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Multifunctional electromagnetic interference (EMI) shielding materials would solve electromagnetic radiation and pollution
problems from electronic devices. Herein, the directional freeze-drying technology is utilized to prepare the aramid nanofiber/
polyvinyl alcohol aerogel with a directionally porous structure (D-ANF/PVA), and the Ti3C2Tx dispersion is fully immersed
into the D-ANF/PVA aerogel via ultrasonication and vacuum-assisted impregnation. Ti3C2Tx/(ANF/PVA) EMI shielding
composite films with directionally ordered structure (D-Ti3C2Tx/(ANF/PVA)) are then prepared by freeze-drying and hot
pressing. Constructing a directionally porous structure enables the highly conductive Ti3C2Tx nanosheets to be wrapped on the
directionally porous D-ANF/PVA framework in order arrangement and overlapped with each other. And the hot pressing
process effectively reduces the layer spacing between the stacked wavy D-ANF/PVA, to form a large number of Ti3C2Tx-
Ti3C2Tx continuous conductive paths, which significantly improves the conductivity of the D-Ti3C2Tx/(ANF/PVA) EMI
shielding composite film. When the amount of Ti3C2Tx is 80wt%, the EMI shielding effectiveness (EMI SE) and specific SE
(SSE/t) of D-Ti3C2Tx/(ANF/PVA) EMI shielding composite film achieve 70 dB and 13790 dB·cm2·g-1 (thickness and density of
120 μm and 0.423 g·cm-3), far superior to random-structured Ti3C2Tx/(ANF/PVA) (R-Ti3C2Tx/(ANF/PVA)) composite film
(46 dB and 9062 dB·cm2·g-1, respectively) via blending-freeze-drying followed by hot pressing technology. Meanwhile, the D-
Ti3C2Tx/(ANF/PVA) EMI shielding composite film possesses excellent flexibility and foldability.

1. Introduction

With the rapid development and widespread use of flexible
wearable electronic equipment and 5G communication tech-
nology, the resulting electromagnetic radiation and electro-
magnetic pollution are increasing [1], which not only
interferes with the normal operation of sophisticated elec-
tronic devices but also threatens the health of surrounding
people [2–4]. In recent years, the rapid development of elec-
tromagnetic interference (EMI) shielding materials has made
the disadvantages of traditional metal materials increasingly
apparent [5–7]. An urgent need has been raised for materials
to be ultrathin and flexible and to have excellent EMI shield-
ing effectiveness (EMI SE), mechanical properties, and corro-
sion resistance [8–10]. Therefore, multifunctional polymer-
based EMI shielding composite films have become one of
the current research hotspots in the field of EMI shielding
materials [11–13].

Two-dimensional transition metal carbide/nitride Ti3C2Tx
is widely used in the field of EMI shielding due to its excellent
conductivity [14–16]. Moreover, it has abundant surface func-
tional groups, excellent water dispersibility, and film-forming
performance and can be used to prepare polymer-based EMI
shielding composite films with excellent comprehensive proper-
ties [17–19]. At present, most researchers have used blending or
layer-by-layer alternating methods to prepare Ti3C2Tx/polymer
EMI shielding composite films [20–23]. When preparing
Ti3C2Tx/polymer EMI shielding composite films by blending,
highly conductive Ti3C2Tx is disorderly distributed in the
insulating polymer matrix [24–26]. Usually, a large amount
of Ti3C2Tx is required to build the continuous and efficient
conductive network, which will affect the processing behav-
iors and mechanical properties of the composite films [27].
The layer-by-layer alternating method is to arrange the poly-
mer matrix and the highly conductive Ti3C2Tx alternately to
prepare Ti3C2Tx/polymer EMI shielding composite films.
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The mechanical framing effect exerted by the polymer layer
can prevent the nanoscale “sawtooth” cracks in the Ti3C2Tx
layer from growing to the entire composite films, giving
excellent mechanical properties [28]. However, the multilayer
structure destroys the Ti3C2Tx conductive network to a cer-
tain extent, causing the electrical conductivity (σ) and EMI
SE of the composite films to decrease. The above two general
preparation methods both have the problem of disordered
conductive networks. It is urgent to explore EMI shielding
composite films with an ordered conductive network to
improve their σ [29] and at the same time to enhance inter-
nal multiple reflections, in order to achieve efficient improve-
ment of EMI shielding performance with a low amount of
Ti3C2Tx.

