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Abstract
Background: Microarray is a sophisticated tool that concurrently analyzes the expression levels 
of thousands of genes, giving scientists an overview of DNA and RNA study. This procedure is 
divided into three stages: contact with biological samples, data extraction, and data analysis. Because 
expression levels are disclosed by the interplay of light with fluorescent markers, the data extraction 
stage relies on image processing methods. To extract quantitative information from the microarray 
image (MAI), four steps of preprocessing, gridding, segmentation, and intensity quantification are 
required. During the generation of MAIs, a large number of error‑prone processes occur, leading to 
structural problems and reduced quality in the resulting data, affecting the identification of expressed 
genes. Methods: In this article, the first stage has been examined. In the preprocessing stage, the 
contrast of the images is first enhanced using the genetic algorithm, then the source noises that 
appear as small artifacts are removed using morphology, and finally, to confirm the effect of the 
contrast enhancement (CE) on the main stages of microarray data processing, gridding is checked on 
complementary deoxyribonucleic acid MAIs. Results: The comparison of the obtained results with 
an adaptive histogram equalization (AHE) and multi‑decomposition histogram equalization (M‑DHE) 
methods shows the superiority and efficiency of the proposed method. For example, the image 
contrast of the Genomic Medicine Research Center Laboratory dataset is 3.24, which is 42.91 
with the proposed method and 13.48 and 32.40 with the AHE and M‑DHE methods, respectively. 
Conclusions: The performance of the proposed methods for CE is evaluated on 3 databases and a 
general conclusion is obtained as to which CE method is more suitable for each dataset.
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Introduction
In the early 1990s, microarray technology 
was able to create a great revolution in 
genomics and made it possible to examine 
the gene profile of thousands of genes 
simultaneously. This technology represents 
a scientific intersection between life science 
and an electronic device that analyzes gene 
information on a large scale[1] and plays an 
important role in biological conclusions. The 
primary purpose of microarray studies is to 
identify gene expression patterns to derive 
relevant biological inferences and solve 
basic experimental questions.[2] They enable 
users to compare gene expression in various 
circumstances, cells, and even tissues.[3] 
This potential expands our understanding 
of the fundamental components of life’s 
growth and development, as well as the 

genetic reasons for anomalies in the human 
body.

The raw image of the complementary 
deoxyribonucleic acid (cDNA) 
microarray taken from the scanner needs 
preprocessing, during which the values 
of the common fluorescent intensity of 
each spot can be accurately determined. 
The scanner’s resolution is an important 
parameter in determining the quality of 
the microarray image (MAI) so if the 
contrast of the MAI is low, the quality of 
the edges extracted from the image will be 
poor.[4] The information on these edges is 
the primary source for gridding of MAIs. 
Due to the low contrast of the MAI, it is 
challenging to tell the foreground spots 
from the equivalent background, and hence, 
contrast enhancement (CE) is crucial in 
image processing. Therefore, CE is required 
to draw attention to key elements in MAI 
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Figure 1: Block diagram of the proposed method
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data.[5] An image with good contrast will have distinct 
sections that can be seen.

The contrast and quality of these images have recently 
been improved using a variety of techniques. Adaptive 
histogram equalization (AHE)[6] is the most straightforward 
and practical of all. In addition, in some local enhancement 
techniques, such as the use of multiscale morphological 
procedures to generate image representation, distinct CE 
operators are employed in the spatial domain (multiscale) 
or frequency (multiresolution).[7] Other sources include 
fuzzy clustering[8] and multi‑decomposition histogram 
equalization (M‑DHE).[9] Wavelet transform has been 
adopted to realize CE. These methods usually involve 
the parametersetting and threshold search. Improving 
MAI quality aims to improve accuracy of the  processing 
steps such as gridding or segmentation[10]. Due to the 
aforementioned issues, we suggested a preprocessing step 
for the MAI. In this study, a brand new, entirely automatic 
technique for identifying and enhancing image contrast 
is put forth. Unlike earlier techniques, it does so without 
spatial or frequency domain image segmentation, increasing 
image contrast. The genetic algorithm (GA), which solely 
considers entropy when determining the fitness function, 
is employed[11] to increase contrast; however, we are 
aware that the MAI has the property that its spots have 
greater gray values while the background has lower gray 
values.[12] In this article, a method based on a GA for CE is 
introduced, which successfully handles various image kinds 
without altering any parameters. The approach generates 
the fitness function using 10 indices defined on the contrast 
of the image.

