher detection rate than other 
species and is widely distributed in different clades of tet(X). Their 
latest study also inferred that the tet(X) gene originated in 
Flavobacteriaceae and can be transmitted to environmental and 
clinical strains such as E. coli and Acinetobacter with the help of 
the mobilization of ISCR2 element (Chen et al., 2020).

The MGE such as ISCR2 and IS26 are essential for the spread 
of tet(X) gene. A 4608 bp element consisting of an ISCR2, a tet(X4) 
and a partner gene catD forms a canonical RC transposable unit 
(RC-TU) mediated by ISCR2, of which the 2,760 bp element of 
catD-tet(X4) is highly conserved. When transposition occurs, the 
ISCR2-catD-tet(X4)-ISCR2 composite transposon structure is 
often generated, and the upstream or downstream of ISCR2 
element may be inserted and truncated by other IS elements, such 
as IS26 (Chen et al., 2021; Liu et al., 2022). In addition, only single-
copy ISCR2 elements was sufficient to transpose adjacent DNA 
sequences through the process of rolling circle transposition (Poirel 
et al., 2009; Partridge et al., 2018). IS26 was also often found in 
plasmids resistant to antibiotics, and it can participate in the 
progress of plasmid fusion and gene recombination (He et al., 2015; 
Du et al., 2020; Li et al., 2020b), and IS26 can also be inserted into 
both ends of RC-TU, allowing ISCR2 residues-tet(X4) to spread 
through a novel transmission mechanism (Liu et al., 2022). It has 
been found that the ISCR2 element is frequent adjacent to tet(X4) 
or other tet(X) variants, which suggests ISCR2 is more likely to 
participate in spread of tet(X) variants (Wang L. et al., 2019; Liu 
et al., 2020; Fu et al., 2021). In a conserved genetic environment 
and uncertain transferability among different bacteria, the 
co-action of ISCR2 and IS26 may be the main driving forces for the 
widespread of tet(X4; Dai et al., 2022; Zhang et al., 2022).

Prevalence of tet(X4)

Tetracycline resistance genes speculated to be of environmental 
origin but are now widely distributed in commensal and 
pathogenic bacteria (Thaker et al., 2010). The extensive use of first 
or second-generation tetracycline-class drugs played a major role 
in the emergance of tetracycline resistance genes, especially 
oxytetracycline, chlortetracycline, and doxycycline (Aminov, 
2021). Since the discovery of the plasmid-mediated high-level 
tigecycline resistance genes tet(X3/X4) in 2019, reports of tet(X) 
have gradually increased around the world (Table  1). Tet(X4)-
positive strains have spread globally and have been detected in 
animals, humans and the environment, which largely limited the 
use of tigecycline (Xu et al., 2022). The tet(X) gene and its variants 
were present in 23 countries on six continents (Pan et al., 2020; 
Wang J. et  al., 2021), which are also widely present in various 
bacterial species, including R. anatipestifer, E. coli, Acinetobacter, 
K. pneumoniae, Salmonella, Proteus, La Providencia bacteria, 
Bacteroides bacteria, Pseudomonas bacteria, and Aeromonas caviae 
(Chen et al., 2019a, 2020). Moreover, most of the tet(X4) genes are 
located on different types of plasmids such as IncQ1, IncX1, 
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IncFIB, IncHI1, F-:A18:B-, ColE2-like, IncN, p0111 and hybrid 
plasmids (Fang et al., 2020), among which the IncX1 type is the 
most common (Cai et al., 2021; Cui et al., 2022). The Nomenclature 
Center1 recommends that only tet(X) will be used in the future, 
because the tet(X) gene variant DNA similarity is in the range of 
83–100% among tet(X2)-tet(X14), corresponding amino acid 
similarity is between 82 and 100%, which is greater than the 
standard of 79% amino acid similarity. In this article, for the 
convenience of description, the previous classification method is 
still used. This article also summarizes the prevalence of tet(X) gene 
and its variants in China in recent years as shown in Figure 2.

