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Abstract: JC polyomavirus (JCPyV) is a neuroinvasive pathogen causing a fatal, demyelinating
disease of the central nervous system (CNS) known as progressive multifocal leukoencephalopathy
(PML). Within the CNS, JCPyV predominately targets two cell types: oligodendrocytes and astro-
cytes. The underlying mechanisms of astrocytic infection are poorly understood, yet recent findings
suggest critical differences in JCPyV infection of primary astrocytes compared to a widely studied
immortalized cell model. RNA sequencing was performed in primary normal human astrocytes
(NHAs) to analyze the transcriptomic profile that emerges during JCPyV infection. Through a
comparative analysis, it was validated that JCPyV requires the mitogen-activated protein kinase,
extracellular signal-regulated kinase (MAPK/ERK) pathway, and additionally requires the expres-
sion of dual-specificity phosphatases (DUSPs). Specifically, the expression of DUSP1 is needed to
establish a successful infection in NHAs, yet this was not observed in an immortalized cell model
of JCPyV infection. Additional analyses demonstrated immune activation uniquely observed in
NHAs. These results support the hypothesis that DUSPs within the MAPK/ERK pathway impact
viral infection and influence potential downstream targets and cellular pathways. Collectively, this
research implicates DUSP1 in JCPyV infection of primary human astrocytes, and most importantly,
further resolves the signaling events that lead to successful JCPyV infection in the CNS.

Keywords: JC polyomavirus; progressive multifocal leukoencephalopathy (PML); astrocytes; RNA
sequencing; bioinformatics

1. Introduction

JC polyomavirus (JCPyV) is a human-specific virus that infects astrocytes and oligo-
dendrocytes, leading to the fatal, demyelinating disease, progressive multifocal leukoen-
cephalopathy (PML) [1–5]. JCPyV infects most of the population, causing an asymptomatic
persistent infection in the kidneys of healthy individuals [6–10]. However, during im-
munosuppressive events, the virus can become reactivated in the central nervous system
(CNS), infecting glial cell types [9,11,12]. If left untreated, PML can be fatal within a
few months [13]. Individuals most at risk for this disease include those undergoing im-
munomodulatory therapies, such as natalizumab for multiple sclerosis (MS) or people
who are HIV positive [1,14–16]. While there have been advancements in treatment, which
address the underlying immunosuppression aligned with supportive care, resulting in
improved survival rates, a sufficient cure for the disease is still lacking [16–19]. Beyond
these therapies, research has demonstrated that JCPyV encodes microRNAs (miRNAs) [20].
Specifically, miR-J1-5p, a mature miRNA produced in the JCPyV infectious cycle and
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expressed in PML tissue, may have a repressive role in viral replication [21,22]. Thus,
continuing to uncover the molecular basis of JCPyV infection can potentially uncover new
therapeutic approaches for disease treatment and diagnostic tools for PML [21,22].

Limited approaches to studying JCPyV have resulted in a reliance on in vitro cell cul-
ture models for advancements in the mechanistic understanding of JCPyV infection [23–28].
Specifically, the most widely used cell model of JCPyV infection is SVG-A cells (referred
herein as SVGAs), immortalized human fetal glial cells, mostly composed of astrocytes,
that constitutively express SV40 Large T antigen (T Ag) to increase viral replication [29–31].
Our laboratory recently characterized JCPyV infection in primary normal human astrocytes
(NHAs) as a tool to understand the infectious cycle [32,33]. When JCPyV infection in NHAs
was compared to SVGAs, it was discovered that JCPyV infection was delayed in primary
astrocytes, mostly due to the inadequate production of JCPyV Large T Ag compared to
levels of this viral protein in cells immortalized with SV40 Large T Ag [32]. This research
corroborated the observations of Kondo et. al. in a chimeric mouse model; astrocytes
were readily infected, but expressed low levels of the late viral gene product VP1 [5,33–35].
Further, we demonstrated that the immortalization of NHAs with SV40 Large T Ag, termed
NHA-Ts, restored levels of VP1 expression comparable to JCPyV infection in SVGAs [32].
These results illustrate that expression of SV40 T Ag greatly contributed to the delayed
progression in JCPyV infection observed in NHAs when compared to SVGAs [32]. How-
ever, expression of SV40 Large T Ag to immortalize cells and enhance JCPyV replication
may also dysregulate the cell cycle and activate cellular signaling pathways, confounding
results in immortalized cell types [36,37].

Viral reprogramming of cells is complex and challenging to assess through targeted
approaches and may be further complicated by cell-type dependent differences. To date,
only a few studies report a complete cellular transcriptomic profile of cells infected with
JCPyV [34,38,39]. In two earlier studies, a microarray analysis was performed in primary
human astrocytes [38] and in cells differentiating from human multipotential human
CNS progenitor cells (NPCs) into progenitor-derived astrocytes (PDAs) [34]. The study
in primary human astrocytes revealed that many transcripts upregulated upon JCPyV
infection encoded proteins involving cellular proliferation, signaling pathways, such as
the transforming growth factor β (TGF-β) receptor 1, and other regulatory events, such
as inflammatory responses [38]. They validated the gene expression data by specifically
examining genes involved in the cell cycle or cellular proliferation, demonstrating the
upregulation of these proteins at 5 or 15 days post-infection by western blot [38]. While
these earlier studies established a foundation for understanding gene expression changes
in JCPyV-infected cells, the majority of JCPyV studies have been performed in SVGAs.

Previous research established that JCPyV uses the cellular, mitogen-activated protein
kinase, extracellular signal-regulated kinase (MAPK/ERK) pathway to reprogram the cell
and support viral infection [40,41]. The MAPK/ERK pathway is important in determining
cell fate in proliferation, differentiation, and survival [42]. It was determined that both
SVGAs and a primary kidney cell line, renal proximal tubule epithelial cells (RPTECs)
required ERK phosphorylation for infection as U0126, an inhibitor of the kinase MEK,
upstream of ERK, reduced infection in both cell types [40]. It was further validated that
kinases in this pathway, BRAF, CRAF, MEK1, and MEK2, were all critical for infection in
SVGAs [43].

