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Single trait versus principal 
component based association 
analysis for flowering related traits 
in pigeonpea
Kuldeep Kumar1,2, Priyanka Anjoy3, Sarika Sahu3, Kumar Durgesh4, Antara Das1, 
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Pigeonpea, a tropical photosensitive crop, harbors significant diversity for days to flowering, but 
little is known about the genes that govern these differences. Our goal in the current study was to use 
genome wide association strategy to discover the loci that regulate days to flowering in pigeonpea. 
A single trait as well as a principal component based association study was conducted on a diverse 
collection of 142 pigeonpea lines for days to first and fifty percent of flowering over 3 years, besides 
plant height and number of seeds per pod. The analysis used seven association mapping models (GLM, 
MLM, MLMM, CMLM, EMLM, FarmCPU and SUPER) and further comparison revealed that FarmCPU 
is more robust in controlling both false positives and negatives as it incorporates multiple markers 
as covariates to eliminate confounding between testing marker and kinship. Cumulatively, a set of 
22 SNPs were found to be associated with either days to first flowering (DOF), days to fifty percent 
flowering (DFF) or both, of which 15 were unique to trait based, 4 to PC based GWAS while 3 were 
shared by both. Because PC1 represents DOF, DFF and plant height (PH), four SNPs found associated 
to PC1 can be inferred as pleiotropic. A window of ± 2 kb of associated SNPs was aligned with available 
transcriptome data generated for transition from vegetative to reproductive phase in pigeonpea. 
Annotation analysis of these regions revealed presence of genes which might be involved in floral 
induction like Cytochrome p450 like Tata box binding protein, Auxin response factors, Pin like genes, F 
box protein, U box domain protein, chromatin remodelling complex protein, RNA methyltransferase. 
In summary, it appears that auxin responsive genes could be involved in regulating DOF and DFF as 
majority of the associated loci contained genes which are component of auxin signaling pathways in 
their vicinity. Overall, our findings indicates that the use of principal component analysis in GWAS is 
statistically more robust in terms of identifying genes and FarmCPU is a better choice compared to the 
other aforementioned models in dealing with both false positive and negative associations and thus 
can be used for traits with complex inheritance.

The United Nations 2nd Sustainable Development Goal (SDG-2) aims to eradicate hunger and malnutrition 
globally by 2030. The goal has become even more challenging in the current context of the Covid-19 pandemic, 
which has devastating effect on agricultural sector that by 2030, the number of hungry peoples may exceed 840 
million, with the majority (above 381 million) from the Asian (https:// www. un. org/ susta inabl edeve lopme nt/ 
hunger/) region. However in order to reach SDG-2 standards and commitments, it is necessary to prioritize 
nutrition in addition to food security. Pulses are important in combating malnutrition, as in addition to provid-
ing a sustainable production system, they are the crucial component of human diet (http:// www. fao. org/ resou 
rces/ infog raphi cs/).

Pigeonpea (Cajanus cajan (L.) Millsp.), is a highly nutritious grain legume. Although it is a perennial plant, 
but primarily cultivated as an annual crop with sowing to flowering duration ranging between 60 to 180 days. 
While long duration varieties have higher yield potential, lately, a significant shift towards shorter duration 
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varieties has occurred so as to accommodate them in diverse cropping systems. Hence, the development of short 
duration varieties with comparable yield potential is compelling need of the hour. Cultivation of short duration 
varieties also enables farmers to escape adverse growth conditions, such as drought, severe winter, and disease 
incidences. The main trait that can be targeted for developing varieties with a specific duration is the number 
of days to flowering. Thus, biotechnological interventions could be deployed to speed up the development of 
short-duration  varieties1–4.

Floral development is a definitive event in the evolution of flowering plants; interestingly no non flowering 
mutants have been identified to date, and researchers have only been able to alter the days to flowering in plants 
by modifying a few gene combinations. Floral transition is controlled at both pre and post translation  levels5,6. 
Autonomous pathway, vernalization, light dependent floral induction, hormonal control and starch depend-
ent controls are the major floral induction pathways. FLC, SOC1, FVE, FLD, CO, FT are just few of the critical 
genes involved in this  process7, while auxin and gibberellic acid serve as the primary hormonal regulators of 
floral  transition8. The floral transition phenomenon has been extensively investigated in Arabidopsis and a few 
 legumes9,10. So far, 306 genes regulating floral development have been characterised in Arabidopsis10.

To develop shorter duration varieties of pigeonpea, it is essential to understand the mechanisms underlying 
flowering time variations and its adaptation to different ecologies. Though efforts have been made to characterise 
the MADS box genes, PEBP gene family, CCT  gene family, lncRNAs influencing floral induction and to map 
the loci governing earliness and domestication related traits, but the genes and markers associated with days to 
flowering are not yet known in  pigeonpea11–16. Due to the fact that pigeonpea has four maturity  groups17, Genome 
Wide Association Studies (GWAS) can better capture the genetic basis of flowering than bi-parental mapping 
populations since it uses the natural population that represents all allelic combinations arising out of historical 
recombinations. The GWAS approach has been shown to be effective in identifying novel genes and QTLs for 
multiple traits in diverse germplasm of rice and  wheat18,19. The availability of a 62 K SNP chip and hyper variable 
markers covering the complete pigeonpea genome, together with low cost sequencing costs, enables efficient 
GWAS analysis in  pigeonpea20–24.