Prevalence of tet(X4) in animals

Antibiotics are commonly used in livestock production to 
maintain animal health and productivity. However, the absorption 
of antibiotics in the body is low, and most of them are excreted in 
the form of metabolites with feces and urine (Qiu et al., 2016). The 
antibiotic residues and ARGs carried in animal feces can 
be transmitted to the environment or humans, showing a potential 
source of ARGs (Ji et al., 2012; Van Boeckel et al., 2015). Tigecycline 
is currently approved for Human clinical use only, but the tet(X4) 
gene has been detected in food animals, retail meat, aquatic 
animals, and wild animals (Figure 3). Moreover, tet(X4) is currently 
detected in isolates from various animal origin samples, including 
pigs, ducks, geese, chickens, cattle, freshwater fish and shrimp, and 
migratory birds, with pig sources in particular predominating 
(Table 1). In a study based on a metagenomics approach, it was 
shown that among the abundant of ARGs in pig manure and its 
receiving environment (sewage, crops, soil, etc.), the tetracycline 
resistance genes were prevalent in pig farms (Tong et al., 2022). The 
same is true for pig slaughterhouses, suggesting that tet(X4)-
carrying plasmids play an essential role in the spread of this drug 
related ARGs (Li et al., 2020b). Worth noting that the first isolation 
of plasmid mediated-tet(X4) was also obtained from the 
pig-derived sample (He et al., 2019). So far, 24 provinces in China 
have reported the emergence of tet(X), with Guangdong, Zhejiang, 
and Shandong having the largest number of positive strains 
(Figure 2). Li et al. (2021c) isolated 32 tet(X4)-positive strains from 
feces and anal swabs of pigs in Shanxi. At the same time, tet(X4)-
positive E. coli were also detected in the sewage and soil of the pig 
farm environment. These isolates have different ST types, but their 
tet(X4)-carrying plasmids have the same replicon type, indicating 
that these plasmids are transferred horizontally among different 
reservoirs, and horizontal transfer maybe the main way for tet(X4) 
to spread in the surrounding environment (Sun J. et al., 2019). 
During 2016–2018, researchers isolated the tet(X)-positive 
Acinetobacter from pig, chicken, duck and goose feces in multi-
regional farms of seven provinces, China (Guangdong, Hainan, 
Guangxi, Fujian, Shandong, Xinjiang, and Liaoning; Cui et al., 
2020). Zhang et al. have detected 51 (17%) tet(X)-positive strains 

1 http://faculty.washington.edu/marilynr/

from 296 rectal swabs of healthy dairy cows, including the strains 
of tet(X3)-positive Acinetobacter and tet(X4)-positive E. coli (Zhang 
et al., 2020b). The prevalent range of tet(X) continues to expand, 
tet(X) and its variant genes have been detected in different 
reservoirs, and tet(X)-carrying plasmids have high mobility, which 
can be transmitted horizontally among different species.

The co-existence of tet(X4) with other important ARGs is 
noteworthy. Specifically, the tet(X) gene co-existed with the flor 
gene in most cases, the latter encoding chloramphenicol efflux 
pumps, which can be also co-transferred (Du et al., 2004; Fu et al., 
2021). Further, ESBL genes and colistin resistance genes often 
co-existed with tet(X4) in Enterobacteriaceae (Table  1). In a 
retrospective study, five pig-derived tet(X4)-positive strains were 
detected in Sichuan, Henan, and Guangdong of China, and two of 
these tet(X4)-positive E. coli also carried the mcr-1 gene (Sun 
C. et al., 2019). Tang et al. (2021) found eight tet(X4)-positive 
strains in two commercial pig farms in Sichuan, and three of them 
co-existed with the cfr gene in E. coli, and both ARGs were located 
on a novel hybrid plasmid, which could be  transferred to the 
recipient bacteria. Li et al. (2020c) screened one strain of tet(X4)-
positive E. coli and two strains of tet(X6)-positive aspergillus in 
different chicken farms, while the tet(X6) gene co-existed with the 
carbapenem resistance gene blaNDM-1. The same situation also 
existed in other country, where the tet(X4) gene was detected to 
co-exist with the colistin resistance gene in Pakistan (Mohsin 
et al., 2021; Li et al., 2022). Specifically, Li et al. (2022) detected 36 
tet(X4)-positive strains, of which 24 tet(X4)-positive strains 
co-carried the mcr-1 gene. Mohsin et  al. (2021) detected four 
tet(X4)-positive E. coli from farm animals and slaughterhouse 
effluents, and three E. coli contained the mcr-1.1 gene. It should 
be  noted that the resistance to tigecycline or colistin can 
be transferred by the transmission of plasmids, which posed an 
enormous threat to the clinical treatment of MDR bacterial 
infections (Ruan et al., 2020; Xu et al., 2021; Zhang et al., 2021b).

Food animals such as pigs and poultry are the primary source 
of high-quality protein for humans (Henchion et al., 2014), they 
have been slaughtered in slaughterhouses before entering the 
market, and tet(X) has also been detected in retail meat, which 
indicated that the slaughterhouse might be a potential reservoir for 
tet(X) (Homeier-Bachmann et al., 2021; Mohsin et al., 2021). There 
are also some reports on tet(X) from retail meat sources in Sichuan 
and Henan. In 2019, Sun et al. collected 311 retail meat samples 
from Sichuan province and detected 25 tet(X4)-positive E. coli 
strains, most of which were isolated from the raw pork (52%), 
chicken (40%), duck (4%), and beef (4%; Sun et  al., 2021a). In 
addition, five tet(X4)-positive E. coli strains were isolated from retail 
chicken during routine monitoring of ARGs in the Sichuan market 
in 2020. Interestingly, one of the tet(X4)-carrying plasmids from 
retail chicken was 99% identity to the pig-derived tet(X4)-carrying 
plasmid, and others had the tet(X4) gene localized on hybrid 
plasmids (Lv H. et  al., 2020). This phenomenon suggests that 
tet(X4)-carrying plasmids can spread among different animals, 
which lead to the dissemination of tet(X4) in the 
ecological environment.
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TABLE 1 Global prevalence of different tet(X) genes in recent years.