Other viruses activate the MAPK/ERK pathway to reprogram cells and support vi-
ral infection [40,44–46]. However, there has been little research to understand how the
negative regulatory mechanisms of the MAPK/ERK pathway may play in viral infection,
including the function of dual specificity phosphatases (DUSPs). DUSPs are made up of
a family of protein tyrosine phosphatases that strongly regulate and deactivate MAPK
signaling [47–50]. Typical DUSPs, or phosphatases that contain a MAP kinase-binding
(MKB) motif or the kinase-interacting motif (KIM), are dynamic proteins further classified
by their subcellular cytoplasmic and/or nuclear localization [51,52]. One of the most
well-studied DUSPs in glial cells is DUSP1 [47]. This phosphatase is found in the nucleus
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and binds to JNK, p38, and ERK1/2, leading to the dephosphorylation and inactivation of
these kinases [50]. Interestingly, cellular levels of ERK can be sustained by targeting DUSP1
for degradation via the ubiquitin/proteasome pathway [53–55], further highlighting the
complexity of the regulatory processes of the MAPK/ERK pathway. DUSPs, specifically
DUSP1, have been implicated in other viral infections as well, including hepatitis C virus
(HCV), vaccinia virus (VACV), human respiratory syncytial virus (RSV), and Sendai virus
(SeV) [56–58]. Through ERK phosphorylation, DUSP1 is upregulated and stabilized, further
promoting viral replication and release during VACV infection [56]. Moreover, DUSP1 may
also be differentially expressed during coronavirus infection [59], highlighting the impor-
tance of this protein during infection across many viral families. Conversely, DUSP1 is also
known to be involved in the inflammatory response [60], as research has demonstrated
that knockdown of the protein can reduce HCV infection, as it promotes the induction of
interferon stimulated genes (ISGs) [57]. Altogether, research has demonstrated the role of
DUSP1 in the MAPK/ERK pathway and the influence it has on alternative pathways can
either enhance or reduce viral infection.

The purpose of this study was to elucidate the cellular pathways, with a particular
focus on the MAPK/ERK pathway and the regulatory mechanisms involved during JCPyV
infection of primary astrocytes. This was established through a comparative approach,
using RNA sequencing (RNA-seq), bioinformatics analysis, and complementary cell-based
assays to define the host transcriptome profile in primary astrocytes during JCPyV infection.
These data further validate the importance of ERK1/2 in JCPyV infection, reveal novel
regulatory roles of the MAPK/ERK pathway, and highlight the importance of DUSP1
expression during JCPyV infection in primary astrocytes.

2. Materials and Methods
2.1. Cells and Viruses

The maintenance and description of normal human astrocytes (NHAs) (passage 1 [P1])
were previously reported [32]. Briefly, NHAs were cultured in astrocyte growth medium
and supplemented with SingleQuots supplements and 1% penicillin–streptomycin (P–S).
The donor was a 19-week-gestation female with no detected levels of HIV, hepatitis B virus
(HBV), or hepatitis C virus (HCV). All experiments were performed at low passages (P2
to P10). SVGAs were generously provided by the Atwood Laboratory (Brown University,
Providence, RI, USA) and cultured in complete minimum essential medium (MEM) (Corn-
ing, Corning, NY, USA), with 10% fetal bovine serum (FBS), 1% P–S and 0.1% Plasmocin
prophylactic (InvivoGen, San Diego, CA, USA). The generation and maintenance of NHA-
Ts are previously described [32]. All cell types were grown in a humidified incubator at
37 ◦C with 5% CO2.

The generation and production of either lysate or purified JCPyV strains of Mad-
1/SVE∆ were described previously [61,62], and the strain was kindly provided by the
Atwood laboratory (Brown University).

2.2. siRNA Treatment

NHAs and NHA-Ts were plated for ~70% confluency, while SVGAs were plated
to ~50% confluency in 96 well plates and transfected with siRNAs specific for ERK1/2,
epidermal growth factor receptor (EGFR) control (Cell Signaling Technology, Danvers,
MA, USA), or DUSP1 (Santa Cruz Biotechnology, Dallas, TX, USA). The EGFR control was
used as a non-specific siRNA in parallel with either ERK1/2 or DUSP1 siRNA. A final
concentration of 1 pmol of siRNA/well of ERK1/2, and a final concentration of 4 pmol of
DUSP1 siRNA/well was used with RNAiMax transfection reagent (Invitrogen, Waltham,
MA, USA) by mixing transfection complexes in Opti-MEM, reduced serum medium (Gibco,
Waltham, MA, USA) at RT for 7 min. Complexes were added to the cells (10 µL/well)
and incubated at 37 ◦C for 72 h for the ERK1/2 siRNA and 24 h for the DUSP1 siRNA.
These timepoints resulted in the greatest level of knockdown for each protein, respectively.
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Protein reduction was measured by ICW assay [43,63] or cells were infected with JCPyV
following treatment of siRNA.

2.3. JCPyV Infection

NHAs, SVGAs, and NHA-Ts were seeded into 96-well plates with approximately
10,400 cells/well to achieve ~70% confluency at the time of infection. Cells were infected
(multiplicities of infection [MOIs] as indicated in the figure legend) with 42 µL/well of
MEM containing 10% FBS, 1% P–S, and 0.1% Plasmocin prophylactic, at 37 ◦C for 1 h. After
the initial 1 h, cells were fed with the respective medium at 100 µL/well and incubated
at 37 ◦C for the duration of the infection. Experiments in which the percent infection
was quantified following treatment. Cells were fixed at 48 h and stained by indirect
immunofluorescence for the viral protein, T Ag.

2.4. Indirect Immunofluorescence Staining for Quantitation of JCPyV Infection

Following infection, all cell types were stained for T Ag at room temperature (RT).
NHAs, SVGAs, and NHA-Ts were fixed with 4% paraformaldehyde (PFA) for 10 min
and washed with 1× phosphate-buffered saline (PBS) with 0.01% Tween (PBS-T). Cells
were permeabilized for 15 min using PBS-0.5% Triton X-100 and then blocked with PBS-T
containing 10% goat serum for 45 min. Cells were then stained using antibodies specific
for viral proteins at RT for 1 h (Table 1). Following 1◦ antibody incubation, cells were
washed three times in PBS-T and counterstained with a 2◦ antibody, specifically an anti-
mouse Alexa Fluor 594 (Table 1) for 1 h. Cells were subsequently washed with PBS-T and
counterstained using DAPI (4′,6-diamidino-2-phenylindole) at RT for 5 min. Cells were
washed with PBS-T twice and stored in PBS-T at 4 ◦C until further analysis.

Table 1. Antibodies used in immunofluorescence and ICW assays.

Protein 10 Antibody (Dilution, Manufacturer) 20 Antibody (Dilution, Manufacturer)

JCPyV T Ag PAB962 (1:5, hybridoma) anti-mouse Alexa Fluor 594 (1:1000, Thermo
Fisher Scientific)

Total ERK (p44/42 MAPK) 4695S (1:500, CST)
anti-rabbit IRDye 800CW (1:10,000, LI-COR)Phospho-p44/42 MAPK (ERK1/2)

(T202/Y204) 9101S (1:750, CST)

Total DUSP1 sc-373841 (1:75, Santa Cruz
Biotechnology) anti-mouse IRDye 800CW (1:10,000, LI-COR)

CST: cell signaling technology; ICW: in-cell western.