In addition, the contamination of MAIs with different 
types of noise brought on by biological and experimental 
factors is a significant component that makes feature 
extraction and analysis more difficult. The presence of 
noise results in inaccurate spot segmentation, which can 
therefore compromise the repeatability and validity of the 
gene expression level determined by the MAIs and result 
in inaccurate calculation of the average relative intensity of 
the spots. The wrong conclusion may be caused by ignoring 
or mishandling the MAIs with noise. Experimental noise 
is divided into source noise and detector noise. Source 
noise is generated during target construction and labeling, 
while detector noise is generated during amplification and 
digitization steps. Examples of source noise include discrete 
image artifacts in the image such as large fluorescent 
dust particles, independent staining, salt deposition from 

evaporated solvents, filaments, and various air debris.[13] 
These types of noises do not have a specific pixel value, 
and according to the way they appear and their nature, they 
affect the contrast of the image and reduce the quality of the 
edges of the spots. In recent years, methods such as wavelet 
transform, mathematical morphology, and spatial filters such 
as median and Wiener led to noise reduction and shape 
improvement in medical and MAIs.[14] Hence, spatial filters 
use spatial masks to process digital images and are divided 
into linear and nonlinear. The median filter is the simplest 
nonlinear filter whose main transfer function calculates the 
average pixel brightness value in the neighborhood where 
the filter is placed and is quite effective in reducing impact 
noise.[15] However, because the artifacts have different 
spatial shapes with different brightness, mathematical 
morphological methods have better results to remove 
them. Therefore, in this article, to enhance the contrast, a 
morphological method is used to remove the artifacts, and 
in the final stage, these algorithms are combined with the 
GA method to enhance the final contrast. Metaheuristic 
algorithms have not been used to enhance the contrast of 
MAIs, and a GA is used for this purpose for the first time in 
this article. Furthermore, considering the effect of artifacts 
on image contrast and combining GA with morphology is 
proposed for the first time.

This article is as follows: Section 2 describes the proposed 
methods and Section 3 presents experimental results, 
discussion, and comparison. The conclusion is summarized 
in section 4.

Materials and Methods
The ultimate goal of MAI analysis is to provide useful 
results that aid in medical diagnosis. To achieve this 
goal, this paper will focus on appropriate MAI processing 
techniques that perform preprocessing and gridding 
to cover effective spot segmentation and ultimately 
significantly increase the accuracy of correct spot detection 
to achieve a good estimation of gene expression level.[16] 
Considering that different images have different degrees of 
contrast, at first, a fourth‑order moment is used to calculate 
the contrast of the image. The second step achieves CE 
with a GA for low‑contrast images. In the next step, the 
small noises of the source as artifacts are reduced using 
mathematical morphology. In the end, to confirm the 
importance of CE in preprocessing, gridding is performed 
using the maximum interclass variance method. The steps 
of the proposed algorithm are shown in Figure 1.
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Datasets

The proposed algorithms are implemented on 3 datasets 
and the results of these datasets are compared with each 
other. Microarray blocks were stored in the tagged image 
file format and each pixel in the array has a 16‑bit intensity 
value. Specifications of the MAIs are as follows.

The first dataset contains 56 MAIs from the public 
Stanford Microarray Database (SMD, http://smd.stanford.
edu) that corresponds to Channels 1 and 2 of a microarray 
experiment; these pairs are the results of four experiments 
in a study on yeast.

The second dataset is selected from Joe DeRisi’s individual 
dataset (DeRisi) (http://www.bio.davidson.edu/projects/
magic/magic). Each image has four blocks, and each block 
contains 1600 spots. Images corresponding to channels Cy3 
and Cy5 have been labeled with the experiment IDs 1302, 
1303, 1309, 1310, 1311, 1312, and 1313. The images in 
this database are related to yeast.