Constructing an orderly conductive network of the EMI
shielding composite films can rely on the preparation of the
orderly porous structure aerogel in the early stage [30].
Directional freeze-drying is a novel technology that uses
the directional growth of ice crystals to construct direction-
ally porous structures [31–33]. It has the characteristics of
simple and easy operation, no chemical reaction, and no
by-products. Studies have shown that the obtained aerogel
with a regularly directionally porous structure can form
multiple reflection losses on electromagnetic waves and help
to achieve excellent EMI shielding performances [34, 35].
Zhao et al. [36] prepared Ti3C2Tx/reduced graphene oxide
(Ti3C2Tx/rGO) hybrid aerogels with a directionally porous
structure using hydrothermal-assisted self-assembly and
directional freeze-drying. When the thickness was 2mm
and the amount of Ti3C2Tx was 0.74 vol%, the EMI SE of
the Ti3C2Tx/rGO hybrid aerogel at the X band was as high
as 56 dB. Wu et al. [37] prepared Ti3C2Tx/SA aerogel by
blending Ti3C2Tx and sodium alginate (SA) via directional
freeze-drying and then coated a thin layer of polydimethylsi-
loxane (PDMS) on the surface of Ti3C2Tx/SA aerogel by dip
coating, improving the stability and durability of the porous
structure. When the amount of Ti3C2Tx was 95wt%, the
successful construction of the 3D conductive network
endowed Ti3C2Tx/SA aerogels excellent σ (2211 S/m) and
EMI SE (70.5 dB). However, when simple blending-
directional freeze-drying is used to prepare aerogels, the
highly conductive Ti3C2Tx is mixed with the insulating poly-
mer matrix disorderly. It is still difficult to build a continu-
ous and efficient conductive network and hard to achieve
excellent EMI shielding performances with a low amount
of Ti3C2Tx [38].

High EMI shielding performances of polymer-based
composites with a low amount of Ti3C2Tx can be viable if
a polymer framework with a directionally porous structure
is prepared by directional freeze-drying, followed by the
vacuum-assisted impregnation process to wrap the highly
conductive Ti3C2Tx onto the polymer framework [39]. Poly-
vinyl alcohol (PVA) is an ideal polymer matrix that can be
used for directional freeze-drying, but the mechanical prop-
erties of PVA aerogels are relatively poor, so that it is difficult
to ensure structural stability during ultrasonication and
vacuum-assisted impregnation [40, 41]. Aramid nanofibers
(ANFs) are organic nanofibers with excellent characteristics
such as lightweight, high strength, and high temperature

resistance [42]. Incorporating high-performance ANFs into
PVA is expected to significantly enhance the mechanical
properties of PVA aerogels. In addition, the presence of a
large amount of air in the pores of the aerogel with a direc-
tionally porous structure will make it difficult for Ti3C2Tx
wrapped on the polymer framework to contact each other
and difficult to form the efficient Ti3C2Tx conductive net-
work, which would exhibit low conductivity. If the aerogels
are pressed into films by hot pressing, the layer spacing
between the stacked wavy polymer framework can be greatly
reduced, facilitating the Ti3C2Tx wrapped on the polymer
framework to contact each other. Then, a large number of
efficient Ti3C2Tx conductive paths are expected to be formed
to significantly improve σ and EMI SE of the composite films.