To visualize the cells expressing the nuclear, viral protein T Ag, a Nikon Eclipse Ti
epifluorescence microscope (Micro Video Instruments, Inc., Avon, MA, USA) equipped
with a 20× objective was used. Percent infection of each well was quantified by counting the
T Ag-positive cells over the total number of DAPI-positive cells in five fields of view/well.
The DAPI-positive cells were determined by using a binary algorithm in the Nikon NIS-
Elements Basic Research software (version 4.50.00, 64 bit). The algorithm created an
accurate number of cells in each field by separating them based on intensity, diameter, and
circularity [32,40,43,64,65].

2.5. ICW Assay and LI-COR Quantification

Protein expression measuring total or phosphorylated ERK1/2 and total DUSP1 were
performed using an ICW assay [43,63]. Following siRNA treatment, cells were fixed in
4% PFA, washed with PBS-T and permeabilized with 1× PBS-0.5% Triton X-100 at RT
for 15 min. Cells were blocked with Tris-buffered saline (TBS) Odyssey buffer (LI-COR,
Lincoln, NE, USA) at RT for 1 h. Cells were stained with the appropriate antibody (dilutions
indicated in Table 1) in TBS Odyssey blocking buffer at 4 ◦C for ~16 h while rocking. The
next day, cells were washed with PBS-T three times and incubated with the corresponding
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secondary antibody in Table 1 and CellTag (1:500, LI-COR) for 1 h. Cells were washed with
PBS-T, aspirated and the bottom of the plate was cleaned with 70% EtOH prior to scanning.
Plates were weighted down using a silicone mat (LI-COR) and the lid was removed before
imaging, using the LI-COR Odyssey CLx infrared imaging system to detect both the
700- and 800-nm intensities. Plates were read at medium quality, at 42-µm resolution,
with a 3.0 mm focus offset. Once scanning was complete, the 700- and 800-nm channels
were aligned and ICW analysis was performed in Image Studio software (version 5.2).
Quantification was determined by subtracting the background from the 800-nm channel
(secondary antibody alone) from each well, in which the protein of interest was being
measured. Next, the ratio of the 800-nm channel (protein of interest) signal to the 700-nm
channel (CellTag) in each well was determined.

2.6. Relative Quantification of DUSP1 Transcript Levels by qPCR

NHAs, SVGAs, and NHA-Ts were plated to 70% confluence in 96-well plates. The
medium was removed and cells were infected with JCPyV (MOI = 0.1 FFU/cell (the
same virus prep used in the RNA-seq infection)) in 42 µL of the respective cell medium
and incubated at 37 ◦C for 0, 24, 48, and 96 h. RNA was extracted as outlined previ-
ously and was converted to cDNA with the iScript cDNA synthesis kit (Bio-Rad) using
1 µg of RNA. Primers for DUSP1 (F: GGATACGAAGCGTTTTCGGC, R: AGAGGTCG-
TAATGGGGCTCT) [66] and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were
used as housekeeping genes [67]. After creating the master mix of qPCR reagents with the
iQ SYBR green supermix (Bio-Rad, Hercules, CA, USA), 150 nM of each primer set, 100 ng
of cDNA, along with the master mix was added to each well of a 96-well PCR plate, to a
total volume of 10 µL. The qPCR reaction settings are as follows: 95 ◦C for 5 min followed
by a 40-cycle setting at 95 ◦C for 30 s, 55 ◦C for 1 min, and 72 ◦C for 1 min, followed by
95 ◦C for 30 s, 55 ◦C for 30 s, and lastly 95 ◦C for 5 min. A melting curve was added at the
end to determine primer specificity for each sample.

2.7. Preparation of Samples for RNA-Seq and RNA-Seq Analysis

NHAs and SVGAs were plated to 70% confluence in a 24-well plate. Medium was
removed and cells were infected with JCPyV (MOI = 0.1 FFU/cell) in 200 µL or mock-
infected with an empty cell lysate preparation control performed in triplicate wells for
each treatment. Cells were incubated at 37 ◦C for 1 h in the respective medium and
following infection the cells were fed with 1 mL of media and incubated at 37 ◦C for 24,
48, and 96 h. At each time point, cells were either fixed and stained for T Ag or 200 µL
of TRIzol reagent (Invitrogen, Waltham, MA, USA) was added to each well and stored
in the −20 ◦C. After validating similar levels of infection in NHAs and SVGAs at each
timepoint by indirect immunofluorescence assay, cells in TRIzol reagent were removed
from the−20 ◦C storage and total RNA was extracted from each sample with the Direct-zol
RNA kits according to the manufacturer’s protocol (Zymo Research, Irvine, CA, USA).
RNA quantification was determined by using the NanoDrop One, both mRNA libraries
were prepared, and samples were sequenced at Beckman Coulter Genomics (Genewiz,
South Plainfield, NJ, USA). Remaining RNA was converted to cDNA and both T Ag and
VP1 transcript was measured by qPCR as previously reported [32] to validate transcript
levels at each time point.

Strand-specific RNA-seq was prepared, and the paired-end reads were sequenced on
an Illumina HiSeq with 20 to 30 million reads per sample with poly(A) selection, using
next generation sequencing technology. Quality control was performed on the sequenced
reads using FastQC (Version 0.11.8) (http://www.bioinformatics.babraham.ac.uk/projects/
fastqc/, accessed on 24 April 2019) and reads were trimmed using Trimmomatic (Version
0.39) [68]. Trimmed reads were then aligned to the human genome assembly (Version
GRCh38) using HISAT2 [69] and read counts per gene were generated using the Ensembl
GTF file (Ensembl version 103) and HTSeq (Version 0.13.5) [70]. The read counts per gene
were analyzed using RStudio (version 1.2.1335) and R/edgeR (version 3.30.3) [71].

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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2.8. STRING Interaction Database, GO Enrichment Analysis, and PANTHER Pathway Analysis

Interaction of genes, including genes in the MAPK/ERK cascade, were visualized
using STRING (http://string-db.org, accessed on 28 May 2019). STRING is a database that
illustrates the direct and indirect, or the physical and functional association, respectively,
of two or more proteins [72]. Interactions of genes were defined as indicated in the
figure legends. Gene networks were imported into Cytoscape (Version 3.8.2) to merge
information from the R/EdgeR analysis. Genes were also selected based on the EGF-EGFR-
RAS-ERK signaling pathway (ID: N00001) from the Kyoto Encyclopedia of Genes and
Genomes (KEGG) database [73–75] by obtaining the gene symbols and then converting
them to Ensembl Gene IDs using BioMart [76]. Lastly, the list of genes from the STRING
database were used for a Gene Ontology enrichment analysis using PANTHER [77]. The
PANTHER pathway terms corresponding to the gene list were visualized using the R
package, GOplot [78].