The third dataset is the Changgang Hospital Genomic 
Medicine Research Center Laboratory database (GMRCL). 
This database was prepared by the Genomic Medical 
Research Center of Changgang Hospital and contains 16 
MAIs related to cervical cancer. Each array has 32 blocks 
and 15,488 spots with 7744 genes. The approximate 
dimensions of all images are 2036 × 3848.

Contrast Enhancement Using Genetic Algorithm

If the MAI contrast is low, the quality of the edges 
extracted from the image will be poor. The information 
on these edges is the primary source for gridding MAIs.[17] 
The quality of the edges of spots is enhanced using the CE 
algorithm based on the GA.

At the beginning of the work, image contrast is calculated 
using a four‑order moment according to Eq. (1).[18]

( )4
1

4

2

SD 1c = . Fom = p - p  
NFom

MSE
 
  

∑  (1)

Where SD is the standard deviation, MSE is the mean square 
error, Fom is the fourth‑order moment, N is the number of 
image pixels, and P̄ is the average value of the image. The 
main contrast value of images taken from 3 different datasets 
can be calculated according to Eq. (1). Figure 2 shows the 
contrast values of the images for 3 datasets.

It can be seen that the image contrast values are very 
different in different datasets. Even in the same datasets, 
they are different from each other. The images of the 
DeRisi dataset have higher values, indicating that they 
have good contrast. Conversely, the images from the SMD 
dataset are all at the lowest values, indicating that they 
have low contrast. The average values of contrast for all 
datasets are given in Table 1, and the comparison of these 
values confirms the above results.

MAIs have a very different pixel distribution and use only 
a smaller range of all possible intensity levels. Histograms 
of real MAIs have a unimodal distribution, which indicates 
their poor contrast. The existence of irregular round areas 
of spots with variable brightness causes sudden changes 
that create impact noise in the images. Therefore, a GA is 
used to deal with such characteristics for better CE. The 
steps of this metaheuristic algorithm are shown in Figure 3.

As can be seen in Figure 3, first of all, the number 
of chromosomes C and the number of generations N 
must be initialized. This algorithm will be applied to C 
chromosomes for N number of times. The accuracy of the 
algorithm depends on the number of generations. After the 
parameters are initialized, the GA is applied.

As shown in Figure 3, the number of chromosomes C 
and the number of generations N must be initialized 
initially. This procedure will be repeated N times on C 
chromosomes. The algorithm’s accuracy is determined by 
the number of generations. The GA is applied after the 
parameters have been set up.

The GA begins with a population that is produced at random. 
This population is chosen to produce a new generation, 
which is known as the child chromosome. Mutation and 
combination are the genetic operators employed. Child 
chromosomes are created from parent chromosomes by 
modifying one of the values on each chromosome with 
a particular step size. The child’s chromosomes formed 
in this manner will have the same number and properties 
as the parent’s chromosomes. A combination operator 

Table 1: Average contrast values for all datasets
Datasets SMD DERISI GMRCL
Average contrast 0.99 8.15 2.08
SMD – Stanford Microarray Database; GMRCL – Genomic medicine 
research center laboratory database; DERISI – Joe DeRisi's Individual 
Dataset
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Figure 2: The contrast values of all data for 3 datasets. (a) Bar chart. 
(b) Box plot
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Figure 3: Block diagram of the genetic algorithm in the proposed method
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generates a child chromosome from more than one parent 
chromosome. The new chromosome will inherit some 
characteristics from the first parent and others from the 
second. If a child’s chromosome inherits the finest qualities 
from both parents, it may outperform both parents. In this 
situation, each chromosome value intersects with the value 
of another chromosome.