Herein, directional freeze-drying is used to prepare
ANF/PVA aerogels with a directionally porous structure
(D-ANF/PVA), and then, Ti3C2Tx dispersion is fully and
uniformly immersed into D-ANF/PVA aerogels via ultraso-
nication and vacuum-assisted impregnation. Ti3C2Tx/(ANF/
PVA) aerogels with a directionally porous structure (D-
Ti3C2Tx/(ANF/PVA)) are obtained by freeze-drying, and
then, the directionally ordered D-Ti3C2Tx/(ANF/PVA)
EMI shielding composite films are prepared by hot pressing.
The effects of the amount of Ti3C2Tx on σ, EMI SE, and
mechanical properties of the D-Ti3C2Tx/(ANF/PVA) EMI
shielding composite films are discussed in detail.

2. Results and Discussion

The process of preparing D-Ti3C2Tx/(ANF/PVA) and R-
Ti3C2Tx/(ANF/PVA) EMI shielding composite films is
shown in Figure 1. The directional freeze-drying technology
is utilized to prepare the D-ANF/PVA aerogel, and the
Ti3C2Tx dispersion is fully and uniformly immersed into
the D-ANF/PVA aerogel via ultrasonication and vacuum-
assisted impregnation. The D-Ti3C2Tx/(ANF/PVA) EMI
shielding composite films with a directionally ordered
structure are prepared by freeze-drying and hot pressing.
The R-Ti3C2Tx/(ANF/PVA) EMI shielding composite films
are prepared by blending-freeze drying-hot pressing tech-
nology. The experimental details can be found in Materials
and Methods.

From Figures 2(a) and 2(b), the ANF fibers are slender
threads, with length of about 5~10μm and diameter of about
40~50nm, and they overlap each other. This is attributed to
the fact that there are amide bonds between the molecular
chains of Kevlar fibers, and strong hydrogen bonds are
formed between the molecular chains. After being treated
with strong base KOH, the hydrogen in the amide group
undergoes deprotonation; a large number of hydrogen
bonds are destroyed and gradually dissociated [43]. The
electrostatic repulsion between the molecular chains further
promotes the dissociation of the Kevlar fiber and gradually
reduces the Kevlar fiber size. However, the entanglement of
the molecular chains causes the benzene rings to stack on
each other to generate π‐π conjugated interaction force,
which prevents the Kevlar fiber from disintegrating
completely, thus forming nanofibrous ANFs. Figure 2(c)
shows the XRD spectra of Kevlar fibers and ANFs. The
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diffraction peaks of Kevlar fiber at 21°, 23°, 28°, and 39° cor-
respond to (110), (200), (004), and (006) crystal planes,
respectively, mainly due to the regular arrangement of the
molecular chain structure inside the Kevlar fiber and the
abundant hydrogen bond interactions that give rise to a
higher degree of crystallinity [44]. The intensity of the crys-
tallization peak in ANFs is greatly reduced, only with a
broad diffraction peak near 20°, indicating that the crystal
structure of Kevlar fiber is dissociated and the hydrogen
bond between molecular chains is broken [45]. Ti3AlC2 has
a compact layered structure (Figure 2(d)) [46]. After etching
with hydrofluoric acid generated in situ by lithium fluoride
and hydrochloric acid, Ti3C2Tx nanosheets with a two-
dimensional lamella structure are obtained (Figure 2(e)).
Ti3C2Tx nanosheets are highly transparent under electron
irradiation (Figure 2(f)), indicating that they are very thin
and have a clear surface without impurities [47]. The corre-
sponding selected area electron diffraction (SAED)
(Figure 2(g)) shows that the Ti3C2Tx nanosheets have a typ-
ical hexagonal crystal structure. From the AFM image
(Figure 2(h)), the Ti3C2Tx nanosheets are regular in shape,
with radial size of about 1.4μm and thickness of about
2 nm. The XRD spectrum of Ti3C2Tx nanosheets
(Figure 2(i)) shows sharp diffraction peaks at 6° and weaker
diffraction peaks at 13°, 19°, 26°, and 32°, corresponding to
(002), (004), (006), (008), and (010) crystal planes, respec-

tively [48, 49]. The peak at 39° for the (104) crystal plane
in Ti3AlC2 disappears, and the peak intensity of the (002)
crystal plane is much higher than others [50, 51]. The above
characterizations indicate the successful preparation of few-
layered Ti3C2Tx.

