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Quantification of histological information from excised human abdominal aortic

aneurysm (AAA) specimens may provide essential information on the degree of

infiltration of inflammatory cells in different regions of the AAA. Such information

will supportmechanistic insight inAAApathologyandcanbe linked toclinicalmeasures

for further development of AAA treatment regimens. We hypothesize that artificial

intelligence can support high throughput analyses of histological sections of excised

humanAAA.Wepresent an analysis framework basedon supervisedmachine learning.

We used TensorFlow and QuPath to determine the overall architecture of the AAA:

thrombus, arterial wall, and adventitial loose connective tissue. Within the wall and

adventitial zones, the content of collagen, elastin, and specific inflammatory cells was

quantified. A deep neural network (DNN) was trained onmanually annotated, Weigert

stained, tissue sections (14 patients) and validated on images from two other patients.

Finally, we applied the method on 95 new patient samples. The DNN was able to

segment the sections according to the overall wall architecture with Jaccard

coefficients after 65 epocs of 92% for the training and 88% for the validation data

set, respectively. Precision and recall both reached 92%. The zone areas were highly

variable between patients, as were the outputs on total cell count and elastin/collagen

fiber content. The number of specific cells or stained area per zone was

deterministically determined. However, combining the masks based on the Weigert

stainings, with images of immunostained serial sections requires addition of landmark

recognition to the analysis path. The combination of digital pathology, the DNN we

developed, and landmark registrationwill provideastrong tool for futureanalysesof the

histology of excised human AAA. In combination with biomechanical testing and

microstructurallymotivatedmathematicalmodels of AAA remodeling, themethod has

the potential to be a strong tool to provide mechanistic insight in the disease. In

combination with each patients’ demographic and clinical profile, the method can be

an interesting tool to in supportof a better treatment regime for the patients.
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1 Introduction

Understanding the processes in the vascular wall that

eventually lead to abdominal aortic aneurysm (AAA)

formation and rupture and thereby a high risk of dying is

critical to develop preventive medicine. Rupture of the AAA

carries a 65–85% risk of death (Sakalihasan et al., 2018). So far, a

medical cure to limit the expansion of the wall has not been found

and surgical intervention is the only treatment—a procedure that

carries a mortality risk of up to 5%within 30 days postoperatively

(Hallin et al., 2001).

Despite extensive research to understand the events leading

to AAA formation, the precise pathological mechanism behind

the AAA development and expansion is still not fully elucidated.

Animal models and histological studies on excised human

specimens have provided evidence that an intense

inflammatory response with adventitial and medial

inflammatory cell infiltration, extracellular matrix remodeling,

and smooth muscle cell apoptosis are hallmarks of AAA

development ((Quintana and Taylor, 2019), (Dale et al.,

2015), (Eliason et al., 2005), (Li et al., 2018; Golledge, 2019)).

The inflammatory cell infiltration is characterized by

lymphocytes, macrophages, and neutrophils ((Dale et al.,

2015), (Li et al., 2018)). Neutrophil infiltration has been

shown to occur early in animal AAA models ((Quintana and

Taylor, 2019), (Li et al., 2018)) and neutrophil depletion was

demonstrated to inhibit AAA formation in mice (Eliason et al.,

2005). In human AAA patients, a negative correlation was found

between neutrophil catalase activity and aortic size (Ramos-

Mozo et al., 2011). Extracellular matrix degradation products

and numerous chemokines recruit macrophages to the injury

sites (Dale et al., 2015). Recently however, T cells rather than

macrophages, where found to be the major leucocyte population

in human late-stage AAA with greatest accumulation in the

perivascular tissue (PVT) (Sagan et al., 2019). T cells in the

pathological damaged AAA wall were in a more activated state

(particularly CD 4+ cells (T-helper cells)) or dysregulated

(especially CD 8+ cells) and T cell infiltration in PVT was

strongly related to AAA size. A direct role for cytotoxic CD8+

T cells in the pathogenesis of AAA has also been proposed in a

study were IFN-ɣ-producing CD8+ T cells promoted

development of aneurysm by enhancing matrix

metalloprotease activity and cellular apoptosis in a mouse

model of elastase-induced AAA. ((Zhou et al., 2013)).

Thus, histological and immunohistological compositional

information may provide essential information to understand

the pathological mechanism and in search of medical

candidates to limit expansion of human AAAs. However,

quantification of histological information from excised

human AAA specimens is time consuming. Whole slide

histological images of human AAAs are large and manual

scoring is cumbersome and well known to introduce bias in

scoring ((Aeffner et al., 2017)).

In recent years, automated tissue analysis has been developed

to provide more objective and reproducible data in shorter time.

Machine learning has been used successfully within pathology to

extract relevant information from tumor histology ((Turkki et al.,

2019), (Litjens et al., 2016)) such as detection of mitosis ((Veta

et al., 2015)) inflammatory cell infiltration in human breast

cancer ((Turkki et al., 2016), (Litjens et al., 2016)) and

automatic segmentation of epithelium and stroma in

colorectal cancer ((Linder et al., 2012), (Litjens et al., 2016)).