2.9. Statistical Analysis and Graphing in RStudio

For data that was normally distributed, the two-sample Student’s t test assuming
unequal variances was used to compare the mean values for at least triplicate samples.
However, for data that was not normally distributed, the Wilcoxon signed-rank test was
used to compare the median values for two populations. For comparing more than two
samples the one-way analysis of variance (ANOVA), or the Kruskal–Wallis test, was
used depending on the distribution of the data. If the Kruskal–Wallis test determined a
significant difference between groups, the pairwise Wilcoxon rank-sum test, along with
the Bonferroni adjustment, was used to determine the pair of groups that were different.
Distribution of the data was determined by the Shapiro–Wilk’s test and a quantile–quantile
plot (Q–Q plot), a plot to illustrate normality of the data, in RStudio (version 1.2.1335). All
statistical analyses were performed in RStudio, other than the Student’s t-test, which was
determined in Microsoft Excel. All statistical analyses referring to the RNA-seq data was
performed using the R/edgeR (version 3.30.3) [71], including the MA plots. All graphs,
including heatmaps were creating using ggplot2 (version 3.3.3) [79].

3. Results
3.1. RNA-Seq Reveals Unique Differential Gene Expression in JCPyV-Infected Primary Astrocytes

RNA-seq was performed to measure gene expression in NHAs that were either mock-
or JCPyV-infected at 24, 48, and 96 hpi, as illustrated in Figure 1A. SVGAs were used as
a reference cell line and to further define cell-type dependent differences that revealed a
delay in JCPyV infection in NHAs [32]. Time points selected were previously identified as
critically different in both early and late JCPyV transcript and protein production in NHAs
compared to SVGAs [32]. Specifically, there was no difference in early gene transcript
between NHAs and SVGAs at 24 hpi, a significant increase in late gene transcript was
only observed in SVGAs at 48 hpi, and VP1 production was more notably produced in
NHAs at 96 hpi [32]. Due to these differences, differential gene expression was determined
for NHAs and SVGAs at each time point. To compare the magnitude of genes that were
differentially expressed from JCPyV infection in NHAs versus SVGAs, a statistical and
expression criterion was established, represented as red points in Figure 1B (unadjusted
p < 0.05 and log2FC > 1 or log2FC < −1). At 24 hpi, 95 genes were upregulated and
21 genes were downregulated in NHAs, versus only 51 genes upregulated and 1123 genes
downregulated in SVGAs (Figure 1B). At 48 hpi, the relationships between genes having a
log fold change above or below one with an unadjusted p value less than 0.05 were reversed
for each cell type: in NHAs, 28 genes were activated and 72 genes were repressed, and in
SVGAs, 25 genes were upregulated and 17 genes downregulated. Finally, the 96 hpi time
point mirrored the relationship found at 24 hpi for both cell types. In NHAs, more genes
were upregulated (301 genes) and only 33 genes were downregulated, versus SVGAs where
286 genes were downregulated and only 34 genes were upregulated at 96 hpi (Figure 1B).
Taken together, these data reveal a pattern of differential gene expression over the course

http://string-db.org
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of JCPyV infection that is uniquely different in primary human astrocytes in comparison to
an immortalized glial cell line.

Figure 1. Whole transcriptome RNA-seq profiles of JCPyV infected primary astrocytes and SVGAs during course of
infection reveal unique differential gene expression in primary cells. (A) Primary, normal human astrocytes (NHAs) and
immortalized glial cells (SVGAs) were either infected with JCPyV (MOI = 0.1 FFU/cell) or mock-infected with a vehicle
control, and the transcriptomic profile was determined at 24, 48, and 96 hpi. (B) RNA-seq data were normalized with
the read CPM method and MA plots were generated from DEseq2 analysis at each timepoint representing the log2 fold
changes of JCPyV-infected NHAs versus mock-infected NHAs, or JCPyV-infected SVGAs versus mock-infected SVGAs.
Black points are genes from the R/EdgeR analysis. Red points represent genes with a logFC greater or less than 1 and
an unadjusted p value < 0.05. The blue lines in each plot represent the logFC = 1 and logFC = −1; FC: Fold-change; CPM:
Counts per million.
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3.2. The MAPK/ERK Pathway Is Differentially Expressed in NHAs during JCPyV Infection

The MAPK/ERK pathway has been previously established to regulate JCPyV infection
in both SVGAs and primary RPTECs [40,41,43]. This regulatory network is influenced
by numerous genes upstream and downstream of the pathway. To further elucidate
the differential gene expression observed in Figure 1B, genes within the network of the
MAPK/ERK pathway were analyzed (Figure 2). These genes were determined using
the KEGG database [73–75], in the EGF-EGFR-RAS-ERK signaling pathway (ID: N00001).
The interactions of these genes were determined using the STRING interaction database
(Figure 2A) and examined in the RNA-seq data to determine the cell-specific expression
patterns, examining both the log fold change and unadjusted p value for each gene in NHAs
and SVGAs at 24 hpi (Figure 2B). In NHAs, there were eight genes that had a negative
log fold change, and SOS1 (SOS1) had an unadjusted p value threshold of less than 0.05
(Figure 2A, left). In the MAPK/ERK cascade specifically, HRAS (HRAS), MAP2K2 (MEK2),
and MAPK3 (ERK1) had a positive log fold change, however only HRAS (HRAS) and
MAP2K2 (MEK2) had an unadjusted p value less than 0.1. This contrasted with SVGAs,
where HRAS (HRAS), MAP2K2 (MEK2), and MAPK3 (ERK1) had a negative fold change
and a p value less than 0.05 for HRAS (HRAS) and MAP2K2 (MEK2) (Figure 2A, right).
To understand how the MAPK/ERK cascade changes over the course of JCPyV infection,
the log fold change of these genes for each time point in both NHAs and SVGAs was
determined and illustrated as a heatmap in Figure 2B, faceted by p value to further reveal
significance. The differing gene expression observed at 24 hpi between NHAs versus
SVGAs was also apparent at 48 and 96 hpi. This pattern was most pronounced with
the following genes: HRAS (HRAS), MAP2K2 (MEK2), and MAPK3 (ERK1). At 48 hpi,
many genes were not differentially expressed in SVGAs (Figures 1B and 2B), which is
most likely attributed to the JCPyV infectious cycle switching from early to late gene
production [32]. However, the expression of genes during JCPyV infection in NHAs, most
notably of MAP2K2 (MEK2) demonstrated a significant difference in fold change from the
previous 24-h time point (Figure 2B). Collectively, these data illustrate that the temporal
patterns of the genes in the MAPK/ERK pathway during JCPyV infection in NHAs is
distinct from and contrary to the MAPK/ERK gene expression pattern in SVGAs, and this
distinction can be expanded to the genes surrounding the MAPK/ERK cascade, specifically
at 24 hpi.