Figure 3(a) shows σ of R-Ti3C2Tx/(ANF/PVA) and D-
Ti3C2Tx/(ANF/PVA) EMI shielding composite films. With
the increase in the amount of Ti3C2Tx, σ of R-Ti3C2Tx
/(ANF/PVA) and D-Ti3C2Tx/(ANF/PVA) EMI shielding
composite films show the trend of rapid increase. This is
because the intrinsic conductivity of Ti3C2Tx is very high.
With the increase in the amount of Ti3C2Tx, the conductive
networks inside the composite films are gradually improved
to be complete, leading the conductivity of the composite
films to increase with the increase in the amount of
Ti3C2Tx [52, 53]. When the amount of Ti3C2Tx is 80wt%,
σ of the R-Ti3C2Tx/(ANF/PVA) EMI shielding composite
film increases to 188.7 S/m, and that of the D-Ti3C2Tx
/(ANF/PVA) EMI shielding composite film is as high as
357.1 S/m, much higher than that of the R-Ti3C2Tx/(ANF/
PVA) EMI shielding composite film. This is because
Ti3C2Tx is disorderly distributed in the R-Ti3C2Tx/(ANF/
PVA) EMI shielding composite film, and ANFs and PVA
are interspersed between the conductive Ti3C2Tx layers,
making it difficult to form an efficient conductive network
(Figures 4(a) and 4(b”) and Figure S2(a)). The D-ANF/
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Figure 1: Schematic diagrams for the preparation of D-Ti3C2Tx/(ANF/PVA) (a) and R-Ti3C2Tx/(ANF/PVA) (b) EMI shielding
composite films.
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PVA aerogel prepared by directional freeze-drying has a
neat and directionally porous structure (Figures 4(c)–
4(c”)). In the directional freezing process, the water in the
ANF/PVA dispersion is affected by the supercooling
provided by the cold source to form ice crystals, which
grow vertically upwards along the freezing gradient
direction, promoting the orderly arrangement of ANF/
PVA along the growth direction of the ice crystals. During
the low-pressure drying process, the ice crystals sublime to
obtain D-ANF/PVA aerogel with a directionally porous
structure. After pouring the Ti3C2Tx dispersion, highly
conductive Ti3C2Tx nanosheets are neatly and orderly
wrapped onto the outer surfaces of the D-ANF/PVA
aerogel and the inner walls of the through-hole, forming a

directionally ordered continuous 3D conductive network
(Figure S1(a-a”)). Furthermore, the hot pressing process
compresses the directional hole wall between the D-
Ti3C2Tx/(ANF/PVA) aerogel (Figures 4(d)–4(d”) and
Figure S2(b)), and the Ti3C2Tx nanosheets in the through-
hole are in efficient contact. The D-ANF/PVA aerogel
contains C element, while D-Ti3C2Tx/(ANF/PVA) aerogel
and corresponding composite film contain not only C
element but also Ti element. This is mainly due to the
successful introduction of Ti3C2Tx. Therefore, a large
number of continuous and efficient Ti3C2Tx conductive
paths are formed, and σ of the D-Ti3C2Tx/(ANF/PVA)
EMI shielding composite films is significantly improved
[54]. As shown in Figures 3(b)–3(d), σ of D-Ti3C2Tx
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/(ANF/PVA) aerogel is only about 15.3 S/m, which fails to
make the light-emitting diode (LED) bulb light up,
showing low conductivity. σ of the D-Ti3C2Tx/(ANF/PVA)
EMI shielding composite film formed by hot pressing is as
high as about 357.1 S/m, which lights the LED bulb,
exhibiting high conductivity.