Automated tissue image analysis makes it possible to use a

consistent and objective set of rules of ie cell classification in

whole tissue sections across an entire patient population

((Aeffner et al., 2017)). Further, it overcomes issues with

interobserver variability. Machine learning powered image

analysis allows extremely accurate classification and

segmentation of an image with high through-put compared to

human manual quantification (Abels et al., 2019).

Here, we hypothesize that artificial intelligence can support

and improve the processing and analysis of histological

information of excised human AAA specimens. We present

an analysis framework for automatic determination of tissue

constituents within sections of excised AAA specimens. Using a

deep neural network on QuPath annotated whole image files of

histological sections, the extracellular matrix components elastin

and collagen as well as relevant immunological cell types such as

neutrophils (through immunohistological staining for

myeloperoxidase, MPO), cytotoxic T cells (CD8+) and

macrophages (CD68+) is quantified. Since perivascular adipose

tissue (PVAT) is receiving increasing attention as an important

player in the development of AAA ((Kugo et al., 2019; Sagan

et al., 2019), (Kugo et al., 2018), (Folkesson et al., 2017), (Dias-

Neto et al., 2018)), we also included detection of perivascular

tissue PVT, including PVAT, in our analyses, making it possible

to quantify cell types and extracellular matrix components in the

wall and PVT compartment, respectively.

2 Materials and equipment

2.1 Ethics

Human specimens of excised AAA were obtained from

patients undergoing elective, open abdominal surgeries for

AAA. Patients provided written informed consent. The study

was approved by the Regional Committees of Health

Research Ethics for Southern Denmark (S-20140202), and

experiments were conducted according to the principles

expressed in the Declaration of Helsinki of the World

Medical Association (World Medical, 2013). Upon excision

of the aneurysm biopsy, the tissue was placed in Hank’s

Balanced Salt Solution (HBSS; Biological Industries; cat.

no. 02-016-1A added 10 mM HEPES (Biological Industries;

cat. no.03-025-1B) and kept cold until processed. A small
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piece of the aneurysm was formalin fixed and paraffin

embedded (FFPE).

2.2 Isolation and processing of tissues by
histology

Five micrometer (5 µm) serial sections of FFPE tissues were

stained using standard histological and immunohistological

methods at Department of Clinical Pathology, Odense

University Hospital (pay per service). Briefly, one tissue

section per patient was stained with Weigert’s elastin method

(Kiernan, 2015). Following, serial cut sections were

immunohistochemically stained using antibodies from

Agilent-Dako Denmark. Antigen epitope retrieval (AER) was

conducted with Ventana Medical cell conditioning solution CC1

(Ventana®, 950-124, purchased through Roche Denmark). Anti-

CD8 antibody (A039829-2) was diluted 1:100 and applied

following AER. Anti-CD68 antibody (M087601-2) was diluted

1:50 and applied following AER. Anti-MPO antibody (A039829-

2) was diluted 1:2000. All stained sections were automatically

scanned using a Hamamatsu slide scanner (Hamamatsu

Photonics K.K.).

2.3 Computer hardware

For annotation we used a standard Windows operating

system lab top with QuPath (Bankhead et al., 2017) installed

and a Wacom Intuos Pro pen with drawing tablet (Wacom

GmbH, Germany). For image analyses we used a stronger

computer running with Linux operating system, equipped

with 2x Intel Xeon Silver 4214 2.2GHz, 3.2 GHz 12 cores/

24 threads, 128 GB (8 × 16 GB) DDR4 RAM, 2.5″ 800 GB

SAS Enterprise Class Solid State Drive, and a Nvidia Quadro

RTX6000 24 GB Graphics card. The image analysis computer

used Python 3.8.2 with our own libraries, AAA_ml (github.com/

bjtho08/AAA_ml) and mmciad (github.com/bjtho08/mmciad).

In addition, the image analysis computer also had QuPath 0.2.

3 and FIJI (Schindelin et al., 2012) installed and was controlled

remotely via an SSH terminal and X2Go for graphical work.

2.4 Dataset description and input data
format

2.4.1 Images for annotation and analyses in
QuPath

NanoZoomer Digital Pathology Images (NDPI) were tiled

and converted to 24-bit PNG files during the import to QuPath.

Our image analysis workflow is outlined in Figure 1. The images

were of intact cross sections of the isolated biopsy of the AAA and

exhibited large morphological variation. Due to the large degree

of histological variation between the patients, and the nature of

the electronic data per image as well (2.2 pixels per micron), we

considered 16 patient samples adequate for the training and

validation. The available patient data was split 14/2 for training/

validation purposes.

2.4.2 Images for neural network assisted
classification of zones

Each patient sample in the training and validation datasets

was converted to a mosaic of overlapping tiles with

dimensions 384 × 384 pixels (175 × 175 µm), which were

stored as individual PNG images. Tile dimensions must be

divisible by the scaling factor S = 2n, with n equal to the

number of pooling operations, to scale properly throughout

the pooling layers. For our network, n = 4, whereby S = 16. The

tile dimensions were deliberately chosen such that the physical

tile size in µm would be likely to carry enough information

about the area in question to enable useful predictions without

taking up too much memory. The tile dimensions were similar

sizewise to the output dimensions in the original U-net by

(Ronneberger et al., 2015). Tile conversion was done as a

preparative step prior to loading image tiles in the network.