Province/
Country

Years of 
samples

Source (Reference 
or NCBI 
database)

Sample sources Tet(X) types Localization of 
gene

Plasmid types Sequence 
types

Tet(X)-
positive 
isolates

ESBLs/mcr genes Bacterial strains

Sichuan 2018–2020 (Bai et al., 2019; 
Sun C. et al., 2019, 
2020; Li et al., 
2021a; Tang et al., 
2021; Feng et al., 
2022)

Food animals tet(X4) Plasmid IncQ1-IncY
IncX1

ST48, ST4541, 
ST9772, 
ST972, ST410, 
ST10, ST195, 
ST3696, ST25, 
ST196

27 cfr
mcr-1
blaTEM-1B

E. coli
Citrobacter freundii

(Li, 2020a; Lv H. 
et al., 2020; Sun 
et al., 2021b)

Retail meat tet(X4) Plasmid IncFIA-
IncHI1A-
IncHI1B IncX1

ST4656, 
ST1788, 
ST871, ST48, 
ST1638, 
ST542, ST877, 
ST641, ST10, 
ST3858, 
ST195, ST515

31 blaNDM-5 blaSHV-12

blaCTX-M-55 
blaCTX-M-14

E. coli

Guangdong 2016–2019 (He et al., 2019; 
Sun C. et al., 2019,
Sun J. et al., 2019; 
Chen et al., 2020; 
Cheng et al., 2020; 
Cui et al., 2020; 
Sun et al., 2020; 
Zheng et al., 2020; 
Chen et al., 2021; 
Li et al., 2021a; Yu 
et al., 2021; Wu 
et al., 2022)

Food animals tet(X/X2)
tet(X3)
tet(X4)
tet(X5)
tet(X6)
tet(X14)

Plasmid
Chromosome

IncFIA-
IncHI1A-
IncHI1B

ST4535, ST10, 
ST23, ST215, 
ST206, ST789, 
ST1196, 
ST2144, 
ST195, ST101, 
ST109, ST789, 
ST2064, 
ST980, ST355, 
ST542, 
ST8302

236 blaTEM-1B blaNDM-1

blaOXA-58

E. coli
Acinetobacter
Citrobacter freundii
Enterococcus faecalis
Enterobacter cloacae

(Chen et al., 
2019a; Cui et al., 
2020; Sun et al., 
2020; Wang Y. 
et al., 2020; Zheng 
et al., 2020; Chen 
et al., 2021; Yu 
et al., 2021; Gao 
et al., 2022)

Farm 
environment

tet(X)
tet(X3)
tet(X4)
tet(X6)

Plasmid
Chromosome

IncFIA-
IncHI1A–
IncHI1B

ST645, ST10, 
ST37

28 bla SHV-81

bla SHV-110

Acinetobacter
E. coli
K. pneumoniae
Aeromonas cavive

(Continued)
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TABLE 1 (Continued)

Province/
Country

Years of 
samples

Source (Reference 
or NCBI 
database)

Sample sources Tet(X) types Localization of 
gene

Plasmid types Sequence 
types

Tet(X)-
positive 
isolates

ESBLs/mcr genes Bacterial strains

(Chen et al., 
2019b)

Wild migratory 
birds

tet(X4) Plasmid
Chromosome

F-:A18:B-
IncHI1

ST1196, 
ST6833, 
ST641

3 – E. coli

(Chen et al., 2020; 
Wang Y. et al., 
2020; Cui et al., 
2022)

Human tet(X3)
tet(X4)

Plasmid IncX1, IncFIA, 
IncHIA, 
IncHIB

ST10, ST48, 
ST877, 
ST2144, 
ST101, ST515, 
ST542, ST871, 
ST4456, ST38, 
ST137, ST201, 
ST7176, 
ST10548, 
ST6984, ST46, 
ST1249, 
ST195, ST155, 
ST58, ST4014, 
ST7686, 
ST1114, 
ST7450, 
ST1684

51 mcr-5.2
blaNDM

blaOXA blaTEM

blaSHV blaCTX-M

E. coli
Acinetobacter

Jiangsu 2015–2020 (He et al., 2019; 
Sun J. et al., 2019; 
Chen et al., 2020; 
Peng et al., 2020; 
Li et al., 2020b; He 
T. et al., 2020; Li 
et al., 2020c; Yu 
et al., 2021; Cheng 
et al., 2021a; Li 
et al., 2021b)