Figures 5(a) and 5(b) and Figures S3 and S4 show the
total shielding effectiveness (SET), absorption shielding
effectiveness (SEA), and reflection shielding effectiveness
(SER) of R-Ti3C2Tx/(ANF/PVA) and D-Ti3C2Tx/(ANF/
PVA) EMI shielding composite films at the X band,
respectively. The SET, SEA, and SER of ANF/PVA
composite films are all very low, about 0.4 dB, 0.3 dB, and
0.1 dB, respectively. As the amount of Ti3C2Tx increases, the
SET, SEA, and SER of R-Ti3C2Tx/(ANF/PVA) and D-
Ti3C2Tx/(ANF/PVA) EMI shielding composite films
increase significantly. When the amount of Ti3C2Tx is
80wt%, the SET, SEA, and SER of the D-Ti3C2Tx/(ANF/

PVA) EMI shielding composite film reach 70dB, 24 dB, and
46 dB, respectively, much higher than SET (46 dB), SEA
(16 dB), and SER (30 dB) of the R-Ti3C2Tx/(ANF/PVA) EMI
shielding composite film (Figure 5(c)). Meanwhile, D-
Ti3C2Tx/(ANF/PVA) EMI shielding composite film has
higher EMI shielding efficiency. When the amount of
Ti3C2Tx is 80wt%, D-Ti3C2Tx/(ANF/PVA) EMI shielding
composite film is capable of blocking 99.99999% of
electromagnetic wave radiation, far better than that of R-
Ti3C2Tx/(ANF/PVA) EMI shielding composite film, which
could block 99.997% of electromagnetic wave radiation
(Figure 5(d)).

Poor EMI shielding performance of the R-Ti3C2Tx
/(ANF/PVA) composite films is mainly attributed to the dis-
orderly arrangement of the Ti3C2Tx nanosheets inside. Con-
tact between Ti3C2Tx as well as formation of an effective
Ti3C2Tx conductive network is difficult, making σ low. In
addition, the disorderly and chaotic arrangement of
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Ti3C2Tx nanosheets in the R-Ti3C2Tx/(ANF/PVA) compos-
ite film also results in less internal multiple reflection and
scattering of electromagnetic waves.

As shown in Figure S5, we performed 500 and 1000
folding cycles of the D-Ti3C2Tx/(ANF/PVA) composite
film with the mass fraction of Ti3C2Tx of 80wt%. It can be
seen that its EMI shielding effectiveness has almost no
change, which shows that the EMI shielding performance
of composite film is stable and repeatable.

Superior EMI shielding performance of D-Ti3C2Tx
/(ANF/PVA) composite films is mainly due to its multiple
EMI shielding effects. Firstly, the construction of a direction-
ally ordered structure and the adoption of the hot pressing
process give the D-Ti3C2Tx/(ANF/PVA) EMI shielding
composite films higher σ, which is more different from the
σ of air, causing greater impedance mismatch. Therefore,
when external electromagnetic waves are incident on the
surface of the D-Ti3C2Tx/(ANF/PVA) EMI shielding com-
posite films, a large proportion of them is immediately
reflected back into the air [55]. Secondly, due to the excellent
σ of the D-Ti3C2Tx/(ANF/PVA) EMI shielding composite
films, microcurrents are generated by electromagnetic waves
through charge carriers, which enhances the ohmic loss of
electromagnetic waves and reduces the energy of electro-
magnetic waves [56]. Thirdly, a large amount of internal
multiple reflection and scattering for remaining electromag-
netic waves occur between the neatly arranged and parallel
Ti3C2Tx layers, where the energy of electromagnetic waves
is converted into heat in the form of microcurrent, thus
greatly enhancing the loss of electromagnetic wave energy
[57], further improving the electromagnetic wave absorption
ability of the D-Ti3C2Tx/(ANF/PVA) EMI shielding com-

posite films. Lastly, the electromagnetic waves also experi-
ence polarization loss with the functional groups (-OH, -F,
etc.) on the surface of Ti3C2Tx [58]. Therefore, D-Ti3C2Tx
/(ANF/PVA) EMI shielding composite films have higher
EMI SE than that of R-Ti3C2Tx/(ANF/PVA) EMI shielding
composite films. Therefore, the neat and orderly D-
Ti3C2Tx/(ANF/PVA) EMI shielding composite films realize
the reflection of electromagnetic waves, internal multiple
reflections, and absorption loss, and only a very small
amount of electromagnetic waves could pass through the
D-Ti3C2Tx/(ANF/PVA) EMI shielding composite films,
which can greatly reduce the electromagnetic pollution to
the environment as well as the harm to human health
(Figure 5(g)).