3.3. JCPyV Requires ERK1/2 for Successful Infection in NHAs

Many genes within the MAPK/ERK cascade had a p value > 0.10, and thus, it was
of interest to further characterize whether there were differences in the utilization of the
MAPK/ERK cascade in NHAs in comparison to SVGAs [40,41,43]. To accurately compare
the differences observed in the MAPK/ERK pathway in NHAs and SVGAs, NHA-Ts, which
are NHAs immortalized with SV40 T Ag, were used in parallel with the other two cell
types [32]. ERK1/2, the final kinase in the MAPK/ERK cascade, was targeted with siRNA
in all cell types and subsequently infected with JCPyV at 72 h post siRNA transfection.
Protein knockdown of ERK1/2 was analyzed by in-cell western (ICW) (Figure 3A) and
quantified using LI-COR software (Figure 3B), a technique extensively validated as a
reliable method to quantitate protein expression [43,63,80,81]. When compared to the
EGFR control siRNA, there was a ~70% reduction in ERK1/2 achieved in all cell types at
72 h post-transfection (Figure 3B). Following siRNA treatment, all cell types were infected
with JCPyV, and infectivity was measured at 48 hpi for cells treated with the ERK1/2
siRNA (Figure 3C). Knockdown of ERK1/2 resulted in a decrease in JCPyV infection in all
cell types, although a more appreciable decrease was observed in NHAs, reducing JCPyV
infection by ~80% (Figure 3C). These experiments demonstrated the necessity of ERK1/2
during JCPyV infection in NHAs. When similar levels of knockdown were achieved,
JCPyV infection was more sensitive to ERK1/2 reduction in primary cells compared to
cells transformed with SV40 T Ag.
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Figure 2. The MAPK/ERK1/2 cascade and associated gene networks are differentially expressed in NHAs compared
to SVGAs during JCPyV infection. (A) Genes of the MAPK-ERK1/2 were entered into the STRING interaction database
to determine the protein–protein interactions determined experimentally or from curated databases of the immediate,
surrounding genes within the MAPK/ERK1/2 cascade of NHAs (left) or SVGAs (right). These interactions were defined
as having an interaction score of 0.9 with no more than 10 interactors in the 1st and 2nd shell. Each node (i.e., gene) was
colored based on the log fold change of JCPyV-infected cells to mock-infected cells at 24 h, and the shape of the gene
represents the significance. Arrows point from the source gene to the target gene. Genes colored gray were in the network
but were filtered out of the RNA-seq analysis. (B) Heat map indicates the Log2 fold change of JCPyV-infected cells versus
mock-infected cells of the genes within the MAPK/ERK1/2 cascade faceted by timepoint (24, 48, and 96 hpi) and p value
(p < 0.05, p < 0.10, and p > 0.10).
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Figure 3. ERK knockdown significantly reduced JCPyV infection in NHAs. NHAs, SVGAs, and NHA-Ts were transfected
with ERK1/2 or EGFR (CTL) siRNA. At 72 h post-transfection, cells were fixed for analysis of ERK protein expression (A,B)
or infected (C). (A) ERK1/2 protein expression was determined by in-cell western (ICW), staining for Total ERK1/2 (green)
or CellTag (red). (B) Percentage of protein knockdown was measured by ICW signal intensity values per [(ERK1/2)/Cell Tag
× 100% = % response] within each ICW analysis using LI-COR software. Error bars indicate SD. Student’s t-test was used
to determine statistical significance comparing EGFR (CTL) siRNA-treated cells to ERK1/2 siRNA-treated cells, for each cell
type. *, p < 0.01. (C) Following 3 days post-transfection, cells were infected with JCPyV (MOI = 1.0 FFU/cell) at 37 ◦C for
1 h. Cells were incubated in complete media at 37 ◦C for 48 h and then fixed and stained by indirect immunofluorescence.
Infectivity following ERK1/2 knockdown (C) was determined by counting the number of JCPyV T Ag-positive nuclei
divided by the number of DAPI-positive nuclei for five × 20 fields of view for triplicate samples. Error bars indicate
SD. Student’s t test was used to determine statistical significance comparing EGFR (CTL) siRNA-treated cells to ERK1/2
siRNA-treated cells for each cell type (C). * p < 0.01.

3.4. DUSP1 Transcript Decreases during JCPyV Infection in NHAs and Is Essential in Regulating
the MAPK/ERK Pathway Compared to Immortalized Cells

DUSPs are key regulators in the MAPK/ERK pathway, important for the magnitude,
duration, and spatiotemporal expression patterns of MAPKs [48–50]. Due to the spatial
and temporal regulation in differential gene expression (Figure 1B), specifically within the
MAPK/ERK pathway (Figure 2B), and the implication of DUSPs in viral infection, the role
of these phosphatases was investigated to determine whether they play a role in JCPyV
infection and regulation of the MAPK/ERK pathway in NHAs. RNA-seq data revealed
that the majority of typical DUSPs (i.e., DUSPs that have either the MAP kinase-binding
(MKB) motif or the kinase-interacting motif (KIM)) [51] were upregulated at 24 hpi in
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NHAs compared to SVGAs, including DUSP1, DUSP6, DUSP7, and DUSP8 (Figure 4A).
However, DUSP1 demonstrated an interesting pattern of reduction in NHAs at 48 hpi and
remained lower at 96 hpi, as JCPyV infection progressed (Figure 4A). To validate these
findings, both DUSP1 transcript levels and expression were further evaluated. During the
progression of JCPyV infection, DUSP1 mRNA transcript levels significantly decreased in
NHAs compared to SVGAs at 48 hpi, and this reduction continued at 96 hpi, corresponding
to trends observed in the RNA-seq data (Figure 4A,B). Altogether, this data illuminates a
potential role for DUSPs, specifically DUSP1, during the JCPyV infectious cycle in NHAs.

Figure 4. DUSPs were differentially expressed early during infection. (A) Heat map indicates the log fold change of typical
DUSPs differentially expressed in NHAs and SVGAs at 24, 48, and 96 hpi, derived from the RNA-Seq data. (B) NHAs,
SVGAs, and NHA-Ts were infected with JCPyV (MOI = 0.1 FFU/cell) or the mock-infected vehicle control at 37 ◦C for 1 h
and incubated in complete media for 0, 24, 48, and 96 h. At each time point, RNA was extracted, and host transcript levels
were determined by qPCR. Data represent the relative quantification of DUSP1 transcript in infected cells compared to
uninfected cells, first normalized to the Ct values of GAPDH for each treatment (2−∆∆CT). Error bars indicate SD. Data are
representative of the average fold change calculated from triplicate samples from three independent experiments. One-way
analysis of variance (ANOVA) was used to determine statistical significance comparing the relative quantification of DUSP1
in NHAs, NHA-Ts, and SVGAs at each timepoint. *, p < 0.05.