Previous reports on GWAS in several legume crops have focused on domestication related loci, resistance 
against fusarium wilt, and days to flowering in chickpea; days to flowering and maturity in soybean, but a com-
putationally robust analysis is still needed to decipher association and develop markers with high confidence 
for flowering related traits in  pigeonpea12,25–27. The current work used an association panel of 142 accessions in 
order to identify candidate genes and markers for flowering-related traits in pigeonpea.

Principal Component Analysis (PCA) is a powerful dimension reduction and an unsupervised linear transfor-
mation technique which aims to extract critical information from phenotypically complex traits while reducing 
the redundancy in variables and preserving the information parallelly. It reduces a large set of initially correlated 
variables to a much smaller set of uncorrelated or orthogonal variables termed as PCs. GWAS using PC scores 
as dependent variables are more reliable and robust than single trait based, and it can reveal possible pleiotropy 
with increased  power18,28. As a result, we conducted a PCA based GWAS to discover genetic factors regulating 
crop architecture with emphasis on flowering. The effectiveness of the approach in identifying significant genes 
associated with pigeonpea flowering and related traits was further validated through annotation of the flanking 
regions using transcriptome data of ICPL 20338 accession (PRJNA752250). Thus, the present study was under-
taken with the following objectives: (i) Single trait based GWAS using seven association mapping models (GLM, 
MLM, MLMM, CMLM, EMLM, FarmCPU and SUPER) to identify novel genes to flowering and related traits 
(ii) PC based GWAS to improve the accuracy and robustness of single trait GWAS and investigate pleiotropy 
(iii) Genomic prediction and (iv) Annotation of significantly associated SNPs.

Material and methods
Plant material, phenotyping and ANOVA. A collection of 142 accessions representing a global pigeon-
pea germplasm collection, which includes landraces and breeding lines (mostly of Indian origin) (Table S1), 
were procured and maintained in the Division of Genetics, Indian Agricultural Research Institute (ICAR), 
New Delhi, India. These lines were grown using the recommended package of practises for 3 years (2017–18 to 
2019–20) in replicates. Data for four quantitative traits, i.e. days to first flowering (DOF), days to fifty percent 
flowering (DFF), plant height (PH) and average number of seeds/pod (SPP) were taken from each individual 
line in 2017–18 and 2018–19 and average values from the replicates were used for analysis. In 2019–20, data was 
collected solely for DOF and DFF traits. Days required to develop one completely opened flower in any plant 
of a row was noted as DOF, while days required by minimum 50% of plants in a row to have one open flower 
was noted as DFF. The PH of the plant was noted on maturity considering the last twig as end point, whereas 
SPP was measured by taking the average of randomly selected 50 pod and rounding off till one decimal point. 
The basic statistics of the phenotypic data were calculated through the STAR (Statistical Tool for Agricultural 
Research) tool available at http:// bbi. irri. org/ produ cts. Analysis of variance and broad sense heritability of the 
data was calculated using Indostat (version 8.1). The whole study complies with relevant institutional, national, 
international guidelines and legislation.

Reference based assembly of all lines
The raw sequence data of all 142 lines used in the present study is available at NCBI (https:// www. ncbi. nlm. nih. 
gov/). These datasets were downloaded and processed to remove adapters and poor quality reads through Trim-
momatic version 0.3629 using default parameters. High quality reads were mapped to the pigeonpea reference 
genome of cultivar ICPL 87119 available at NCBI using the BWA tool version 0.7.1721,30. Samtools version 1.10 
and Freebayes version 1.3.1 were used further for variant calling with minimum 10 × depth as basic  criteria31,32. 
InDels were removed and SNPs covering minimum of 80% reads were filtered. All 142 .vcf files generated were 
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merged to a single .vcf file through samtools, which was used to develop hapmap through Tassel 5.033. SNPs 
that showed a Missing Allele Frequency of more than 0.05 were not considered for Hapmap preperation, which 
ultimately included 168,540 SNPs.

Population structure analysis. Population structure is known to affect association studies, but we need 
to look after its impact. The power to detect population structure is highly dependent on the number of loci 
 utilised34,35. Furthermore, increased heterogeneity may lead to false  stratification36,37. Thus, the combined variant 
file was filtered for 1 SNPs within a sliding window of 200 kb with maximum depth and minimum number of 
missing samples and eventually 1229 SNPs out of 168,540 were selected for structure analysis. FastSTRU CTU RE 
v1.038 was used to investigate the population structure of all 142 accessions. The number of groups/sub-popula-
tions (k) was set from 1 to 10 with the burn-in period, and the number of Markov Chain Monte Carlo (MCMC) 
replications after burn-in were both set to 100,000 under the “admixture mode”. Five independent runs were 
performed for each k number. Finally, the structure was developed using the STRU CTU RE harvester vA.239. The 
delta K method developed by Evanno et al.40 was used to determine the optimal value of k.

Genetic diversity estimation. The diversity estimation was done using Tassel 5.033 based on the nucleo-
tide diversity (π), Watterson estimator (θ), and Tajima’s D  index41–43.

Principal component analysis. PCA was conducted using R software version 4.0.0. Reduced DOF and 
DFF, but increased SPP, are desirable for the generation of short duration varieties with higher yield potential. 
Given the intricate inheritance and genetic correlation of quantitative traits, some trade-off is inevitable. As 
various quantitative phenotypic variables were measured in different units reflecting different types of inter-
pretations, for statistical validity, the original variables were standardized (with mean 0 and variance 1) before 
attempting PCA. The detailed description about the PCA statistics and their loadings are provided in Table S2.