Food animals tet(X3)
tet(X4)
tet(X6)
tet(X15)

Plasmid
Chromosome

IncHI1, 
IncFIB(K), 
IncX1, IncA/C2

ST3997, 
ST284, ST93, 
ST1286, 
ST155, ST327, 
ST1459, ST48, 
ST3944, 
ST10170, 
ST8302

137 blaCTX-M

cfr
blaNDM-1 blaTEM − 1B

E. coli
Acinetobacter
Proteus
Citrobacter freundii 
Providencia

(Li et al., 2020b; 
Yu et al., 2021)

Farm 
environment

tet(X4) Plasmid – – 21 – E. coli

(Continued)
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TABLE 1 (Continued)

Province/
Country

Years of 
samples

Source (Reference 
or NCBI 
database)

Sample sources Tet(X) types Localization of 
gene

Plasmid types Sequence 
types

Tet(X)-
positive 
isolates

ESBLs/mcr genes Bacterial strains

(Li et al., 2019) Aquatic animal tet(X2/3.2) Plasmid – – 1 – Brevibacterium 
brevis

Shanghai 2015–2019 (Chen et al., 2020; 
Sun et al., 2020; 
Wang J. et al., 
2020; Li et al., 
2021a; Wang J. 
et al., 2021)

Food animals tet(X)
tet(X3)
tet(X)

Plasmid IncFIA18-
IncFIB(K)-
IncX1
IncX1, IncQ

ST761, ST165, 
ST195, ST295, 
ST2144

41 blaOXA-58 E. coli
Acinetobacter
K. pneumoniae

(Wang J. et al., 
2021)

Farm 
environment

tet(X) Chromosome – – 1 – Proteus

Henan 2013–2019 (Sun C. et al., 2019, 
2020; Li et al., 
2020d; Li et al., 
2021a)

Food animals tet(X4)
tet(X6)

Plasmid
Chromosome

IncX1
IncFIA-
IncFIB(K)-
IncX1

ST10, ST48, 
ST641, 
ST2345

11 mcr-1 E. coli

(He D. et al., 2020) Retail meat tet(X6) – – – 1 – Proteus
Hebei 2019 (Li et al., 2021a) Food animals tet(X4) Plasmid IncX1, IncQ, 

IncFIA-
IncHI1A-
IncHI1B

ST48, ST10, 
ST4156, 
ST195, 
ST6833, 
ST515, 
ST2064, ST58

16 – E. coli
K. pneumoniae

2017 (Wang L. et al., 
2019)

Human tet(X5) Plasmid – – 1 – Acinetobacter

Shandong 2017–2019 (Bai et al., 2019; 
He et al., 2019; Cui 
et al., 2020; Du 
et al., 2020; Liu 
et al., 2020; Li 
et al., 2021a; Yu 
et al., 2021)

Food animals tet(X/X2)
tet(X3)
tet(X4)
tet(X6)

Plasmid
Chromosome

IncFII, IncFIA-
IncHI1B-
IncHI1A

ST761, ST746, 
ST101, ST10, 
ST847

83 blaTEM − 1B

blaCTX-M-55

Acinetobacter
Myroides sp.
E. coli
K. pneumoniae
Proteus

(Continued)
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TABLE 1 (Continued)

Province/
Country

Years of 
samples

Source (Reference 
or NCBI 
database)

Sample sources Tet(X) types Localization of 
gene

Plasmid types Sequence 
types

Tet(X)-
positive 
isolates

ESBLs/mcr genes Bacterial strains

Zhejiang 2015–2019 (Chen et al., 2020; 
Zhang et al., 
2020b; Li et al., 
2021a; Cheng 
et al., 2021b; 
Zheng et al., 2022)

Food animals tet(X2)
tet(X3)
tet(X4)
tet(X6)
tet(X5.2)
tet(X14)

Plasmid
Chromosome

IncFIA-
IncHI1B-
IncHI1A 
IncFIA-
IncHI1B-IncX1

ST10, ST773, 
ST1196, 
ST6883, 
ST641, ST515, 
ST767

100 blaOXA-58

blaNDM-1

Acinetobacter
Enterococcus faecalis 
Proteus
E. coli

(Cheng et al., 
2021b)

Farm 
environment

tet(X2) – – – 3 – Myroides sp.