The fitness value is then calculated in the next step. Each 
chromosome’s fitness value is determined using the fitness 
function. The chromosome with the highest fitness value 
is considered the best chromosome and can be utilized 
more frequently. The fitness function is defined using the 
weighted summation approach, which produces the fit value 
by taking into account all of the evaluation criteria. The 
weighted sum technique gives equal weight to each fitness 
function parameter.[19] The fitness function is computed as 
follows:

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( )

1 1 2 2 3 3 4 4

5 5 6 6 7 7 8 8

9 9 10 10

Fitness = w ×f + w ×f + w ×f + w ×f

+ w ×f + w ×f + w ×f + w ×f

+ w ×f + w ×f  

 (2)

Hence, w_1, w_2, w_3, …,w_10 are the feature weights, 
while f_1, f_2, f_3,…, f_10 are the fitness function features 
and are identical to the following values:

f_1=EMEE, f_2=ME, f_3=MI, f_4=MLI, f_5=CII, f_6=CD, 
f_7=SD, f_8=MCI, f_9=MSD, f_10=PEOIR

These features are defined as follows:

1. Measure of Enhancement of Entropy (EMEE): it is 
calculated by calculating the average ratio of maximum 
to minimum pixel intensity of the enhanced image to 
the original image

 max emax

min emin

I I1EMEE = ln
mn I I

  
  

  
 (3)

2. Measure of Entropy (ME): it is a measure of 
randomness

 ( ) ( )
m n

i=1 j=1

ME = p i. log_2 j (p i. j )∑∑  (4)

3. The mean intensity (MI) of the image pixels 

 ( )
m n

i=1 j=1

1MI = I i. j
mn∑∑  (5)

4. Measure of luminance index (MLI): this is the average 
ratio of the enhanced image to the original image

 e oMLI = MI(I ) / MI(I )  (6)
5. Measure of Contrast Improvement Index (CII): this 

index is the enhanced contrast to the original contrast 
ratio

 enhanced

original

C
CII = . C = (r - b) / (r + b)

C
 (7)

 R is the average gray level value of the foreground and 
b is the average gray level value for the background.

6. Contrast difference (CD): Imax and Imin are the 
maximum and minimum pixel intensities

 max minCD = I - I  (8)

7. Standard deviation (SD)
8. Measure of contrast index (MCI): this ratio is the 

increased SD compared to the original image. The SD 
is defined as follows:

 e

o

I
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I
σ
σ
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9. Mean square difference (MSD): Ie and Io are the intensity 
of the enhanced and original images, respectively

 ( )
m n

2
e o

i=1 j=1

1MSD = I - I
mn∑∑

 (10)

10. Peak enhancement ratio to the original image (PEOIR):

 
2

max
10

I
PEOIR = 10log ( )

MSD
 (11)

The best fitness value is chosen during the selection process, 
and this results in the best chromosome. Chromosomes are 
only retained if they pass the fitness test. The chromosomes 
with the highest fitness value are then substituted for those 
with the lowest fitness value. This step will continue for 
the N number of C chromosomes.
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To achieve the optimal fit, iterations are crucial. The best 
fit, or high‑contrast original picture, expresses the ratio 
of the input light intensity of the image pixels to the 
output light intensity of the image pixels. As a result, the 
algorithm’s halting criterion is based on the maximum 
number of iterations. The program ends after obtaining 
the chromosome with the highest fitness score. As a result, 
only one chromosome, which has all of the components for 
the cDNA MAI sites, is left at the end. In the development 
of the enhanced image, the data from the chromosome are 
employed as the best weights.

Reduction of artifacts using morphology

Mathematical morphology is focused on finding and 
tracking small noises in the image, and they operate 
based on the structural characteristics of objects with low 
computing time. In cDNA MAIs, small artifact pixels 
are considered holes due to their small area. Hence, 
morphological filters have a good result in removing these 
noises. In this article, different morphological operators are 
combined to achieve desirable performance in contrast to 
MAIs. For this purpose, the following method is suggested:

In this method, at first, the bright areas resulting from the 
white top hat transform (WTHT) are added to the original 
image, and the dark areas resulting from the black top hat 
transform (BTHT) are subtracted from it. With this method, 
in addition to eliminating small noises in the foreground, 
the contrast between the spots and the background is also 
increased.[20] If the input image is defined as MI (xh, yv), 
these steps are applied to the images as follows:

( ) ( ) ( )( )
( )

h v h v h v

h v

D x .y = MI x .y + WTHT x .y

-BTHT x .y
 (12)

Hence, BTHT(Xh.Yv) and WTHT(Xh.Yv)  are the 
images obtained by applying bottom‑hat and top‑hat 
transformations, respectively. This method will be called 
the Denoising method in the rest of the article.