Genome wide association study. GWAS was conducted using the GAPIT package version 3.0 in R soft-
ware, which employs Bonferroni correction to define statistically significant MTAs. For this study seven associa-
tion models were implemented namely General Linear Model (GLM), Mixed Linear Model (MLM), Multiple 
Loci MLM (MLMM), Compressed MLM (CMLM), Enriched CMLM (ECMLM), Fixed and Random Model 
Circulating Probability Unification (FarmCPU) and Settlement of MLM Under Progressively Exclusive Rela-
tionship (SUPER)  algorithm44–50. These models are distinct in their basic structures and components included as 
fixed and random effects. Except GLM all the models include mixed effect structures, that is both fixed and ran-
dom effect components. PC scores were used as covariates or fixed effects in PC based GWAS. CMLM, ECMLM 
and SUPER generally exhibit higher statistical power as compared to the  MLM51. Amongst all models, MLMM 
and FarmCPU algorithms are for multiple loci analysis. FarmCPU model is designed to control both false posi-
tives and false negatives as compared to other  models49,51. Table 1 describes all the association mapping models, 
also explaining their differences.

Table 1.  Description of the association mapping models.

Model Description

General linear model (GLM)
GLM induces the simplest structure for single-locus analysis with 
population structure (Q) as fixed effect, whereas no random effect 
component is involved in the model; principal components are used 
as covariates in such a model to reduce the false positives

Mixed linear model (MLM) MLM includes the kinship matrix (K) as an additional random effect 
component; hence it is also called the Q + K model

Multiple loci MLM (MLMM)

MLMM is designed for multiple locus analysis, is an improvement 
over MLM which incorporates multiple markers simultaneously as 
covariates in order to partially remove the confounding between test-
ing markers and kinship. Gapit uses forward and backward stepwise 
linear mixed-model regression to include the markers as covariates

Compressed MLM (CMLM)

In CMLM the similar individuals are assigned into groups through 
cluster analysis and then groups are used as elements of reduced 
kinship matrix for random effect structure. The model has improved 
statistical power compared to regular MLM methods due to grouping 
or clustering

Enriched CMLM (ECMLM)
ECMLM calculates kinship using different algorithms and then 
chooses the best combination between kinship algorithms and 
grouping algorithms

Fixed and random model circulating probability unification (Farm-
CPU)

This is an iterative approach which iteratively fits both fixed and ran-
dom effect model to eliminate the models overfitting problem while 
using stepwise regression in MLMM. To control the false positives, 
kinship derived from associated markers is used

Settlement of MLM under progressively exclusive relationship 
(SUPER)

The SUPER model uses the associated genetic markers (pseudo 
Quantitative Trait Nucleotides) to derive the kinship matrix, instead 
of all the markers. Whenever a pseudo QTN is correlated with the 
testing marker, it is excluded from those used to derive kinship. The 
method has higher statistical power than regular MLM
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Genomic prediction. Genomic prediction (GP) modelling was done through the rrBLUP (v4.6) package 
in R  software52 for ridge-regression based genome-wide regression. The Ridge Regression Best Linear Unbiased 
Prediction (RRBLUP) model for genome-wide regression assumes the following form,

Where y is the vector of phenotypic values; X and Z are the design matrices for fixed and random effects respec-
tively; b and u are the coefficient vectors of fixed and random effects respectively; u is assumed to follow normal 
distribution N(0, Iσ 2

u ) and error term ε ∼ N(0, Iσ 2
ε ) with I being the identity matrix. The random effect coef-

ficient u is used to represent the marker effects associated with Z being the matrix of genotypes. The variance 
components σ 2

u and σ 2
ε  are estimated through the Maximum likelihood (ML) or Restricted ML (REML) method.

Annotation of the associated loci using transcriptome data. For annotation analysis, a window 
of ± 2 kb was used for each associated SNP for annotation analysis. The selected windows were looked at for 
similarity searches within the assembled in-house transcriptome data of early flowering genotypes (ICPL 20338) 
(PRJNA752250) present in two biological replicates, through the BLASTn program. Initially the raw reads were 
filtered through trimmomatic version 0.3629 to remove the poor quality reads with default parameters. Cleaned 
reads were de novo assembled using Trinity (version 2.1.1)53 with default parameters. Differentially expressed 
genes (DEGs) were identified using the edgeR package in the bioconductor environment through R script. These 
DEGs were filtered on the basis of p value (0.001), FDR < 0.05 and on the basis of fold change of the fragments 
per kilo-base of transcript per Million fragments mapped (FPKM) value (± 2). CD-hit web server (http:// weizh 
ong- lab. ucsd. edu/ cd- hit/) was used to remove duplicates. The FPKM values of genes corresponding to vegetative 
leaves (VL), reproductive leaves (RL), shoot apical meristem (SAM) and reproductive buds (Bud) were retrieved 
to construct heatmap using Morpheus web server (https:// softw are. broad insti tute. org/ morph eus/).

Ethical approval. This article does not contain any studies with animals performed by any of the authors.