3.5. DUSP1 Is Required for JCPyV Infection in NHAs

RNA-seq revealed noticeable trends of DUSP expression during JCPyV infection in
NHAs, especially compared to SVGAs and NHA-Ts (Figure 4). This data, taken together
with the temporal gene expression observed in the MAPK/ERK cascade (Figure 2), and
DUSP1 involvement in other viral infections [56–59], suggested that DUSP1 may play a
role in JCPyV infection. DUSP1 was targeted by siRNA knockdown in NHAs, SVGAs, and
NHA-Ts to probe whether it influenced JCPyV infection (Figure 5). Protein knockdown
was analyzed by ICW (Figure 5A) and quantified using LI-COR software [43,63,80,81]
(Figure 5B). Reduction of DUSP1 protein levels was significantly lower compared to the
control siRNA in all cell types at 24 h post siRNA treatment (Figure 5B). Following protein
knockdown, all cell types were infected with JCPyV, and infection was scored at 48 hpi
by indirect immunofluorescence (Figure 5C). DUSP1 knockdown significantly reduced
JCPyV infection in NHAs yet had no impact on infection in SVGAs or NHA-Ts (Figure 5C).
These findings were surprising as DUSP1 is a negative regulator of ERK [50], thus ERK1/2
phosphorylation following DUSP1 siRNA in NHAs was also measured (Figure 5D). Fol-
lowing DUSP1 siRNA treatment, pERK expression was significantly increased in NHAs
(Figure 5D). Collectively, this data demonstrates that DUSP1 expression is required for
JCPyV infection in NHAs, yet surprisingly the knockdown of DUSP1 in NHAs did not
negatively impede the MAPK/ERK cascade.
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Figure 5. DUSP1 was required for JCPyV infection in NHAs, regardless of pERK expression. NHAs, SVGAs, and NHA-Ts
were transfected with DUSP1 or EGFR (CTL) siRNA. At 24 h post-transfection, cells were fixed, imaged, and quantified
for protein knockdown (A,B) or infected (C). (A) DUSP1 protein expression was determined by ICW, staining for total
DUSP1 (green) or CellTag (red). (B) Quantification of DUSP1 protein expression was measured by ICW signal intensity
values per [(DUSP1)/Cell Tag × 100% = % response] within each ICW analysis in LI-COR software. Cells treated with
DUSP1 siRNA were normalized to the respective EGFR (CTL) siRNA (dashed line). Box and whisker plots represent the
distribution of 9 samples, with the median denoted by the black line and whiskers representing values 1.0 times the distance
of the inter-quartile range. Outliers are represented by black diamonds. A pairwise Wilcoxon rank-sum test, along with the
Bonferroni adjustment, was used to compare CTL and DUSP1 siRNA-treated cells across each cell type. *, p < 0.01. Data are
representative of three independent experiments performed in triplicate. (C) At 24 h post-transfection, cells were infected
with JCPyV (MOI = 1.0 FFU/cell) at 37 ◦C for 1 h. Cells were incubated in complete media for 48 h then fixed and stained by
indirect immunofluorescence. Percent infection following DUSP1 knockdown was determined by quantifying the number
of JCPyV T Ag-positive nuclei divided by the number of DAPI-positive nuclei for five × 20 fields of view for triplicate
samples. Error bars indicate SD. Student’s t test was used to determine statistical significance comparing EGFR (CTL)
siRNA-treated cells to DUSP1 siRNA-treated cells, for each cell type. *, p < 0.01. (D) Quantification of pERK expression
following DUSP1 siRNA at 24 h post-transfection was measured by ICW signal intensity values per [(pERK)/Cell Tag ×
100% = % response] within each ICW analysis in LI-COR software. Cells treated with DUSP1 siRNA were normalized to the
EGFR (CTL) siRNA (dashed line). Box and whisker plots represent the distribution of 9 samples, with the median denoted
by the black line and whiskers representing values 1.0 times the distance of the inter-quartile range. Outliers are represented
by black diamonds. A Wilcoxon rank-sum exact test was used to compare CTL and DUSP1 siRNA-treated cells. *, p < 0.05.
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3.6. The Network of Genes Related to the Interactions of DUSP1 and ERK1/2 Are Involved in the
Pathways of the Immune Response, Cell Survival, and Apoptosis

Results from DUSP1 siRNA (Figure 5) elucidated other mechanisms or pathways
JCPyV may modulate during infection of NHAs, not observed in SVGAs and NHA-Ts. To
understand the cellular pathways and the downstream impacts that may be involved, the
genes DUSP1 (DUSP1), MAPK3 (ERK1), and MAPK1 (ERK2) were entered into the STRING
interaction database and an over-representation analysis was performed using the PAN-
THER (protein analysis through evolutionary relationships) pathway database at 24 hpi
(Figure 6). The network was expanded three times to elucidate the genes in the immediate
proximity of DUSP1 (DUSP1), MAPK3 (ERK1), and MAPK1 (ERK2) having known and
predicted interactions with other genes and a medium confidence interaction score, with
no more than 10 interactors in the first and second shell (Figure 6A). These genes were then
analyzed in the RNA-seq data to determine the log fold change in NHAs and SVGAs at
24 h, and are summarized as a heatmap (Figure 6B). These data illustrate that largely, genes
within the DUSP1 and ERK1/2 network have a negative fold change in SVGAs during
JCPyV infection; however, MAPK3 (ERK1), ATF3 (ATF3), JUNB (Jun-B), and MAPK8IP1
(c-Jun-amino-terminal kinase-interacting protein 1) were differentially expressed in NHAs
during viral infection (Figure 6B). In addition, this analysis revealed a significant fold
change increase in JUNB (Jun-B) during JCPyV infection in NHAs, in comparison to a
significant fold change decrease observed in SVGAs (Figure 6B). To further understand the
biological function of the network of genes from the interactions of DUSP1 and ERK1/2, the
list was entered into the Gene Ontology website and an over-representation analysis was
performed, using the PANTHER pathway database (Figure 6C). The GoChord plot sum-
marizes the 17 genes, which are joined with ribbons to their respective cellular pathways.
(MAPK8IP1 was not included as it is not in the PANTHER database.) The legend defines
the difference between the log fold change of NHAs and the log fold change of SVGAs to
simplify the output. Genes that are orange/yellow had a large positive difference between
NHAs and SVGAs, and genes colored blue had a small or negative change between cell
types during JCPyV infection. Genes that had a greater positive change (i.e., JUNB [Jun-B],
IRS1 [IRS1], MAPK3 (ERK1), FOS [c-Fos], JUN [Jun], and ATF3 [ATF3]) were associated
with pathways of inflammation mediated by chemokine and cytokine signaling pathways,
including TGF-β signaling, apoptotic, and cholecystokinin receptors (CCKR) signaling
pathways (Figure 6C). These data suggest that in primary astrocytes, the network of genes
associated with DUSP1 (DUSP1), MAPK3 (ERK1), and MAPK1 (ERK2) are important
during JCPyV infection for both the host and the virus. Primary astrocytes may induce an
immune response by releasing cytokines and chemokines early during infection, not seen
in SVGAs, but in turn, the virus slowly activates transcription factors, like Smad4 from the
TGF-β signaling pathway to support viral replication in the nucleus of NHAs [43].
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Figure 6. PANTHER pathway analysis of the genes within the DUSP1–ERK1/2 network, specifically JUNB, reveals
pathways in immune activation and downstream activation of the receptor tyrosine kinase pathways. (A) Genes ERK1/2
and DUSP1 were analyzed in the STRING interaction database and the network was expanded three times to determine
the protein–protein interactions of both known and predicted interactions of the surrounding genes. These interactions
were defined as having an interaction score of 0.4 with no more than 10 interactors in the 1st and 2nd shell. Arrows
point from the source gene to the target gene. (B) The heat map illustrates the log2 fold change of JCPyV-infected versus
mock-infected NHAs and SVGAs for all genes and the ∆ log2 fold change between cell types from the previous network
that were differentially expressed at 24 h. The expression values (log CPM) of JUNB were determined, illustrated by box
and whisker plots with the distribution of 3 samples, with the median denoted by the black line and whiskers representing
values 1.5 times the distance of the inter-quartile range. *, p < 0.05. (C) PANTHER pathway analysis was used to identify
the pathways from the genes in the ERK1/2 and DUSP1 network. A GOChord plot represents the top ten pathways,
representing at least 35% of the 17 genes in the network. Each gene is linked via ribbons to their assigned PANTHER
pathway term and the colored bars next to each gene represent the difference between the log2 fold change in JCPyV-infected
versus mock-infected NHAs and between JCPyV-infected versus mock-infected SVGAs. The gene, MAPK8IP1 was not
included in the PANTHER pathway analysis as it is not in the PANTHER pathway database.
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4. Discussion