The code pertaining to the network, including the load step is

contained in the following code (https://github.com/bjtho08/

AAA_ml). This operation was also performed on the

corresponding annotations such that the coordinates

defining a tile in the original image corresponded to a pair

of PNG images. An example of an input tile and a target tile

from the mosaic creation process is shown in Figures 2A,B,

respectively.

2.4.3 Filtering of tiles in the neural network
Before being written to disk, a filtering algorithm was applied

to determine if a tile should be discarded. Filtering was based on

the contents of each annotation tile and the “ignore” label was

defined because there is a level of uncertainty regarding the

borders between different zones. Tiles with more than 90% pixels

labeled “ignore” were discarded, whereas tiles with less than 10%

pixels labeled “ignore” were included to reduce the problem with

class imbalance while minimizing the risk of discarding valuable

information from underrepresented labels.

2.4.4 Normalization and augmentation in the
neural network

The dataflow from the tiles on disk to the model input layer

includes a normalization step. The values used for normalization

are the per-channel averages and standard deviations of the

entire dataset. For training, there was also an augmentation

step (inbuilt in the code for the preparative step), where tile

pairs were subjected to one or several transformations, chosen at

random from a predetermined list of operations. The

transformations were split into two types: those applying

geometric transformation and those applying pixel

Frontiers in Physiology frontiersin.org03

Thorsted et al. 10.3389/fphys.2022.840965

https://github.com/bjtho08/AAA_ml
https://github.com/bjtho08/AAA_ml
https://github.com/bjtho08/mmciad
https://github.com/bjtho08/AAA_ml
https://github.com/bjtho08/AAA_ml
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.840965


arithmetics. The latter was only applied to the input images,

while the former was applied to both input and target. The

following arithmetic transformations were available: addition of

a random value in the range [−0.07, 0.07] sampled once pr image;

multiplication with a random value in the range [0.8, 1.2]

sampled once pr image; random pixel dropout, i.e. setting the

RGB value to black with a random dropout fraction in the range

of [10%, 50%]. The geometric transformations were: up-down

flip, left-right flip, affine rotation by a random degree in the range

[−90, 90], affine scaling by a random factor in the range [0.8, 1.2],

elastic transformation using displacement fields (c.f. (Simard

et al., 2003)). For elastic transformation, the sigma parameter

was set to 40.0 and alpha was a randomly sampled value in the

range [50, 200]. For all the geometric transformations, edge mode

was set to “reflect” to preserve continuity. The augmentation step

reduces the likelihood of the network overfitting since it is very

unlikely to see two identical inputs over the course of the training.

2.5 Analysis network

2.5.1 Annotation and simple segmentation in
QuPath

Images of the 16 patient samples were manually annotated to

generate the ground truth using QuPath (Bankhead et al.) and the

Wacom Intuos pro drawing tablet. For definition of different zones

in the AAA wall, and for determination of the elastin and collagen

area percentages we used theWeigert stained sections. For detection

of inflammatory cells, we used the immunostained sections. The

finished annotations were exported using a script written in the

Apache Groovy language (Supplementary Material S1).

2.5.2 Zone definitions in the AAA wall
Images of the AAA biopsy were annotated using three

classes: “zone 1” for vascular wall tissue, “zone 2” for loose

perivascular tissue (PVT) and “thrombus” for thrombus material

not cleared at the time of excision during surgery. An example of

an input image is shown in Figure 3A, while the partly annotated

FIGURE 1
Data analysis flowchart. (A) The Deep Neural network is pretrained on ImageNet and trained on basis of manually annotated images of Weigert
stained tissue sections of excised AAA specimens from 14 patients. Themanual annotation defines the ground truth for the network. The ability of the
network to recognize the different defined zones of the AAA wall is validated against manually annotated images from two other patients (B) In
parallel, QuPath is used for detection of cells and elastin and collagen fibers (right). Finally, by overlaying the defined AAA wall zones and the
QuPath output, quantification of the content of specific cells and extracellular matrix fibers per zone is possible.

FIGURE 2
Example of an input tile and a target tile from the mosaic
creation process. (A) input tile, (B) target tile. Both tiles are 384 ×
384 pixels (~450 nm/pixel), which gives an adequate amount of
information about the tissue for determining the class label(s)
in the field of view.
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ground truth is shown in Figure 3B, and the segmentation

prediction output from the neural network in Figure 3C. We

chose to only annotate part of the background close to the actual

sample to make sure the network had enough material to learn

from, but without increasing the class imbalance unnecessarily.

For simplicity, the surrounding unannotated background was

labeled as “ignore”. Several areas within the tissue boundaries

were not easily separated into the desired class labels and those

were also labeled as “ignore” with the intent of letting the neural

network decide where inside these areas of uncertainty the actual

borders are located. The annotations were exported as color

indexed PNG images.