Results and discussion
Descriptive statistics of phenotypes and PCs. The phenotypic data of quantitative traits, namely DOF 
and DFF, was taken over 3 years in all 142 lines, whereas data for PH and SPP was taken only for 2 years, i.e. 
2017–18 and 2018–19. The cumulative descriptive statistics from the first 2 years of phenotypic data are provided 
(Tables S3 and S4). The value of DOF was varying from 67 to 174 with an average of 125; the value of DFF was 
varying from 73 to 178 with a mean of 133; PH in the selected lines were ranging from 118 to 261 with an average 
of 208; SPP was ranging between 2 to 5 with a mean value of 3. The standard deviations of DOF, DFF, PH and 
SPP were 0.83, 0.85, 1.01 and 0.02 respectively, while the percentage coefficient of variation (CV) value of DOF, 
DFF, PH and SPP were 15.4, 15.8, 11.6 and 16.6. Evidently, SPP showed maximum variation and PH manifested 
minimum variability in terms of percentage CV. For 2017–18 data, the Pearson’s linear correlation coefficient 
between DOF and DFF was 0.95; correlation between DOF and PH was 0.50; DFF and PH had correlation 0.50; 
whereas, PH and SPP showed negative correlation (Table S4). The same pattern followed in other years too, as 
depicted in the bi-variate scatter diagram (Fig. 1). Presence of high variability in PH, SPP, DOF and DFF across 
the year and genotype was observed for all the traits (Table 2). Broad sense heritabiilty  (h2) of PH, SPP, DOF and 
DFF were 0.5449, 0.5897, 0.6593 and 0.7094 respectively (Table 2), which is the suggestive that major proportion 
of the variation is due to difference in genotypes.

The correlation among the original variables is suggestive of using PCA and thereby using PC scores for 
GWAS analysis. For 2017–18, PC1 explained 58% of the variation in the original data, while PC1 and PC2 
together explained 85% of the variation; further adding PC3 explained 98% of the variation. Similarly, in 2018–19, 
PC1 and PC2 determined 57% and 26% variations respectively. We have taken the first two PCs each year to 
perform GWAS as they preserved the majority of the variations (> 80%) in the original data (Table S2). The first 
two traits, namely DOF and DFF, exhibited maximum positive loadings on PC1, followed by PH. Loading on 
PC2 was higher for SPP trait, whereas plant height showed negative loading on PC2; this means PC2 is mainly 
representative of SPP. The PCs followed normal distribution, exhibiting non-significant results in Shapiro–Wilk 
test for Normality (Null hypothesis: Data follows Normal distribution), while amongst the single traits, SPP 
failed to show normality (SPP had count data). Therefore, PC based GWAS is supposed to improve the statistical 
power of GWAS analysis.

Genetic diversity and related analysis. The nucleotide diversity (π) is a reflection of genetic diversity 
which can be used to monitor diversity and genetic variation in crops and related  species54 or to determine 
evolutionary relationship. In our analysis, the value of π was 0.03573. The Watterson estimator (θ), which is an 
estimation of the population mutation rate was 0.19898. Usually both π and θ ranges in between 0–1, where the 
inclination toward 0 indicates presence of less diversity. Pigeonpea is an often cross pollinated crop but harbours 
less diversity, especially in the landraces and cultivated varieties due to progressive bottlenecks during domes-
tication and  breeding12. Our study was based on only 142 landraces and cultivated varieties mainly of Indian 
origin, and hence the lesser diversity could be explained. Similar results were reported by other groups  also55,56. 
The Tajima’s D in our population was − 2.84379. Tajima’s D is computed as the difference between two measures 
of genetic diversity: the mean number of pairwise differences and the number of segregating sites, each scaled so 
that they are expected to be the same in a neutrally evolving population of constant size. When Tajima’s D value 
is less than 0, it means abundant rare alleles are present, suggesting a possible selective sweep and population 
expansion.

y = Xb+ Zu + ε
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Population structure and kinship analysis. Population structure, kinship analysis, as well as diversity 
estimates suggested the presence of less diversity among the studied genotypes. The collection was stratified into 
3 clusters (k = 3) with a substantial level of admixture, probably the result of its pollination behaviour (often cross 
pollinated), which is in accordance with previous  reports57. Cluster 1 comprised 28 accessions, while clusters 2 
and 3 comprised 63 and 51 lines respectively, in the population structure analysis (Fig. 2). Similar results were 
obtained with the kinship matrix where the same clustering pattern was observed (Figure S1).

Figure 1.  Scatter diagrams showing collinearity among the selected phenotypic traits for different years. 
Upward linear pattern indicates greater extent of positive correlation. Days to first flowering (DOF), days to fifty 
percent flowering (DFF), plant height (PH) and average number of seeds/pod (SPP).
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GWAS results. In all the aforementioned models, GWAS for quantitative traits like DOF and DFF revealed 
the association of 19 and 22 non-redundant SNPs distributed on chromosomes 2 and 6 respectively, in the 
2017–18 data. However, no significant association was found for PH and SPP. A descriptive summary of GWAS 
on DOF and DFF in 2017–18 is provided in Tables  S5-S6 and Fig.  3. GWAS on 2018–19 data revealed the 
association of 11 and 9 non-redundant SNPs for DOF and DFF, respectively (Tables S7–S8 and Figure S11). 
However, no significant association was found for PH and SPP in 2018–19, hence they were excluded from 
phenotyping in 2019–20. In 2019–20, 13 and 10 non redundant SNPs were found to be associated with DOF 
and DFF, by all seven models (Tables S9–S10 and Figure S12). The first two PCs constructed from 2017–18 and 
2018–19 data were then analysed for association. PC based GWAS of PC1 in 2017–18 data revealed an associa-
tion of 18 non-redundant SNPs, while the same in 2018–19 data showed an association of 12 non-redundant 
SNPs (Tables S11–S12 & Figure S13 and S14). GWAS on PC2 in 2017–18 gave a total of 6 non-redundant SNPs, 
though no association was found in PC2 2018–19 data (Table S13). As PC2 reflects the loading of SPP, these loci 
must be regulating SPP traits.