In this article, the proposed morphological method will be 
applied separately to all datasets and then combined with 
the GA and considered as one of the proposed methods of 
the article. In the results section, the combination of the 
GA with this method is referred to as GA + Denoising.

Gridding

The process of determining the location of spots is defined 
as gridding. Most microarray gridding methods use 
semiautomatic geometric techniques or complex methods 
that are computationally expensive. Since typical MAIs 
contain hundreds or thousands of spots, a practical gridding 
method should be fully automated, fast, and simple.[21] In 
this article, gridding is proposed based on the maximum 
interclass variance,[22] which is carried out in the following 
steps:
1. Calculation of vertical or horizontal projection signals

2. Filtering the projection signal using morphological 
reconstruction

3. Finding the optimal threshold using the largest interclass 
variance

4. Obtaining vertical or horizontal grid lines according to 
thresholding

5. Calculating the coordinates of the final vectors H and V 
for all grid lines

6. Determining the number of horizontal grid lines (h) and 
the number of vertical lines (v).

Experimental Results
This section aims to present the results of the proposed 
method and demonstrate their effectiveness in improving MAI 
contrast. In this section, the results will be presented in two 
sections. In the first part, the results related to the proposed 
method for CE are discussed, and in the second part, the 
effect of the proposed CE method on gridding is stated. The 
proposed algorithms are implemented on 3 datasets and the 
results of these datasets are compared with each other.

Table 2 shows the contrast values calculated based on 
the application of the proposed methods for the original 
images in 3 datasets and also for the contrast‑enhanced 
images with the proposed methods. A sample image is 
randomly selected from each dataset as the original image 
representing that dataset, and then, the contrast values are 
calculated. For a better comparison, the obtained contrast 
values are shown as a graph in Figure 4.

According to Table 2 and Figure 4, it can be concluded 
that the GA alone increases the contrast of the images to a 
great extent, but removing small artifacts helps to enhance 
the contrast more efficiently. Because these artifacts have 
uncertain intensity values when they disappear, they lose 
their effect on calculating the contrast and improving it, and 
as a result, they do not cause errors in the CE algorithm. 
Therefore, it can be seen that their combination with the 
GA has been very efficient. For example, in the DeRisi 
dataset, the contrast of the original image is 8.23, and the 
GA increases this value to 29.39, which is a significant 
improvement. By applying the GA + Denoising method, 
the contrast value becomes 33.80. As can be seen, the 
GA + Denoising method causes more improvement in the 

Table 2: The contrast of the dataset’s images with the 
proposed contrast enhancement methods

Datasets Methods Proposed methods
Original 

image
AHE[6] M‑DHE[9] GA GA + 

Denoising
SMD 0.82 2.95 10.92 12.46 12.75
DERISI 8.23 19.60 28.46 29.39 33.80
GMRCL 3.24 13.48 32.40 31.46 42.91
SMD – Stanford Microarray Database; GMRCL – Genomic medicine 
research center laboratory database; AHE – Adaptive histogram 
equalization; M‑DHE – Multi‑decomposition histogram equalization; 
GA – Genetic algorithm; DERISI – Joe DeRisi's individual dataset
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contrast of the images compared to the GA method alone, 
and this increase is especially significant in SMD and 
GMRCL datasets.

To investigate the performance of the proposed algorithms, 
all datasets are also enhanced with the common AHE 
algorithm[6] and the M‑DHE.[9] The contrast values of all 
datasets enhanced by the AHE method are lower than the 
values related to the proposed methods. However, M‑DHE 
results in SMD and DeRisi datasets are close to GA results. 
In the GMRCL dataset, it has a higher than GA but is still 
lower than the value obtained by the proposed method. 
This result shows that the proposed methods are more 
efficient in improving all types of MAIs. For example, in 
the SMD dataset, the contrast of the original image is 0.82, 
which increases to 12.46 and 12.75, with the application 
of GA and GA + Denoising methods, respectively. This is 
while, the AHE and M‑DHE only increase the contrast to 
2.95 and 10.92, respectively, which confirms the advantage 
of the proposed methods to the common ones in the CE.