2.5.3 Neural network assisted classification of
zones

The neural network is a variation of the U-Net (Ronneberger

et al.). Our version is written in TensorFlow 2.1 and uses the

Swish trainable activation (Ramachandran et al., 2017) function

rather than ReLU, but still pre-trained on the ILSVRC 2012

(ImageNet) dataset (Russakovsky et al., 2015). Additionally, all

convolutional layers have been modified to support reflection

padding to preserve tensor dimensions throughout the network

and avoid discontinuous borders in the data. The code for the

network is available as a library through GitHub (https://github.

com/bjtho08/mmciad). We used the Talos Hyperparameter

Optimization library (Kotila, 2019) to determine the optimal

hyperparameters. We used a network depth of 3, and 32 as the

base number of filters per convolution. The depth indicates the

number of levels below “surface” in the network, while the base

number of filters indicate the number of filters per convolution

operation in the surface level. The number of filters in the

subsequent levels below surface is always twice the number of

filters in the level above, meaning that level three will have

256 filters per convolution. We also used batch normalization

before activation on each convolution and opted for strided de-/

convolutional up- and down-scaling rather than up-sampling

and pooling layers. The network model architecture, including

the BSConv2 building block, is illustrated in Figure 4. The

(untrained) network parameters were initialized using the He

normal function (He et al., 2015) and then trained using the

Adam optimization function (Kingma and Ba, 2014) and

Squared Jaccard’s distance (Levandowsky and Winter 1971) as

the loss function. Training progress was monitored using the

Jaccard similarity index (Jaccard, 1912) and the F1 score. These

metrics were calculated for both the training and validation

datasets. Once the training was completed, the model was

stored on disk with the best performing set of parameter

weights from the training stage. Following this, the model was

evaluated on the validation dataset to generate data for visual

quality control and statistical data.

2.5.4 Application of zone classifications in
QuPath for further analyses

The output segmentation maps from the neural network

were converted to QuPath regions (masks) using a script

(Supplementary Material S2) in FIJI (Schindelin et al.) to

generate binary maps for each category and reading those

back into QuPath using another script (Supplementary

Material S3). We created separate QuPath projects for each of

the performed stainings to better keep track of which analyses to

perform for each staining. The latter script needs to be run once

for each QuPath project before any subsequent analyses can take

place.

2.5.5 Detection of CD8 and MPO positive cells/
zone

QuPath offers a selection of features and intuitive tools to

easily annotate whole slide images and perform different

FIGURE 3
Example of raw, annotated and segmentation prediction image. (A) Input image, Weigert stained (B) Partially annotated ground truth. The gray
area surrounding the purple region is removed from the dataset during training to reduce class imbalance and improve training time (C)
Segmentation prediction output from the neural model. Color coding: Blue: Zone 1. Green: Zone 2. Red: Thrombus. Purple: Background. Gray:
Ignore.
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analytical operations on the data. These operations include

positive cell detection, stain separation/color deconvolution,

and pixel classification. Table 1 Shows the relevant settings for

performing positive cell detection for CD8 and MPO stained

slides, respectively. QuPath will only perform cell detection

inside the selected annotation(s), but a small script

(Supplementary Materials S4, 5 for CD8 and MPO,

respectively) ensures that cells/area or fibers/area are counted

in each of zone 1 and 2.

2.5.6 Detection of CD68 positive staining/zone
CD68 is detected as an area using a combination of color

deconvolution and pixel classification to register all pixels with a

DAB optical density value above a certain threshold

(Supplementary Material S6).

2.5.7 Determination of the elastin/collagen area
percentages in zones one and two

For elastin and collagen fibers, a slightly more advanced

pixel classifier is used to recognize the fibers of a specific color

and report the total area of a given fiber within each zone.

These values are then used to calculate the per zone elastin and

collagen area percentages, respectively (Supplementary

Material S7).

2.6 Application of our analysis network for
screening of patient samples

Following validation of our analysis network, we used the model

to analyze a total of 95 patient samples different from the ones used

for training and validation. Images ofWeigert stained sections of each

of the 95 patient samples were fed into the trained, validated network

and data were retrieved on zone classifications. Zone classifications

were applied on images of CD8, CD68 and MPO immunostained

FIGURE 4
The basic building block of our U-Net variant and the overall network architecture. (A) The BSConv2 block consists of two repeats of a reflection
padded 3 × 3 convolution and linear activation followed by batch normalization and a trainable Swish activation (B) The U-Net architecture is
structured into levels that share operation parameters. For a U-net with a depth of three, there are three levels below the surface level (depth 0). For
each subsequent level, the number of filters per convolution is doubled and the spatial dimensions are halved.

TABLE 1 QuPath Positive cell detection parameters for MPO
(neutrophils) and CD8 (T-cells) positive detection, respectively.
Non-standard values in QuPath are listed, remaining parameters were
set to “default” in QuPath.

Parameter Value

MPO CD8

detectionImageBrightfield “Hematoxylin OD” “Hematoxylin OD”

backgroundRadiusMicrons 8.0 10.0

thresholdCompartment Cytoplasm: DAB OD
mean

“Cell: DAB ODmean”

thresholdPositive1 0.2 0.1
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sections and cells/zone area was determined for CD8 and MPO

immunostainings and stained area/zone area for

CD68 immunostainings. Finally, the elastin and collagen area

percentages per zone area was retrieved from the Weigert stained

sections.

2.7 Output data format

Results from each image’s analysis is saved as . csv file format,

one file per patient. Data, e.g., the number of CD8 positive cells or

the area of CD68 stained tissue are retrieved per zone area.