(He et al., 2019; 
Ruan et al., 2020; 
Zeng et al., 2021)

Human tet(X4) Plasmid IncX1 ST773 33 mcr-1 blaCTX-M-14 E. coli

Jiangxi 2015–2018 (Sun J. et al., 2019; 
Chen et al., 2020)

Food animals tet(X4)
tet(X3)

Plasmid
Chromosome

IncQ1 ST761, ST515, 
ST871, 
ST8302

37 mcr-1, blaCTX-M-14 E. coli
Acinetobacter

Hainan 2017–2018 (Chen et al., 2020; 
Cui et al., 2020)

Food animals tet(X)
tet(X3)

Plasmid – – 43 blaNDM-1 Acinetobacter

Farm 
environment

tet(X) Plasmid – – 5 blaOXA-58 Acinetobacter

Guangxi 2017–2020 (Sun J. et al., 2019; 
Cui et al., 2020; 
Feng et al., 2022)

Food animals tet(X)
tet(X4)

Plasmid – ST1196, ST10, 
ST1415, ST34, 
ST109, ST48, 
ST195, ST799, 
ST2223, 
ST1244, 
ST3888, 
ST6404, 
ST641, ST677, 
ST452, 
ST1250

97 – Acinetobacter
E. coli

Fujian 2018 (Sun J.et al., 2019; 
Chen et al., 2020; 
Cui et al., 2020)

Food animals tet(X)
tet(X4)

Plasmid – ST8302, 
ST761, ST515, 
ST8338

26 – Acinetobacter

(Continued)
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TABLE 1 (Continued)

Province/
Country

Years of 
samples

Source (Reference 
or NCBI 
database)

Sample sources Tet(X) types Localization of 
gene

Plasmid types Sequence 
types

Tet(X)-
positive 
isolates

ESBLs/mcr genes Bacterial strains

Qinghai 2015–2018 (Chen et al., 2020) Wild migratory 
birds

tet(X4) – – – 5 – Acinetobacter

Xinjiang 2017–2018 (Cui et al., 2020) Food animals tet(X) – – – 8 blaNDM-1 Acinetobacter
Farm 
environment

tet(X) – – – 3 – Acinetobacter

Liaoning 2018 (Cui et al., 2020) Food animals tet(X) – – – 2 – Acinetobacter
Farm 
environment

tet(X) – – – 3 – Acinetobacter

Taiwan 2019–2020 (Hsieh et al., 2021; 
Wang et al., 2021a)

Human
Environment

tet(X)
tet(X10)

Chromosome – ST793, ST723 7
1

blaOXA-72 Acinetobacter
Amniculibacterium 
aquaticum

Shanxi 2018–2020 (Li et al., 2021a; 
Feng et al., 2022)

Food animals tet(X4) Plasmid IncFIA-
IncHI1B-
IncHI1A IncX1

ST641, ST58, 
ST515, 
ST2064, 
ST6833, ST10, 
ST48, ST4156

11 – E. coli

Gansu 2019 (Li et al., 2021a) Food animals tet(X4) Plasmid IncFII ST540 1 – E. coli
Anhui 2019 (Li et al., 2021a) Food animals tet(X4) Plasmid IncFIA-

IncHI1B-
IncHI1A 
IncFIA-IncFIB-
IncX1 IncX1, 
IncFII

ST877, 
ST2035, 
ST218

8 – E. coli

Beijing 2018 (Zhai et al., 2022) Human tet(X4) Plasmid IncFIIK ST534 1 – K. pneumoniae
(Sun et al., 2020) Food animals tet(X4) Plasmid IncFIA-

IncHI1B-
IncHI1A

ST744 1 – E. coli

(Continued)
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TABLE 1 (Continued)

Province/
Country

Years of 
samples

Source (Reference 
or NCBI 
database)

Sample sources Tet(X) types Localization of 
gene

Plasmid types Sequence 
types

Tet(X)-
positive 
isolates

ESBLs/mcr genes Bacterial strains

Shaanxi
Ningxia

2018–2020 (Sun et al., 2020; 
Feng et al., 2022)

Food animals tet(X4) Plasmid IncX1, IncN, 
IncR, IncY, 
IncFIA, IncFIB

ST877, 
ST2035, 
ST10392, 
ST10, ST7366, 
ST890, 
ST3580, 
ST442, ST278, 
ST4429, 
ST1602, 
ST746, ST48, 
ST189, 
ST8504, 
ST1437, 
ST7604

7,346 – E. coli

Guizhou 2018 (Sun et al., 2020) Food animals tet(X4) Plasmid – ST48, ST202, 
ST542, ST206, 
ST890

1 – E. coli

Hunan 2015–2018 (Chen et al., 2020) Food animals tet(X3) Plasmid – – 14 – Acinetobacter
Vietnam 2021 (Dao et al., 2022) River tet(X4) Chromosome – – 1 blaOXA-48 Shewanella Xiamen
Sierra Leone 2010–2011 (Leski et al., 2013) Human tet(X) – – – 11 – Enterobacter cloacae 

E. coli
K. pneumoniae
Pseudomonas
Delftia acidovorans
Comamonas 
testosteroni

Singapore 2018 (Ding et al., 2020) Human tet(X4) Plasmid IncI1 ST73 2 mcr-1 E. coli
Japan 2012 (Usui et al., 2021) Food animals tet(X6) Plasmid IncW – 1 – E. coli
Chile 2010–2021 (Concha et al., 

2021; Wang et al., 
2021a)

Aquatic animals tet(X)
tet(X10)

– – – 3 – Epilithonimonas
Chryseobacterium 
sp.