To select the most efficient CE methods more accurately, 
in addition to the contrast values, the evaluation indices 

introduced for the fitness function of the GA in section 2 are 
considered. These indices include ME, MLI, MI, contrast 
improvement ratio (CIR), CII, and contrast per pixel (CPP). 
Table 3 shows the values of these indices when applying 2 
proposed methods for 3 datasets. The highest values of the 
indices for each of the datasets are bolded in the table.

Out of the 17 bolded values in Table 3, 8 indices are 
related to the application of the GA method and 9 indices 
are for the GA + Denoising method. Furthermore, the GA 
method alone performs the best in the SMD and DeRisi 
datasets, while the GA + Denoising method shows its best 
performance in the GMRCL dataset.

The CPP values in Table 3 show that in the SMD and 
DeRisi datasets, the value of GA is the highest. This index 
is usually used to measure image quality by calculating the 
contrast value of each pixel. Hence, although the contrast 
value of GA for this dataset is lower than GA + Denoising, 
it can maintain the image quality better. MI and MLI 
indices are also the highest for these 2 datasets with the 
GA method. Since MI is the average intensity of all pixels 
in the image and MLI is the ratio of the CE image to the 
original image, it is used as a luminance index. Hence, 
when the luminance of the image is important in improving 
the contrast, we can use GA for this dataset.

Table 3: Values of contrast detection indices for the 
datasets

Indices Datasets
SMD DERISI GMRCL

Methods
GA GA + 

Denoising
GA GA + 

Denoising
GA GA + 

Denoising
CPP 11.27 5.94 5.16 2.96 3.53 3.63
CII 15.18 15.53 3.57 4.11 9.71 13.24
CIR ‑ ‑ 1.46 3.12 1.36 1.31
MI 88.43 45.59 40.79 23.18 28.23 29.04
MLI 53.76 27.72 2.90 1.65 11.63 11.97
ME 1.42 1.81 4.37 2.59 1.86 2.09
SMD – Stanford Microarray Database; GMRCL – Genomic medicine 
research center laboratory database; GA – Genetic algorithm; 
MLI – Measure of luminance index; ME – Measure of entropy; 
CPP ‑ Contrast per pixel; CII ‑ Contrast improvement index; CIR 
‑ Contrast improvement ratio; MI ‑ Mean intensity; DERISI ‑ Joe 
DeRisi's individual dataset
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Figure 4: Comparing the contrast of the dataset’s images with the proposed 
CE methods, (a) Bar chart, (b) Boxplot
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Figure 7: Enhanced images of 3 datasets with the proposed contrast 
enhancement methods and comparison with adaptive histogram 
equalization method. GA – Genetic algorithm
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Figure 6: Chart of the CII index values of the dataset’s images with the 
proposed CE methods. AHE – Adaptive histogram equalization, CE – Contrast 
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Figure 8: Gridding on the original and enhanced images of the Genomic 
Medicine Research Center Laboratory dataset with the proposed methods. 
GA – Genetic algorithm
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The ME index, which is an index of entropy and its high 
value indicates the higher resolution of the image, has the 
highest value in the DeRisi dataset with the GA method 
and in the SMD dataset with the GA + Denoising method. 
This result can also be seen in Figure 5.

Finally, the CII and CIR indices, which are the CE index 
and the CE ratio, can help us decide on the best method.[23] 
For this purpose, the CII index values for 3 datasets with 2 
proposed methods have been compared with each other in 
Figure 6. According to this figure and the values in Table 2, 
it can be concluded that the GA + Denoising method works 
better than other methods in CE for all datasets. Based on 
the values of the indices in Table 3, the best value of the 
fitness function obtained is given in Table 4. These values 
express the ratio of the input light intensity of the image 
pixels to the output light intensity of the image pixels, the 
higher the value, the better the CE.