Cumulatively, trait based and PC1 based GWAS on DOF and DFF revealed the association of 22 SNPs with 
DOF/DFF traits and were selected for further annotation analysis (Table 3). Interestingly, this set of SNPs also 
included the SNP 812678807:41, which was consistently found to be associated with both the traits as well as the 
PCs, across all three-year data by each of the seven models employed (Fig. 3 & S11–14). As the distance between 
the SNPs approached 1.5 Mb, the average  r2 was 0.158. This LD level usually indicates that there is nearly no 
linkage between the markers after this; thus, we defined SNPs within a 1.5 Mb window as a single locus. So all 
of the associated SNPs scattered on scaffold NW_017988637.1 were treated as a single locus for further analysis 
as it’s of only 5 kb in size. Out of 24 SNPs 812678863:261: +, 812678807:41: + and 812679326:250: + were on the 
same scaffold and hence treated as single loci and the whole scaffold was considered for annotation purposes.

Three SNPs (760222832:55: +, 392479221:11: + and 812679326:250: −) were found to be associated with both 
PC1 and either DOF/DFF or both, while four SNPs (21256769:324: +, 740074801:308: −, 324910270:94: − and 
593701379:271: +) were found to be associated exclusively with PC1 scores, reflecting the ability of PC based 
GWAS in identifying novel associations. As PC1 is the representative of DOF, DFF and PH, these unique SNPs 
might be regulating plant height in addition to DOF and DFF. As PH is arrested once flowering starts in the case 
of determinate lines, the role of these SNPs in regulating plant height can’t be ignored. Further, among these 
novel associations identified by PC, 593701379:271 was annotated as F box protein (Table 4), which is a vital 
component of auxin signalling playing an important role in vegetative to reproductive phase transition as well 
as in determining plant height.

Similarly, GWAS on PC2 in 2017–18 gave a total of 6 non redundant SNPs, though no association was found 
in PC2 2018–19 data (Table S13). As PC2 reflects the loading of SPP, these loci could be possibly regulating SPP 
traits. As no marker trait association was found with SPP trait in our analysis and also there is no consistency in 
PC2 based GWAS, these 6 loci were excluded from the annotation analysis.

Comparison between the association mapping models. While association mapping make use of 
historical recombination to unravel marker trait association, it’s difficult to control false positives arising due 
to linkage disequilibrium (LD), family relatedness and population  stratification51,59. As a result, choosing an 
appropriate association mapping model is critical for identifying true marker-trait associations and minimising 
both false positives and negatives. In essence, an ideal model must have a uniform distribution of expected and 

Table 2.  Pooled Analysis of Variance (Pooled-ANOVA) for four traits evaluated in different environments.

Source

PH SPP DOF DFF

d.f. MSS d.f. MSS d.f. MSS d.f. MSS

Year 1 25,764.88*** 1 0.07 2 12,345.08*** 2 21,545.25***

Genotype 141 1157.32*** 141 0.96*** 141 907.85*** 141 895.31***

Genotype × Year 282 359.84 282 0.29 282 91.81 282 97.91

Broad Sense heritability (h2) 0.5449 0.5897 0.6593 0.7094

Figure 2.  Population structure analysis revealed three major clusters in the pigeonpea mini core collection.
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observed p-values. Thus, in this investigation, we examined the Q-Q plots generated by different models in order 
to identify actual causal maker trait relationships and best suited model. If a Q-Q plot has a straight line close to 
1:1, it follows a uniform distribution, indicating that null hypothesis is true (no significant marker trait associa-
tion is present), whereas deviation depicts the presence of association between testing markers and trait. Upward 
side deflation of lines represents a false positive association, while a false negative is represented by downward 
deflation. If the line is close to 1:1 ratio with a sharp upward deviated tail, it indicates that both false positives 

Figure 3.  Manhattan plots for DOF (Left side) and DFF (Right side) for the year 2017–18. Top to bottom order 
is GLM, MLM, MLMM, CMLM, ECMLM, FarmCPU and SUPER.
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and false negatives were controlled and the presence of true associations can be  inferred60,61. Usually most of the 
SNPs follow a uniform distribution as they are not in LD with a causal polymorphism, but the few that are in LD 
with a causal polymorphism will produce significant p values arising as ‘tail’.

In our analysis, we compared seven models and found four models, viz. CMLM, ECMLM, MLMM, and 
SUPER, showed approximately 1:1 ratio, better than the remaining models, i.e., GLM, MLM, and FarmCPU 
(Fig. 4 & S2–S10). When the MLM model is used in a genetically diverse panel, its superiority over GLM is lost as 
the random effect accounted for by the kinship matrix in the former is neutralised by the genetic diversity. Both 
GLM and MLM are single locus models, i.e. scanning one marker at a time, are computationally demanding and 
fail to decipher traits which are controlled by multiple loci. From Q-Q plots, it was evident that the GLM model 
was not able to remove the false positives arising due to LD, and therefore, all SNPs on scaffold NW_017988637.1 
were found to be associated with both DOF and DFF (Fig. 3, S11–S14)60,61.