3 Results

3.1 Results from the training and validation

We developed a machine learning assisted analysis of histological

specimens from curative surgeries of abdominal aortic aneurysms in

humans. Excised aneurysmal tissue was formalinfixed and embedded

in paraffin, and serial sections were cut. The first of these was stained

with Weigert histological stain, the following, adjacent sections with

different antibodies, including CD8, CD68, MPO. We used manual

annotations on the Weigert stained sections to define three classes:

“zone 1” for vascular wall tissue, “zone 2” for loose perivascular tissue

(PVT) and “thrombus” for thrombus material not cleared at the time

of excision during surgery. The annotated images were fed into a

neural network, pre-trained on the ILSVRC 2012 (ImageNet) dataset

(Russakovsky et al., 2015). The images of the original staining,

partially annotated images and the segmentation prediction output

from the neural network are shown in Figures 3A–C, respectively.

Images from 14 patients were used for training the network, and

images from two different patients were used for validation. Finally,

we tested our model on 95 new patient samples to confirm the

applicability of the method and show the variation in the output data.

After running a tile-based filtration, the total number of image

tiles for training and validation was 76203 and 12636, respectively,

giving a training:validation split ratio of 14/2. Thus, the filtration did

not alter the training/validation ratio aimed for. Filtering was based

on the contents of each annotation tile andwas applied to avoid class

imbalances. Therefore, several tiles contained small quantities of

pixels labeled “ignore” and that is the reason for the presence of

“ignore” in the confusion matrix. We tried to convey this by

manually adjusting the pixel counts for the affected labels. The

results of these adjustments are listed in the bottom two rows of

Tables 2, 3, which also show significantly improved performance for

the model compared to the unadjusted values.

The model was trained for a total of 200 epochs (not

including pretraining) and we used the Talos Hyperparameter

Optimization library (Kotila, 2019) to determine the optimal

hyperparameters used. These included the number of filters,

depth of the network and several loss functions as well. We

chose to run the model for 200 epochs to make sure it converges

before selecting the epoch with the best performance. Fine-

tuning was done by running the model through different

number of epochs, and then following each run, evaluating

loss and accuracy, aiming at the run with lowest loss and

highest accuracy. The model saved after 33 epochs showed the

best performance on the validation data set. The evolution of all

relevant metrics during training is shown in Figure 5 and the final

validation metrics are detailed in Tables 2, 3. Adjusting for

background regions and regions classified as ignore (in the

ground truths), the weighted average Jaccard similarity index

is found to be 84.6%. While Figure 3 gives a brief overview,

Figure 6 shows a more detailed example of what the model was

trained on (Figure 6A, detailed output segmentation map

Figure 6B). By visual inspection, there are a few artifacts in

the background and small islands of blue inside the green and red

regions, but overall, there appears to be a large overlap between

ground truth and prediction. The confusion matrix in Figure 7

supports this visual, qualitative assessment, even though it is

based on the uncorrected numbers, not considering that we

“discarded” all image tiles without any tissue information in

the raw images by assigning them the “Ignore” class (grey in

Figure 3B). Barring the “ignore” label, the model is certain of all

labels, with at least 80% correct predictions for each. This is also

evident from Table 3, where the precision column corresponds to

the confusion matrix diagonal, where the corrected numbers give

a significantly higher overall score.

3.2 Zone classification in 95 patients

To evaluate the feasibility of our newmethod, we applied it to

materials from 95 patients different from the 16 used for training

and validation. Images of Weigert stained sections were analyzed

using the network, and zone1, zone 2 and thrombus defined.

Figure 8A shows the distribution of zone 1 and zone 2 areas

across the different patients. It is evident that the zone areas are

not normal distributed, samples are highly different, as expected.

3.3 Extracellular matrix detection

From the Weigert stained tissue sections we determined the

elastin and collagen area percentages per zone class. The elastin

and collagen detections were performed using a slightly more

advanced pixel classifier compared to the immunostainings. The

classifier requires either/or, and therefore a decision is taken on

whether a pixel contains either elastin or collagen or none of the

two. Figure 8B shows the raw area% measurements of the two

components of the extracellular matrix per zone 1 and zone 2 for

the 95 patients. As above, it is evident that also the content of

extracellular matrix, here defined broadly as elastin and collagen,

is markedly different between patients.
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3.4 Cell detection in 95 patients

To allow quantification of the number of immunostained cells

per zone and the area of immunostained tissue per zone, the zone

classifications defined from the Weigert stainings were applied to

images of the immunostained sections. To ensure complete

adherence between sequentially sectioned tissues, we first

manually visually evaluated the suitability of each mask defined

from the Weigert stained sections on the immunostained sections.

We assessed the quality of the zone classification since there can be

significant discrepancies between location and orientation of the

tissues on the histological slides. The complex nature of the

imported regions makes it prohibitively memory-intensive to

adjust the regions in the cases where the overlap is unsatisfactory.

For CD8 positive cell detection, the zone classification

segmentation maps were imported using a FIJI script written in

ImageJ macro language (Supplementary Material S2) and a QuPath

script written in Groovy (Supplementary Material S3). Out of

TABLE 2 Classification report for the performance of the network model on the validation dataset. The macro averages are the unweightedmeans of
each metric, while the weighted averages are the support-weighted means. The bottom two rows were calculated with the assumption that all
data labeled Ignore are irrelevant to the performance and thus excluded.