(Continued)
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TABLE 1 (Continued)

Province/
Country

Years of 
samples

Source (Reference 
or NCBI 
database)

Sample sources Tet(X) types Localization of 
gene

Plasmid types Sequence 
types

Tet(X)-
positive 
isolates

ESBLs/mcr genes Bacterial strains

Pakistan 2018–2019 (Mohsin et al., 
2021; Li et al., 
2022)

Food animals
Farm 
environment
Human

tet(X4)
tet(X7)

Plasmid IncFII, IncQ ST6726, 
ST694, 
ST4388
、ST224

41
1

mcr-1 E. coli
Pseudomonas 
aeruginosa

United 
Kingdom

1966–2020 (Martelli et al., 
2022)

Food animals
Human
Rainbow trout

tet(X4)
tet(X12)
tet(X4)
tet(X7)
tet(X6)

Plasmid
–
–
–

IncX1-IncY
–
–
–

ST1140
–
–
–

1
1
5
2
2

– E. coli
Riemerella 
anatipestifer
Salmonella
Shigella soneii
Enterobacter 
hormaechei
Salmonella 
Typhimurium
Chryseobacterium 
sp.

Norway – (Marathe et al., 
2021)

Wastewater 
treatment plants

tet(X4) Plasmid IncFIA/FIB ST167 1 blaCTX-M-14 E. coli

Belgium 2007–2017 LDIS01000001.1
SELG01000025.1

Food animals
Musca domestica

tet(X10) –
–

–
–

–
–

1
1

–
–

Arcobacter thereius
Apibacter muscae

South Africa 2013 MKSZ01000121.1 Thiocyanate stock 
biobioreactor

tet(X10) – – – 1 – Bacteroidales 
bacterium

United States 
of America

2010–2018 (Wang et al., 
2021a)

Human
Environment

tet(X10)
tet(X7)
tet(X10)

–
–
–

–
–
–

–
–
–

47
1
2

–
–
–

Bacteroides sp.
E. coli
Chryseobacterium 
sp.
Bacteroides sp.

Australia 2018 VSOP01000024.1 Mus musculus tet(X10) – – – 1 – Alistipes sp.
Ireland 2017 VLSQ01000048.1

VLSR01000042.1
SMTB01000142.1

Environment
Food animals

tet(X3)
tet(X6)

–
–

–
–

–
–

2
1

–
–

Acinetobacter sp.

Bolivia 2016 PQTA01000018.1 Human tet(X7) – – – 1 – E. coli
Turkey 2021 (Kürekci et al., 

2022)
Wastewater tet(X4) Plasmid IncFIA-IncHI1-

IncFIB(K)
ST609 2 blaSHV-12 E. coli
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In addition to food animals, tigecycline resistance genes have 
also been detected in wild animals. In 2018, Chen et al. (2019b) 
isolated three strains of tet(X4)-positive E. coli from the feces of 
migratory birds in Guangdong, two of which were located on the 
plasmid, and the remaining one was located on the chromosome. 
The tet(X4)-carrying plasmid isolated from the migratory birds 
had a high degree of similarity with one plasmid isolated from 
human samples. In addition, five tet(X4)-positive Acinetobacter 
were also isolated from the bar-headed goose samples in Qinghai 
(Chen et al., 2020). In the latest report, researchers also detected 
the tet(X) variant genes in wild fish and shrimp (Li et al., 2019; 
Concha et al., 2021). Wild animals were not directly exposed to 
clinical antibiotics, but more and more ARGs were detected in 
them, indicating wild animals including migratory birds, were 
likely to be  involved in the large-scale exchange of ARGs, 
especially long-distance transmission of cross species (Allen et al., 
2010; Wang et  al., 2017; Zeballos-Gross et  al., 2021; Luo 
et al., 2022).

Prevalence of tet(X4) in humans

Tigecycline was approved for clinical use in 2005, and 
which was introduced in China in 2012. Tet(X) was detected 