JCPyV specifically targets glial cells in the CNS, including astrocytes, which have been
implicated as a potential reservoir for infection, eventually leading to the pathogenesis of
PML [5]. However, due to limited understanding of gene regulation in JCPyV infection, our
knowledge of JCPyV progression in astrocytes is incomplete. Thus, RNA-seq analysis was
performed using primary human astrocytes infected with JCPyV at time points previously
established to demonstrate marked differences in the production of viral T Ag and VP1 in
NHAs and SVGAs (Figure 1A) [32]. RNA-seq revealed a significant, distinct transcriptomic
profile in NHAs during JCPyV infection when compared to the more commonly studied
immortalized glial cell line, SVGAs. This was illustrated by the temporal difference in gene
expression of the MAPK/ERK pathway during infection and illuminated a critical role for
DUSPs, specifically DUSP1, during JCPyV infection in NHAs. The role of ERK1/2 and
DUSP1 were further validated using protein expression assays and protein inhibition by
siRNA, revealing the notable role these proteins have during JCPyV infection in NHAs
(Figure 7). Utilizing additional bioinformatics techniques, we elucidated novel pathways
activated during JCPyV infection in NHAs.

Figure 7. The MAPK/ERK pathway is required for JCPyV infection in primary and immortalized astrocytes but may
activate additional pathways in primary astrocytes, specifically pathways involved in the immune response and facilitated
by the transcription factor, JUNB, and other members to form the AP-1 complex. This may result in the inhibition and the
delay of JCPyV infection observed in NHAs compared to immortalized astrocytes [32].
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Our laboratory recently determined that the JCPyV infectious cycle in NHAs was
delayed compared to the infectious cycle in SVGAs [32]. RNA-seq analysis revealed that
at 24 hpi, a significant number of genes that were differentially expressed in SVGAs were
downregulated during JCPyV infection; comparatively, more genes were upregulated in
NHAs (Figure 1B). At 48 hpi, most genes differentially expressed in NHAs were down-
regulated, resembling the 24-h time point in SVGAs (Figure 1B), whereas ~75% of genes
(p < 0.05) that were downregulated in NHAs at 48 hpi were downregulated in SVGAs at 24
hpi (data not shown). These data suggest that the delay of JCPyV infection in NHAs, as
previously described, may be regulated in part by the virus establishing infection more
efficiently in SVGAs as numerous genes may already be downregulated due to the immor-
talized characteristics of the cell type [36,37]; however, SVGAs are also a heterogeneous
population of cells [29].

To further define astrocytic infection, the MAPK/ERK pathway was explored, as it
has been demonstrated to be a critical regulator of JCPyV infection in SVGAs and other
cell types [40,41]. The MAPK/ERK pathway activates various genes and transcription
factors through a cascade of kinases that orchestrate events for cellular proliferation,
differentiation, and survival [42]. Given this evidence, the MAPK/ERK pathway and
genes with protein–protein interactions were examined in the RNA-seq data set (Figure 2).
Several kinases within the pathway were differentially expressed, most notably HRAS
(HRAS) and MAP2K2 (MEK2) at 24 and 96 hpi in NHAs (Figure 2B). Expanding this
analysis to genes that interact with the MAPK/ERK pathway also revealed differentially
expressed genes. For example, at 24 hpi, SOS1 (SOS1) was significantly downregulated in
NHAs. SOS1 (SOS1) is a critical linker between tyrosine kinase receptors and an activator of
KRAS (KRAS) in the MAPK/ERK pathway, as it interacts with KRAS (KRAS) to potentially
influence the duration and magnitude of ERK activation [82–84]. Genes determined to
have protein–protein interactions, such as SOS1 (SOS1), in the MAPK/ERK pathway were
downregulated at 24 hpi (Figure 2A). RNA-seq results also revealed temporal, differential
gene expression over the course of infection in both cell types from 24 to 96 hpi.

It has been previously reported that MEK1/2 and ERK1/2 phosphorylation are bipha-
sic during JCPyV infection [40,43], and these data substantiate the biphasic expression of
not only ERK1/2 but the other kinases in the pathway. Interestingly, the gene expression
of these kinases was temporally regulated in NHAs and SVGAs, yet their expression was
non-concurrent at each timepoint (Figure 2). These data establish a preliminary understand-
ing of the MAPK/ERK pathway in NHAs; however, they reveal differential expression
and activation dynamics between cell types for MAPK/ERK pathway utilization during
viral infection. To validate the RNA-seq results and further define the importance of the
MAPK/ERK pathway in NHAs during JCPyV infection, ERK1/2 were targeted for knock-
down using siRNA (Figure 3). Knocking down ERK1/2 resulted in a significant decrease in
JCPyV infection in NHAs, confirming that the requirement for ERK1/2 in JCPyV infection
extends to primary astrocytes [40]. Surprisingly however, DUSP1, a key negative regulatory
protein of the MAPK/ERK pathway [47–50] did not increase JCPyV infection upon DUSP1
siRNA knockdown. In addition, the expression of DUSP1 was downregulated at 48 and
96 hpi (Figure 4A), as well as DUSP1 transcript at 48 hpi, compared to JCPyV infection
in SVGAs (Figure 4B). Although these changes were minimal, taken together, this data
suggests that as viral infection ensues in NHAs and the MAPK/ERK pathway is activated,
the negative regulatory role of DUSP1 is hindered, which ultimately hampers the activa-
tion of alternative pathways that could disrupt viral replication. However, because the
MAPK/ERK pathway is activated early during JCPyV infection [40,41,43], future RNA-seq
studies should examine earlier timepoints to validate these results and define how cellular
pathways can trigger certain transcription factors to support JCPyV infection.