Figure 7 shows the performance of the proposed CE 
methods visually, by placing the sample images of each 
dataset along with their enhanced images using the 
proposed methods. In this figure, it can be seen that using 
the proposed methods, the contrast of the image has 
increased to a great extent and a large number of spots 
becomes visible. It can be seen that in method GA alone, in 
addition to the increase in the contrast of spots, the contrast 
of small artifacts is also increased and this can affect the 
accuracy of gridding and segmentation in the next steps. 
However, in the application of the GA + Denoising method, 
by reducing the artifacts, we can see a more accurate 
resolution of the spots, and the noises will cause much 
fewer errors in extracting the expression level of genes.

As mentioned earlier, the purpose of improving contrast is 
to improve image quality to increase the accuracy of MAI 
processing steps, i.e., gridding. Therefore, according to 
the results obtained from the previous section, the results 
of gridding on the enhanced images obtained with the 
proposed methods are compared to confirm the efficiency 
of CE. This step uses the proposed algorithm for gridding 
in section 2. Figure 8 shows the result of gridding for a 
randomly chosen sample image of the GMRCL dataset.

The gridding on the original image is unfitting due to its 
low contrast. On the other hand, gridding on enhanced 
images by GA has low accuracy due to background noise. 
This is while the GA + Denoising method provides accurate 
gridding, and the resolution of spots is even better when 
using the GA + Denoising method. However, gridding on 

the GA‑enhanced image fails due to artifacts, which results 
in unrecognizable gridding.

To clarify this issue better, two poor‑quality images are 
randomly selected from the datasets and the gridding 
algorithm is applied to them. The gridding results are 
shown in Figure 9. In this figure, the first column shows the 
Pheromone y744n32 subarray from the SMD dataset and 
the second column shows the 1313_ch1_OD730 subarray 
from the DeRisi dataset. Obviously, all the gridding results 
are unsuccessful in images without CE, but all of them 

Table 4: The best value of the fitness function in the 
genetic algorithm

Datasets SMD DERISI GMRCL
Best fitness 17.92 23.17 16.19
SMD – Stanford microarray database; GMRCL – Genomic medicine 
research center laboratory database; DERISI – Joe DeRisi's individual 
dataset
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are correct when applying the proposed CE method. For 
example, the correct grid lines for the image in the first 
column for contrast‑enhanced mode are 15 horizontally 
and 14 vertically. However, for the mode without CE, 12 
lines are horizontal and 10 lines are vertical, which means 
that several lines are lost. Furthermore, in the images of the 
second column, which are related to the DeRisi dataset, the 
effect of CE on the grid can be seen. Hence, before the CE, 
the spots and their positions are unclear, but after the CE, 
the spots and their location can be achieved regularly and 
are ready for segmentation. These experiments confirm that 
low image contrast greatly affects MAI gridding.

Conclusion
Increasing image contrast is one of the most important 
preprocessing operations in image processing, and therefore, 
failure in this step leads to the shortcomings of subsequent 
image‑processing steps. Furthermore, cDNA MAIs have a 
high priority among various image processing applications 
due to their great importance in cancer diagnosis. Some 
of the attractive methods for increasing the image contrast 
are metaheuristic methods, but so far, these methods have 
not been used to enhance the contrast of MAIs. Therefore, 
the main goal of the proposed method is to use the GA as a 
metaheuristic method to enhance the contrast of MAIs. In 
addition, in this paper, an efficient method for better image 
quality enhancement is proposed. In this method, one type of 
mathematical morphology was used to eliminate small artifacts 
as source noises, and their effect on contrast was investigated 
in combination with a GA. To evaluate the proposed methods, 
a total of 2 methods were implemented on 3 datasets of SMD, 
DeRisi, and GMRC. The results of the presented methods were 
evaluated with 6 evaluation indices ME, MLI, MI, CIR, CII, 
CPP, and the contrast value obtained by the method presented 
in the article. The proposed methods cause a significant increase 
in all indices, and by comparing the results for different 
datasets, a suitable method for improving the contrast can be 

chosen for each dataset. To show the effect of CE, images with 
and without CE were gridded, and the obtained results confirm 
the role of CE in the next stages of MAI processing.
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