Though the multi-loci models, MLMM, CMLM and EMLM are more beneficial in mapping complex traits, 
they resort to overfitting and give rise to false  negatives49. In the SUPER model, only the associated SNPs or 
pseudo quantitative trait nucleotides are used to derive kinship. MLM and its derivative models, which included 

Table 3.  List of selected SNPs further used for annotation analysis.

S. no. SNP id Chromosome Physical location Year (trait)

1 812678863:261: + NW_017988637.1 1117 2017–18 (DOF)

2 392468479:318: + NW_017984071.1 155,917 2017–18 (DOF)

3 725832748:272: + NW_017985276.1 22,384 2017–18 (DOF)

4 791831919:74: + NW_017986933.1 11,488 2017–18 (DOF) and 2019–20 (DOF)

5 142343707:25: + NC_033807.1 9,366,686 2017–18 (DOF)

6 760222832:55: + NW_017985856.1 27,685 2018–19 (DOF), 2018–19 (DFF) and 2018–19 (PC1)

7 812678807:41: + NW_017988637.1 869 2018–19 (DOF) and 2019–20 (DOF), 2018–19 (DFF) and 2019–20 
(DFF)

8 376936577:87: − NW_017984062.1 168,305 2018–19 (DOF)

9 652249420:11: + NW_017984675.1 23,436 2018–19 (DOF)

10 709017214:7: − NW_017985090.1 533 2018–19 (DOF)

11 633271872:58: + NW_017984581.1 74,012 2018–19 (DOF)

12 392479221:11: + NW_017984071.1 161,167 2019–20 (DOF), 2019–20 (DFF), and 2018–19 (PC1)

13 164755426:8: + NC_033809.1 6,932,346 2019–20 (DOF) and 2019–20 (DFF)

14 781124881:96: − NW_017986454.1 6679 2019–20 (DOF)

15 812679326:250: − NW_017988637.1 863 2017–18 (DFF), 2017–18 (PC1)

16 35373484:284: + NC_033805.1 6,362,335 2017–18 (DFF)

17 785047004:88: + NW_017986607.1 3977 2018–19 (DFF)

18 330539130:289: + NC_033814.1 21,328,862 2019–20 (DFF)

19 21256769:324: + NC_033804.1 14,401,967 2017–18 (PC1)

20 740074801:308: − NW_017985477.1 249 2017–18 (PC1)

21 324910270:94: − NC_033814.1 17,612,083 2018–19 (PC1)

22 593701379:271: + NW_017984430.1 87,462 2018–19 (PC1)

Table 4.  Annotation of the SNPs showing marker trait association reveals role of auxin pathway genes in 
flower induction.

S. no. SNP id Putative candidate regulators in 2 kb window of associated SNPs

1. 812678863:261: + 
Transcript (TRINITY_DN34349_c0_g1_i9) annotated as cytochrome P450-like TATA box binding protein 
(cytochrome P450-like TBP)2. 812679326:250: + 

3. 812678807:41: + 

4. 760222832:55: + TRINITY_DN35027_c3_g2_i12 was annotated as putative rRNA methyltransferase

5. 785047004:88: + TRINITY_DN34404_c4_g1_i14 an auxin response factor

6. 633271872:58: + Genic SNP: in mRNA of pin like transcript variants

7. 593701379:271: + TRINITY_DN32710_c2_g1_i2 annotated as F-box protein SKIP23

8. 376936577:87: − TRINITY_DN34296_c0_g1_i10 a serine/threonine protein phosphatase 2A

9. 834373094:36: − GENIC SNP: ribosomal protein S2

10. 834384838:29: − GENIC SNP: cytochrome P450 b559 alpha subunit

11. 164755426:80: − TRINITY_DN34186_c2_g3_i4; annotated as Cytochrome P450 89A2

12. 35373484:284: + TRINITY_DN33874_c0_g1_i3 annotated as U-box domain-containing protein and TRINITY_DN34453_
c0_g3_i10 annotated as chromatin structure remodelling complex protein BSH
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kinship as covariates and perform overfitting of the data leading to the increased p-value threshold, were superior 
in controlling the false positives (Table S5-S13), but they also favoured false negatives. Hence, in most cases, these 
models were able to find only one SNP associated with both DOF and DFF (Fig. 3, S11–S14).

FarmCPU is superior over the other mapping models, as it incorporates multiple markers as covariates to 
remove confounding between the testing marker and kinship. In our analysis, it was found to be better than the 
other aforementioned models in dealing with both false positives and negative  associations60,61. The FarmCPU 
model overcomes the limitation of false negatives due to overfitting (in the case of CMLM, EMLM, SUPER, and 
MLMM) and LD based false positive associations (in the case of GLM), as well as being a multi-loci based model, 
it was appropriate for dissecting the complex traits (Fig. 3 and S11–14).