in human clinical samples in 2013, with 11 tet(X) positive 
strains isolated from 52 samples, including stool, semen, 
blood, and urine in a Sierra Leonean hospital (Leski et al., 
2013). Ding et al. (2020) conducted a retrospective screening 
study on 109 fecal samples, and detected tet(X4)-positive 
strains in the intestinal microflora of healthy human, with an 
isolation rate of 10.1%. Subsequently, tet(X4)-positive E. coli 
were also reported in clinical isolates from Guangdong, 
Hebei, Zhejiang, Beijing, Sichuan, and other places in China 
(Table 1). It can be seen that the tet(X) gene is not uncommon 
in hospital clinical isolates, and tet(X4) may be  widely 
distributed in the human gut microflora, with great risk of 
transmission. In 2019, Cui et al. (2022) collected 1,001 stool 
samples from hospital inpatients in Guangdong Province of 
China, isolated 48 (4.8%) tet(X4)-positive E. coli. Notably, the 
hybrid plasmid was found to be prevalent in tet(X4)-positive 
strains of animal origin, with the characteristics of stable 
existence and horizontal transfer (Sun C. et al., 2019), which 
predicted this tet(X4)-carrying plasmid can be transmitted 
among humans, animals and the environment, thus 
facilitating the wide spread of tet(X4) in the ecosystem. The 
co-existence of tet(X4) with mcr and ESBL genes in the 
clinical setting is a great concern. Ruan et al. (2020) found 
one E. coli strain co-harboring tet(X4) with mcr-1 on the same 

FIGURE 2

The distribution of tet(X) genes in different parts of China showing these genes have been found in 24 provinces from 2015 to 2022. The triangle in 
the figure indicates the number of tet(X)-positive strains isolated in each region of China, and the square indicates different sources of tet(X) genes, 
which corresponds to the pie chart in the figure. Furthermore, the different sources of tet(X) genes in the listed provinces can also be found, using 
color indication.
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conjugative plasmid from the urine sample of a clinical 
patient in Zhejiang Province, China. Further, two E. coli 
strains carrying both mcr-1 and tet(X4) were isolated in 
Singapore (Ding et  al., 2020). Meanwhile, blaCTX, blaOXA, 
blaNDM, and blaSHV genes were also detected to be co-existence 
with tet(X) in one strain (Table 1). Tigecycline and colistin 
are the last resort for treating MDR bacteria, and the 
co-existence of tet(X) with mcr and ESBL genes limited the 
choice of clinical antibiotics, which subsequently poses a 
significant threat to public health.

ARB are persistent pollutants in the environment in which 
humans are in close contact (Kim and Aga, 2007). ARB can 
be  transmitted to other hosts through human activities when 
conditions are favorable (Allen et  al., 2010). Except for the 
hospital clinical environment, the live poultry market (LPM) is 
also a vast reservoir of ARGs (Wang Y. et al., 2019; Wang et al., 
2021b). The tet(X3) and tet(X4) genes have been detected in the 
intestinal flora of LPM workers and the surrounding environment 
(Wang Y. et al., 2020), which indicated that the plasmid-mediated 
tigecycline resistance gene might exist in LPM for a long period. 

The ARGs are likely to be transmitted from live poultry to LPM 
staff, ecological environments or other animals.

Prevalence of tet(X4) in the environment

Antibiotics and ARGs were detected in various environments 
(Qiao et  al., 2018). The humans, animals, and ecological 
environments are components of the “One health” concept, and 
they have important connections and can influence each other. 
Therefore, they can acquire ARGs through different pathways and 
achieve the flow of ARGs among different reservoirs (Anyanwu 
et  al., 2021), including tet(X4) (Figure  3). In recent years, the 
environment has played an increasing role on the spread of 
antibiotic resistance (Finley et al., 2013; Bengtsson-Palme et al., 
2014; Bondarczuk et al., 2016; Lerminiaux and Cameron, 2019). 
The ARGs and ARB existed in large numbers within the 
environment and can be transmit to reservoirs (Lin et al., 2021), 
such as rivers contaminated by animal manure, the soil around 
livestock farms, manure-irrigated agricultural fields, and sewage 

FIGURE 3

The figure was created with “BioRender.com” showing transmission routes illustration of tet(X4)-positive strains in natural environment. Possible 
dissemination routes of tet(X4)-positive strains showed by arrows among different reservoirs such as ducks, geese, migratory birds, chickens, pigs, 
cattle, aquatic animal, agricultural field, meat, and humans. The horizontal transmission of tet(X4) among reservoirs risked to public health for the 
“One Health” concept.
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treatment plants. The abuse use of antibiotics and the spread of 
antibiotic resistance caused by animal husbandry is one of the main 
concerns of sustainable agriculture(Manyi-Loh et al., 2018), where 
the use of first or second-generation tetracycline-class drugs was 
high, with subtherapeutic dosing in the forage (Yezli and Li, 2012). 
In animal husbandry, a wider range of antibiotic options lead to the 
spread of ARGs in agriculture to the human microbiota (Aminov, 
2011). Animal manure as the valuable renewable fertilizer was 
often applied to the cropland (Zhou X. et al., 2019; Lima et al., 
2020), which was found to contain different ARB and ARGs. 
Moreover, water as a good transport route for nutrients and 
contaminants was also a major reservoir for ARGs (Vaz-Moreira 
et  al., 2014; Manaia et  al., 2016; Miłobedzka et  al., 2022). 
Specifically, macrogenomic analysis of wetland effluents and 
sediments in the Yangtze Delta region revealed a high abundance 
of the tet(X) gene (Du et al., 2022). Tet(X) and their variants were 
detected in farm soil, manure, and lettuce samples near chicken 
farms in Jiangsu, Jiangxi, and Sichuan provinces of China, and even 
in soil samples far from these farms (He et al., 2021). Cui et al. 
(2020) collected samples from some poultry farms in seven 
provinces across China, where tet(X)-positive strains from sewage 
and soil were isolated at 7.5% and 6.7%, respectively, and tet(X) was 
detected to be localized on the same plasmid with blaNDM-1. These 
reports on identification and analysis of tet(X4) in the farm 
environment suggest that animal manure, sewage, and soil can 
influence with each other in this ecology. Moreover, tet(X4) can 
be transmitted among them, and the farm environment may be a 
massive reservoir of ARGs.