Class Precision Recall F1-score Jaccard index Support

Ignore 0.091 0.070 0.079 0.041 41672692

Zone 1 0.766 0.903 0.829 0.708 265953620

Zone 2 0.858 0.796 0.826 0.704 306283491

Thrombus 0.969 0.887 0.926 0.862 145997791

Background 0.312 0.984 0.474 0.310 760249363

macro avg 0.599 0.728 0.627 0.456 1520156957

weighted avg 0.558 0.897 0.639 0.470 1520156957

excluding ignore

macro avg 0.726 0.892 0.764 0.618 1478484265

weighted avg 0.572 0.921 0.655 0.487 1478484265

TABLE 3Corrected classification report for the performance of the networkmodel on the validation dataset. The Background (BG) precision has been
adjusted to a reasonable estimate to take into account the number of tiles in the input image tile data set without information. The macro
averages are the unweighted means of each metric, while the weighted averages are the support-weighted means. The bottom two rows were
calculated with the assumption that all data labeled Ignore are irrelevant to the performance and thus excluded. Please see discussion for details.

Class Precision Recall F1-score Jaccard index Support

Ignore 0.091 0.070 0.079 0.041 41672692

Zone 1 0.766 0.903 0.829 0.708 265953620

Zone 2 0.858 0.796 0.826 0.704 306283491

Thrombus 0.969 0.887 0.926 0.862 145997791

Estimated BG 0.980 0.984 0.982 0.965 760249363

Macro avg 0.733 0.728 0.728 0.573 1520156957

Weighted avg 0.893 0.897 0.894 0.808 1520156957

Excluding ignore

Macro avg 0.893 0.892 0.891 0.803 1478484265

Weighted avg 0.915 0.921 0.917 0.846 1478484265

FIGURE 5
Training and validation metrics per epoch. The Jaccard
similarity index (JSI) calculated during training and validation is
reduced because of amisconfiguration (see Discussion for details).
The F1 and Jaccard scores for training are overall mean
measures of the models’ precision and recall. Loss is a measure of
costs of the model, and represents how poor the model is.
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95 slides, three did not have a corresponding Weigert section, seven

were too damaged to work on, one had an unknown read error, one

was missing tissue completely, one had a different number of tissue

sections, eight were too distorted, and 63 were markedly displaced

relative to the Weigert section. The degree of displacement varied

from a few tens of pixels to a several hundred pixels. Nine slides were

adequately similar to their corresponding Weigert slides to allow

application of the zone classification segmentation maps. Cell

detection was conducted using Supplementary Material S4 and

representative results from one patient is shown in Table 4 for

illustration. The results show that most cells are located in zone 1,

but a significant portion is found in what is labeled as background.

As illustrated in Figure 9 arrow, part of the tissue that we can assume

would be zone 1 is outside the zone perimeter and therefore the

detected cells in this region are counted towards the background

label. The results also show that around 9% of all detected cells are

CD8-positive. Zone 2, a region spanning 22 mm2 andwhich consists

mostly of adipose tissue, contained only 50 CD8 positive cells.

Similar results with respect to the difficulty of applying the

zone classification segmentation maps were observed for the

CD68 and MPO immunostained sections, respectively (results

not shown).

3.5 Time and resources required

The project required purchase of a dedicated image analysis

computer for handling the digital images from pathology. Each

image is 4.2 GB of data. Annotations can be conducted on a normal

personal labtop with QuPath installed. Full manual annotation of

one image, for example for zone classification, took 3–5 days full

time by an expert. Pretraining of the Network on the ImageNet

dataset (Russakovsky et al., 2015) to 3 weeks, while training on the

annotated patient samples took a little more than 1 week. Validation

of the training took only an hour. Analysis of the 95 patient samples

took 1 day plus data extraction and calculations.

4 Discussion

We present here an analysis framework in digital

pathology for quantification of the content of different

inflammatory cells and extracellular matrix constituents in

tissue sections of excised human AAA. We applied a DNN for

recognition and definition of different zones in the AAA wall,

thrombus, vascular wall and perivascular loose tissue. Zone

FIGURE 6
Input and output comparison. (A) Input images, Weigert stained (B) Segmentation prediction output from the neural model. Color coding: Blue:
Zone 1. Green: Zone 2. Red: Thrombus. Purple: Background. Gray: Ignore.
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classification segmentation maps were defined using Weigert

stained tissue sections and applied on serial immunostained

sections. This, however, proved extremely difficult due to

marked differences between the serial cut sections: Position

of the immunostained sections on the glass slides was

markedly different compared to the Weigert stained

section, some tissues were rotated, folded, distorted, or had

major parts missing, likely due to calcifications making the

manual sectioning difficult. Thus, before our method can be

applied on a broader analysis scale for quantification of the

presence of specific inflammatory cells in specific zones in the

AAA wall, we suggest addition of landmark recognition for

FIGURE 7
Confusion matrix of the performance of the network model on the validation dataset. The numbers denote the fraction of pixels classified as
label x and belonging to label y. The matrix is normalized by true label, i.e., each row summates to 1. The diagonal elements represent true positives,
while off-diagonal elements represent false positives (columns) and false negatives (rows).