Methodological improvement and advantages of PC based GWAS. Even if we wish to analyse 
multiple traits, GWAS methodology is essentially based on “single trait single variant association basis”. However 
the phenotypes are not under control of a single locus and there is higher possibility that genetic variants can 
influence multiple traits or vice-versa. The resolution of understanding complex traits will increase if we study 
multiple traits simultaneously. PCA based GWAS is one such approach. It is a highly effective method for col-
lecting information from highly correlated, complex and multiple traits through dimension reduction. Many 
studies have already been done which support the use of PC based GWAS for complex  traits18,62–64. A compari-

Figure 4.  Quantile–Quantile (Q–Q) plots based on GWAS results from different association models for DOF 
in the year 2017–18. Model representations are GLM (a), MLM (b), MLMM (c), CMLM (d), ECMLM (e), 
FarmCPU (f) and SUPER (g). x axis plots expected −  log10(p) values and y axis plots observed −  log10(p) values 
respectively.
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son between the trait and PC based GWAS models suggested the use of PC based GWAS for efficient and high 
throughput deliverables. This strategy can decrease the likelihood of false positives by avoiding the multiple 
testing  issues65,66. As the normal distribution of the phenotype is a must for performing GWAS, PC scores will 
lead over the single trait as PCA will transform the skewed original variables into an approximate normal dis-
tribution, producing reliable GWAS  results67. Further, GWAS using PC scores may detect genomic regions that 
could be overlooked by using individual traits, since PC scores represent integrated  variables68. As many genes 
contribute to the phenotype of multiple traits of complex architecture, it can be used to describe pleiotropy also. 
A PC based test has optimal power when the underlying multi-trait signal can be captured by the first PC, and 
otherwise it will have suboptimal  performance69. In our analysis, we found some common associations as deci-
phered by both trait based and PC based GWAS, besides some novel associations identified by PC based GWAS 
owing to some critical genes during annotation, like locus 593701379:271: + identified exclusively by PC1 based 
studies was present in the vicinity of TRINITY_DN32710_c2_g1_i2 annotated as F-box protein SKIP23.

Genomic prediction. The genomic estimated breeding value (GEBV) for each line was estimated using 
all the SNPs and 500 randomly generated train/test sets. The average correlation between the observed DOF 
and the predicted DOF by GP was 0.46, 0.51 and 0.46 in a model with no significant markers included as fixed 
effects during 2017–18, 2018–19, and 2019–20, respectively (Fig. 5). Similarly, the correlation between observed 
DFF and predicted DFF was 0.52, 0.57, and 0.48 during 2017–18, 2018–19 and 2019–20 respectively (Fig. 5). 
This is comparable to the prediction accuracies (PA) obtained for similar highly heritable traits, days to heading 
and days to maturity in wheat using a large number of Mexican and Iranian landraces. We observed moderate 
prediction accuracy in our data. Crossa et al.70, found the correlation values for plant height and yield to be 0.87 
and 0.49, respectively pertaining to the trait complexity. Though a comparatively smaller number of lines were 
used in our study, we could still achieve ~ 50% accuracy, probably owing to the use of the core set. In Brassica, 
a similar or higher PA were achieved for grain yield related  traits71. GP will enable high throughput evaluation 
of germplasm to identify superior one which can then be included in crop breeding programs to perform GP-
based progeny  selection70,72. However, the accuracy of GP models in predicting GEBV in pigeonpea should be 
increased by including more lines and including more environments for phenotyping to achieve reliable predic-
tion and utilisation of the model.

Annotation analysis for the significantly associated SNPs showing marker trait associa-
tion. All the 22 SNPs representing 12 different loci were considered for gene annotation analysis (Table 3). 
Four of the 12 loci were found to be present within or in the vicinity of vital flowering related genes (Table 4). 
The heatmap showing differential expression of nine of these genes in different tissues is presented in Fig. 6. 
The locus with three SNPs (812678863:261: +, 812679326:250: + and 812678807:41: +) present on the scaffold 

Figure 5.  Box plot of observed traits vs. predicted flowering days through genomic prediction using RRBLUP 
method across different year’s data. The middle line in each box is the median value. Model accuracy (MA) is 
provided by setting 80:20 training and testing data sets.
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NW_017988637.1 revealed the presence of cytochrome P450-like TATA box binding protein (cytochrome P450-
like TBP) within its vicinity. Several researchers have previously demonstrated the role of plant cytochrome 
P450s gene family members in various pathways, including hormone  biosynthesis73,74, which have a bearing on 
both DOF and DFF, and this observation was strengthened by the expression data with the highest expression 
in floral bud tissues (Fig. 6).

SNP 785047004:88: + was located adjacent to the Auxin response factor (ARF), which is suggestive of its 
involvement in SAM to bud transition. Under low auxin concentration, AUX/IAA binds to ARFs, ultimately 
inhibiting the further downstream genes, whereas when present in higher concentrations, auxin binds to TIR1 
(F box protein which is a component of E3 ubiquitin ligase). After auxin binds to TIR1, it gets activated and 
cleaves AUX/IAA, thereby freeing ARFs and ultimately leading to expression of auxin responsive  genes75–77. In 
our analysis, the ARF gene was found to be express in VL, which is the phase where auxin is required for the 
transition from meristem to bud (Fig. 6).