Discussion and prospects

The phenomenon of MDR of bacteria is a significant 
concern worldwide. Colistin and tigecycline are considered as 
the last resort drugs against carbapenem-resistant bacteria 
(Cunha et  al., 2017; Zhou Y. et  al., 2019). Either the global 
distribution of colistin-resistant E. coli or the rapid spread of the 
carbapenem-resistant Enterobacteriaceae have created 
enormous challenges for public health security. It is a more and 
more headache to solve the infection caused by MDR pathogens 
in human clinical treatment and animal husbandry (Gao et al., 
2016; Potter et  al., 2016; Rehman et  al., 2020; Zhang et  al., 
2021b, 2021c). As a result, tigecycline has been recognized as 
the important antibiotic of last resort for the clinical treatment 
of certain bacterial infections. Through this article, we found 
that the tet(X) is prevalent on six continents around the world, 
with China having the highest prevalence, and most of tet(X4)-
carrying plasmids can spread tigecycline resistance among 
different bacteria by means of horizontal transfer.

The mechanisms that cause antibiotic resistance to 
tigecycline are mainly overexpression of active efflux pump and 
ribosomal protection mechanisms. However, more and more 
tet(X4) has been detected in plasmids, and many different types 
of tet(X4)-carrying plasmids have strong ability of horizontal 

transfer, which means plasmids mediated transmission of 
tigecycline resistance genes may gradually increase, risking to 
public health (Pereira et  al., 2021). The widespread use of 
antimicrobial drugs in domestic animals is an important reason 
for the rapid increase of AMR. The researchers reported the 
AMR monitoring results of E. coli in China’s pig farms from 2018 
to 2019, showing that multidrug resistance was detected in 91% 
of isolates (1871  in total), and resistance to last resort drugs 
including tigecycline, colistin and carbapenem was found (Peng 
et  al., 2022). Recent studies have also found the antibiotic 
resistance of livestock has increased from 1970 to 2019, 
indicating that if the use of antibiotics is not restricted, it may 
not be able to effectively protect the livestock. By testing the 
sensitivity of several recent strains of E. coli to various antibiotics, 
researchers found their resistance was far higher than that of the 
strains in the 1970s. In addition, the researchers also pointed out 
although the specific antibiotics used to treat bacterial infections 
may be different, the types are often the same, so the rapid rise 
in drug resistance will eventually affect human beings (Yang 
et al., 2022). Surprisingly, the potential spread of virus-mediated 
ARGs is likely to exacerbate AMR, including tetracycline 
resistance and harm to public health (Calero-Cáceres et al., 2019; 
Debroas and Siguret, 2019; Shi et al., 2022), which needs our 
wider attention. Moreover, viruses might be linked to 
Enterobacteriaceae or Vibrionaceae and were considered as gene 
shuttles in ARGs transfer, like plasmids. This indicates that 
viruses and bacteria may have a synergistic effect on the 
transmission of ARGs. Therefore，we should look at AMR from 
a holistic perspective that includes humans, animals as well as 
the environment, and develop a plan for rational use of 
antibiotics to reduce the long-term and single use of tigecycline 
in the clinical environment, avoiding reduced clinical efficacy 
and increased mortality (Yahav et  al., 2011). Controlling the 
“spillover effect” of ARGs is also important from “One Health” 
concept (Collignon, 2015; Tyrrell et al., 2019; Olesen et al., 2020; 
Aslam et al., 2021). In-depth studies of tigecycline resistance or 
transmission mechanisms, and continuous monitoring of tet(X) 
prevalence are urgent needed to determine the precise 
transmission route of ARB and ARGs, so as to provide reference 
for designing more effective public health intervention strategies. 
However, due to the limitation of the length of the article, we did 
not summarize the current methods and strategies of various 
countries or regions to limit the transmission of tet(X4)-positive 
strains, and what beneficial substances (like probiotics, prebiotics 
and antimicrobial peptide) can replace use of specific antibiotics 
in the post-antibiotic era to avoid the spread of 
tigecycline resistance.
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