DUSP1 siRNA treatment resulted in a significant decrease in JCPyV infection in
NHAs, but there was no difference during infection of immortalized cells (Figure 5). This
indicates that DUSP1 is dispensable during JCPyV infection in cells immortalized with
SV40 T Ag, as reduction of this phosphatase did not alter viral infection. This was also
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observed in RSV infection of A549 cells, in which silencing DUSP1 did not alter viral
replication [58]. However, previous research has demonstrated that cells transformed
with oncogenes can influence the expression of protein phosphatase 2A (PP2A) [85–87].
PP2A has a similar role to DUSP1 by acting as a negative regulator of the MAPK/ERK
pathway [88]. Therefore, in transformed cells it is possible that expression of small T
antigen antagonizes PP2A, in which case DUSP1 would not be required. Further research
should elucidate the role of PP2A during DUSP1 knockdown and JCPyV infection to
determine if PP2A is compensating for the loss of DUSP1 expression in transformed cells.
Conversely, the decrease in infection observed in NHAs is comparable to the results found
by Choi et al. [57]. HCV infection was significantly reduced upon silencing DUSP1, in
which authors demonstrated that this was due to STAT1 translocation to the nucleus,
increasing expression of ISGs and thus suppressing HCV infection [57]. Similarly, Assetta
et al. demonstrated that pSTAT1 was localized to nuclei in JCPyV-infected cells, leading
to the activation of ISGs, and this contributed to the persistent nature of JCPyV infection
in a primary kidney cell model [39]. These previous findings provide the premise to
hypothesize that when DUSP1 is knocked down during JCPyV infection in NHAs, viral
infection is reduced because STAT1 is translocated to the nucleus, activating ISGs and thus
inhibiting JCPyV infection. Even when ERK1/2 is phosphorylated upon DUSP1 reduction
(Figure 5D), the host response to viral infection may overcome the additional activation of
ERK1/2. However, more research is required to test this hypothesis. Additionally, taken
together with the previous results (Figure 4), RNA-seq analysis determined that DUSP1
expression is important early in the process of JCPyV infection (Figure 4A), and this may
play a role in suppressing the immune response during early events of the infectious cycle
in NHAs, whereas reducing DUSP1 through siRNA significantly decreased JCPyV infection
(Figure 5C).

Research has demonstrated that DUSP1 has a critical role in the inflammatory re-
sponse against various pathogens [57,60,89–91] and plays an intricate role in regulating
pro- and anti-inflammatory cytokines [60]. Furthermore, astrocytes are important in
maintaining many neuronal functions in the CNS through production of cytokines and
chemokines [92,93]. This ultimately results in astrocytes having a neurotoxic or neuropro-
tective role in the brain of human neurological diseases [94]. Due to the role of DUSP1 in
the inflammatory response and the interaction of ERK1 and ERK2, an over-representation
analysis using PANTHER [77] was performed on the list of genes that have known and
predicted interactions with these proteins (Figure 6). JUNB (Jun-B), has both predicted and
known interactions with DUSP1 (DUSP1), MAPK3, (ERK1), and MAPK1 (ERK2), deter-
mined by the STRING interaction database [72], and was significantly upregulated at 24 hpi
in NHAs and significantly downregulated in SVGAs (Figure 6B). Through the PANTHER
analysis, JUNB (Jun-B), MAPK3 (ERK1), JUN (Jun), and JUND (Jun-D) were associated with
the inflammation mediated by chemokine and cytokine signaling pathway (PANTHER
Accession: P00031) (Figure 6C). Furthermore, as determined by a gene set enrichment
analysis, preliminary data suggests that the interleukin 10 (IL-10) signaling pathway is
expressed in NHAs at 24 hpi (data not shown). Previous microarray analysis has also
considered the involvement of inflammatory responses during JCPyV infection in primary
astrocytes as well [38]. This data further establishes that claim, as early during JCPyV
infection in NHAs, astrocytes may modulate an immune response that is not activated
in SVGAs and may contribute to the delay of JCPyV late protein production observed in
NHAs [32].

The TGF-β signaling pathway (PANTHER Accession: P00052) was also associated
with genes that had a greater difference in differential gene expression in NHAs compared
to SVGAs (Figure 6C). SMAD4 is involved in the TGF-β signaling pathway, regulating tran-
scription factors of target genes in the nucleus [95], and has also been implicated in JCPyV
infection [43,96]. Previous research has demonstrated that JCPyV-infected cells expressed
higher levels of SMAD4 in the nucleus compared to uninfected cells [43]. Furthermore, the
gene ATF3 (activation transcription factor-3), demonstrated higher expression in infected
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NHAs compared to SVGAs, and is known to interact with SMAD4 [97]. These findings
indicate that early during JCPyV infection, genes associated with DUSP1 (DUSP1), MAPK3
(ERK1), and MAPK1 (ERK2) are involved in activating pathways that both induce a host
response and simultaneously create a conducive environment for viral replication. This
evidence provides a foundation for future studies to define how JCPyV infection activates
alternative pathways in primary cells not observed in immortalized cells and may provide
insight into the delayed infection in NHAs [32] compared to infection in SVGAs.

This research further characterizes JCPyV infection in primary human astrocytes and
determines the transcriptomic profile compared to that in SVGAs. These differences were
also observed in the timing of MAPK/ERK pathway expression and targeting ERK1/2 via
siRNA, validating the importance of this signaling pathway during astrocytic infection.
Furthermore, this research highlights a role for DUSPs, specifically DUSP1, during JCPyV
infection in NHAs, which is not observed in immortalized cells. Lastly, by analyzing
pathways and gene networks we further defined how the interactions of DUSP1, ERK1,
and ERK2 may activate novel cellular pathways during JCPyV infection in primary human
astrocytes (Figure 7). This research validates and establishes novel mechanisms of JCPyV
infection in primary human astrocytes, in turn further elucidating how viral infection can
lead to a deadly human disease.
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