FIGURE 8
Total area and elastin and collagen area percentages in zones 1 and 2. (A) zone area for zone 1 (vascular wall) and zone 2 (perivascular loose
connective tissue) (B) area percentages for elastin and collagen in zone 1 and 2, respectively.
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positioning the zone classification maps. The application of

automatic segmentation on the immunostainings however

proves highly efficient for quantification of total cell

content in intact tissue sections. This is in agreement with

previous reports in application of digital pathology on e.g.

tissue sections from cancerous tissues (Mi et al., 2020).

Manual quantitative assessment of histological samples is

tedious and very resource demanding (manpower and time).

Automatic quantification is at present clinically only

implemented as cell counts in full blood and bone marrow

analyses. However, quantification of tissue components and

infiltrative cells in tissues opens a door into better and faster

assessments of infiltrative, degenerative, and healing processes

of importance for stratification of disease, prognosis and

response of medical treatment. Prior studies on a limited

number of patient samples have demonstrated the

connection between the microstructure and biomechanical

properties of the AAA wall (Niestrawska et al., 2019). As we

describe above, complete manual annotation of one image

took 3–5 days, while we with the final model could run cell

detection, for three different stainings, for 95 individual

patient samples, in less than a day.

With this method paper, we have made available all

scripts and the network code needed for other users to

adapt the method to their own needs. We hope, that our

computational method in combination with already

established methods on ex vivo biomechanical testing of

fresh, excised AAA specimens and microstructurally

informed mathematical models of the wall behavior (e.g.

(Bersi et al., 2019; Niestrawska et al., 2019)) can support

the pressing need for additional mechanical and

microstructural data to better inform material remodeling

of the AAA wall. High throughput quantification of

histological data are required to develop high-resolution

local correlations among multiple mechanical metrics and

wall microstructure. Applying the analysis flow in

combination with methods in animal models will allow

longitudinal studies, c. f. e.g. (Bersi et al., 2019). And

although findings from animal models of AAAs cannot be

directly translated to human AAAs, animal models of AAA

TABLE 4 CD8 positive cell detection for a patient sample. The detections are the total cell count for the indicated class. Detections: number of cells
detected per zone class. Positive: number of CD8 positive cells. Positive%: percentage og all detected cells that are CD8 positive. Positive per
mm2: number of positive cells per unit area. Area: total area of each class (zone, thrombus or background area). Quite a few cells are detected in
“Background”. Please see discussion for details.

Class Detections Positive Positive % Positive per
mm2

Area [mm2]

Zone 1 129824 12308 9.5 545 22.6

Zone 2 48472 1680 3.5 76 22.0

Thrombus 1920 148 7.7 363 0.4

Background 80 0 0 0 85.0

FIGURE 9
Illustration of cell detection using antiCD8 immunostaining. (A) Raw immunostained image (DAB and hematoxylin stained). (B) Image in A with
overlaid zone predictions (Blue: Zone 1 border. Green: Zone 2 border. Red: Thrombus) and all cell detections (Light blue: Hematoxylin stained
nucleus in CD8 negative cell. Light red: Hematoxylin-stained nucleus in CD8 positive cell). (C) zoom in of square in (B). Scalebar is 1 mm (A, B) 250 µm
(C) Arrow: part of the tissue that we can assume would be zone 1. Please refer to the discussion for details.
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will provide knowledge for further investigation and insight

into human AAA disease (Lysgaard Poulsen et al., 2016),

eventually, to the benefit of the patients. However, before

other users adapt our method, discussion of a few pros and

cons is warranted.

4.1 Precision of the network (zone
recognition)

From the training and validation, we show uncorrected

and corrected measures of precision of our network. While

the uncorrected results listed in Table 2 reveal a weighted

average Jaccard score of only 49%, it is important to note that

this is due to a technical shortcoming of the way our data is

structured and how the score is calculated. For training

purposes, the whole slide images are divided into smaller

tiles and filtering was determined based on the contents of

the annotation tile. This was done to reduce the problem with

class imbalance while minimizing the risk of discarding

valuable information from underrepresented labels.

Furthermore, this approach allowed the model to decide

for itself which label was more appropriate for each of the

uncertain pixels at the cost of getting a lower accuracy,

because some pixels would appear mislabeled when the

model did not label them “ignore”. We tried to convey

this by manually adjusting the pixel counts for the

affected labels.

The consequence of this choice is that the whole slide

image annotation has a large area of actual background

(empty image tile/tile with no tissue) incorrectly labeled as

“ignore”. During post-training validation, the entire slide is

analyzed and the incorrectly labeled “background” is included

in the data used to generate the results. Therefore, the

precision of the “background” label is dismally low, even

though the recall is very high. The same issue is present for

the “ignore” label, but here we see both a low precision and a

low recall. This is because the background gets predicted

correctly by the network, leading the validation to the

incorrect conclusion that the recall is quite low. But since

the network also learned how to figure out where the edge case

pixels belong, the precision is equally low. We tried to account

for this in two ways. First, we recalculated the averages by

excluding the “ignore” label. Then, we estimated the precision

for the “background” label based on the overview shown in

Figure 6. The conservative estimate here is that the model gets

the background right in at least 98% of the cases. This

correction raises the weighted average Jaccard score from

the original 0,31 to 0.85. Previous studies (Zou et al., 2004;

Gu and Li, 2021) have reported that for biomedical image

segmentation, a DICE score of 0,7 or higher is sufficient. DICE

scores can be converted to Jaccard scores using formula J = D/

(2-D), where D is the DICE score, and J is the Jaccard score.