Establishment of a high concentrations of auxin is required for floral  induction78–80, which is generated 
by polar auxin transport involving regulators such as the auxin efflux carrier PIN-FORMED1 (PIN1) and the 
PINOID (PID) kinase, which controls PIN1  activity81,82. Interestingly, another SNP (633271872:58: +) was present 
in the genic region of PIN like transcript variants, which is reported to mediate auxin efflux dependent devel-
opmental processes as mutants of these showed defective auxin  transport82,83. Also, PIN is believed to regulate 
flowering timing by altering auxin activity in collaboration with ARF. Likewise, a F box protein SKIP23 is a must 
for induction of downstream auxin responsive  genes84 and was found in the vicinity of SNP (593701379:271: +). 
As it was found to be highly expressed in VL, it is hypothesised to degrade AUX/IAA and release ARF (found 
near other SNP i.e. 785047004:88: +).

Similarly, SNP (376936577:87: −) was very close to a serine/threonine protein phosphatase 2A. Although 
serine/threonine protein phosphatase 2A is known to participate in various stress  signals85, few reports suggest its 
role in auxin as well as abscisic acid  signalling86,87. Although it is not clear how this gene influences flowering, we 
presume that it regulates flowering by hormonal regulation, mainly by regulating ABA and auxin. Another SNP, 
164755426:80: + was found near the cytochrome P450 89A2 subunit. CYP715 (a cyt p450 gene family member) 
appears to function as a key regulator of flower maturation, synchronising petal expansion and volatile  emission88. 
Similarly, this SNP might be involved in the maturation of reproductive buds to flowers.

A transcript (TRINITY_DN33874_c0_g1_i3) present besides SNP (35373484:284: +) was annotated as a 
U-box domain-containing protein. The SPIN1 (SPL11-INteracting protein 1) gene has been reported to regulate 
flowering time in rice and it is ubiquitinated by SPL11 (a U box protein)89. The spl11 rice mutants were found 
to display delayed flowering under long-day conditions. As per a previous report, mutating a U box protein in 
rice (SPL11) leads to delayed flowering. Transcript (TRINITY_DN33874_c0_g1_i3) might regulate flowering 
time as in rice, but interestingly its expression was higher in VL only suggesting that it may regulate flowering 
through a different mechanism from that of rice.

Another transcript, TRINITY_DN34453_c0_g3_i10 annotated as chromatin structure remodelling complex 
protein BSH was found in the vicinity of SNP (35373484:284: +). Several components of chromatin remodelling 
complexes are evolutionarily conserved in plants, such as the SWI3  subunits90, SNF5/BSH  subunit91, the nuclear 
actin-related protein  ARP492, BRAHMA (BRM), or SPLAYED (SYD). Both of these latter proteins are ATPases of 
Arabidopsis SWI/SNF complexes and have been shown to participate in the control of flower development and 
flowering  time93–95. Likewise, the SWI3B protein interacts with the flowering regulator  FCA90. Several reports 
regarding the involvement of epigenetic mechanisms in flower induction regulation are available, and TRIN-
ITY_DN34453_c0_g3_i10 might play a similar role. Interestingly, SNP 760222832:55: + was found in the vicinity 
of RNA methyltransferase (TRINITY_DN35027_c3_g2_i12). Many epigenetic regulators have already been 
reported to regulate flowering  timing96,97. TRINITY_DN35027_c3_g2_i12 was found to express constantly in 
VL, Mer and Bud but the expression increased in RL, suggesting its role in flowering induction.

Figure 6.  Expression pattern of the genes found in vicinity of associated SNPs which might have an important 
role in flowering. Vegetative leaves (VL), reproductive leaves (RL), shoot apical meristem (SAM) and 
reproductive buds (Bud).
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Conclusion
In the current study, PC based GWAS was found to be superior over trait based and multi-loci based models for 
DOF and DFF in Pigeonpea, analysed using 142 accessions and 168,540 SNPs. PC transformation of the traits 
revealed that PC1 captured 58% of the variation, while PC1 and PC2 cumulatively captured 85% of the variation, 
suggesting PC1 and PC2 were sufficient enough for GWAS in our datasets. Cumulatively, GWAS revealed the 
association of 22 SNPs with DOF, DFF or PC1, out of which 15 were solely identified by trait based GWAS, 3 
by both trait based as well as PC based GWAS, and 4 SNPs were found to be associated only through PC based 
GWAS. The 4 SNPs found to be associated with PC1 might be pleiotropic as PC1 also represented PH besides 
DOF and DFF. One of these 4 SNPs is annotated as F box protein, which plays a vital role in auxin signalling 
during growth and development, so these 4 SNPs can be inferred as pleiotropic to DOF, DFF and PH. Many of 
the associated SNPs were in the vicinity of vital genes like Auxin responsive genes like ARF, F box protein, U box 
protein, PIN like transcripts, chromatin remodelers, RNA methyltransferase the homolog’s/ortholog’s, many of 
which have been previously reported to regulate floral transition in other plant species. A few uncharacterized 
genes were also found, which are novel and need further characterization in order to decipher their function 
and role. Associations found in the present study suggest a functional basis of the associations in the regulation 
of flowering, and hence these genes are excellent candidates for further validation through bi-parental analysis 
followed by mutagenesis, genome editing, and other approaches. In conclusion, PC based GWAS is effective in 
deciphering pleiotropy and complex traits over trait based GWAS. Furthermore, the study can be taken forward 
by combining the PCA and the Multiple Dimension Scaling method to handle both quantitative and qualitative 
phenotypes as inputs for association mapping models.

Data availability
All sequencing data used in the current research work are available at (https:// www. ncbi. nlm. nih. gov/) and the 
SRA accession numbers to access them are provided in Table S1.
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