Thus, we need to surpass 0.7/(2-0.7) = 0.538 in our Jaccard

index, which we are well above.

4.2 Application of zone class
segmentation maps to serial,
immunostained sections

The segmentation maps generated by our model for the

95 patient samples were converted to QuPath regions

imported into the corresponding CD8 patient samples. To

get an overview, we first performed a qualitative assessment of

the overlap between the segmentation maps and the tissue

showed that out of 95 patient samples, only nine had an

adequate overlap. This was visible by the human eye. The

assessment was based on both location, rotation, macroscopic

morphological similarity, and quality of the tissue in both the

Weigert stainings and the CD8 immunostainings. With a

success rate of roughly only 10% the usability of the zone

class segmentation maps in the immunostained serial sections

was highly disappointing. This is a major drawback to our

method. Furthermore, manual inspection of the suitability of

each zone classification segmentation map retains the

histological analyses susceptible to personal bias. We aim at

having a digital validation of our visual evaluation of the zone

classification segmentation maps. This, in our opinion,

requires two improvements: First, extreme care must be

taken already at the point of sectioning of the tissues, to

collect the sections and position them neatly and precisely

on the glass slides, and discard sections that are folded, or

destroyed by the microtome. Second, we suggest adding to our

method a module of image recognition using landmark

recognition and registration followed by thin-spline

transformations to have the computer automatically detect

and match the zone classification segmentation maps with the

immunostainings. The nature of the AAA tissue sections is

however complicated to work with also in this respect, since

we observed many sections being torn apart during

mechanical sectioning due to calcification deposits in the

vascular wall.

4.3 False high cell count in “background”
label

Due to the difficulty with applying the zone class

segmentation maps from the Weigert stainings on the

immunostainings, we report a false high number of cells

in the background. This can be overcome by applying a

module with landmark recognition to increase the overlap

between the zone classes and the tissue on which they are

applied. For users not in need of dividing the tissue section in

zones, for us vascular wall and perivascular loose connective
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tissue, zone class segmentation will never be an issue and all

users can in principle apply the method for detection of

imunostained cells and different fibers in the extracellular

matrix. We provide no accuracies on the detection of CD8,

CD68, MPO and elastin and collagen since detection here is

deterministic. Thus, defining a ground truth will be too

elaborate, and all users can apply the parameters we

describe and retrieve similar segmentation results.

Furthermore, functional, and reproducible use of QuPath,

even among users of limited experience of digital pathology,

has been documented to be more accurate than manual

scoring (Loughrey et al., 2018).

4.4 Perspectives - applicability to other
tissues, species and beyond

An absolute requirement for adapting our method is a

dedicated image analysis computer with a specialised graphics

card and excellent memory. Annotations can, as we described,

be performed on a normal lab top, but analyses need more

computer power. We also recommend having a person

involved who knows about machine learning, artificial

intelligence, and who is highly skilled in coding. This

person can team up with the specialists in histology and

AAA (patho)physiology and adjust our published materials

to adapt our neural network for use on other tissues including

materials from experimental animal models. Since the

network has been extensively pretrained it should only

require four to five images of a new type of histology to

train the network to perform the histopathological analyses.

Addition of other analysis modules in the framework will not

require too much additional work, and since several prior

reports have suggested the importance of adipose tissue in the

AAA wall (Kugo et al., 2018; Kugo et al., 2019; Niestrawska

et al., 2019), (Folkesson et al., 2017; Dias-Neto et al., 2018;

Doderer et al., 2018; Sagan et al., 2019) a natural next step will

be to implement this in the network.

Machine Learning has been used successfully for

quantification of tumor-infiltrating immune cells in H&E

stained breast cancer whole slide images (e.g. (Turkki et al.,

2016) (Litjens et al., 2016; Mi et al., 2020)). In the present study,

detection of the two zones in the Weigert stained sections

performed well, as did cell detection QuPath. With other

tissues of less fibrous and calcified nature than the human

AAA, the zone classification segmentation may prove useful

and easy to apply as well.

5 Conclusion

We present here an image analysis framework to support

high throughput analyses of AAA patient histological specimens

excised during surgeries. We confirm our hypothesis that

artificial intelligence can support and improve the processing

of histological information of excised human AAA specimens.

Our method can accurately outline the overall architecture of the

human AAA and recognize selected immune response cells and

matrix constituents both in the vascular wall and perivascular

loose connective tissue. Application of zone classification

segmentation maps defined from one tissue section to the

next turned out to be extremely difficult and calls upon

addition of landmark recognition to our model. Each tissue

section contains an enormous amount of information and

large numbers of cells of different type (defined by the

immunostaining applied) could be completed on basis of

image segmentation. This can fulfill our need to obtain

statistically and clinically relevant information on each

patients’ tissue biopsy. With the complete model we foresee

use of our analysis approach in personalized medicine. We

provide all scripts, code and information required for other

user to add this analysis framework to their existing methods.

Hopefully, the quantification of histological sections in

combination with biomechanical testing and microstructurally

motivated mathematical models of the AAA remodeling will

provide clinically relevant and mechanistic insight into the

disease and eventually a better treatment regime for the

individual patients.
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