In order to further prove the superiority of the EMI
shielding performance of the D-Ti3C2Tx/(ANF/PVA) com-
posite films, the obtained EMI shielding performances in
this work have been compared with other polymer-based
materials reported in literatures (Tables S2 and S3).
Figures 5(e) and 5(f) show the comparisons of the EMI SE
vs. thickness and specific shielding effectiveness (SSE/t) vs.
density, respectively. With the thickness of 120μm and the
density of 0.423 g·cm-3, the D-Ti3C2Tx/(ANF/PVA) EMI
shielding composite film achieves excellent EMI SE (70 dB)
and SSE/t (13790 dB·cm2·g-1), much higher than those of
R-Ti3C2Tx/(ANF/PVA) EMI shielding composite film
(46 dB and 9062 dB·cm2·g-1, respectively) and similar
materials reported in literatures.

Figures 6(a)–6(c) show the stress-strain curves of R-
Ti3C2Tx/(ANF/PVA) and D-Ti3C2Tx/(ANF/PVA) EMI
shielding composite films, and the corresponding tensile
strength and elongation at break are shown in Figures 6(d)
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and 6(e). The tensile properties of the D-Ti3C2Tx/(ANF/
PVA) EMI shielding composite film stretched parallel to
the directional freezing direction is much higher than that
of the R-Ti3C2Tx/(ANF/PVA) EMI shielding composite
film. When the amount of Ti3C2Tx is 80wt%, the tensile
strength and elongation at break of the R-Ti3C2Tx/(ANF/
PVA) EMI shielding composite film are 8.4MPa and 2.7%,
respectively. At the same amount of Ti3C2Tx, the tensile
strength and elongation at break of the D-Ti3C2Tx/(ANF/
PVA) EMI shielding composite film stretched parallel to
the directional freezing direction are 13.1MPa and 4.2%,
respectively. This is because the distribution of Ti3C2Tx in

the R-Ti3C2Tx/(ANF/PVA) EMI shielding composite film
is relatively chaotic and disorderly, and more stress concen-
tration points are easily generated when subjected to exter-
nal forces. For D-Ti3C2Tx/(ANF/PVA) EMI shielding
composite films, the structure is directionally ordered paral-
lel to the directional freezing direction, and its stress distri-
bution is uniform, giving it high tensile strength and
elongation at break [59, 60]. In addition, when the amount
of Ti3C2Tx is 80wt%, the tensile strength and elongation at
break of the D-Ti3C2Tx/(ANF/PVA) EMI shielding compos-
ite film stretched perpendicular to the directional freezing
direction are 6.1MPa and 1.7%, respectively, lower than
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those of D-Ti3C2Tx/(ANF/PVA) EMI shielding composite
film stretched parallel to the directional freezing direction,
indicating that the mechanical properties of the D-Ti3C2Tx
/(ANF/PVA) EMI shielding composite films are anisotropic.
This may be attributed to the fact that the structural strength
perpendicular to the directional freezing direction is rela-
tively weak, and the weaker intermittent connection will
break under lower tensile strength. In contrast, the structure
parallel to the directional freezing direction is relatively
complete, with fewer internal defects [61, 62]. Moreover, it
should be noted that the D-Ti3C2Tx/(ANF/PVA) EMI
shielding composite film can be folded into a paper boat
and bent into circle, “S,” and heart shapes (Figure 6(e)),
indicating that it has excellent flexibility and foldability.

3. Conclusions

Construction of the directionally porous structure enables
the highly conductive Ti3C2Tx nanosheets to be wrapped
on the directionally ordered D-ANF/PVA framework in

orderly arrangement and overlapped with each other,
achieving a more efficient and complete conductive network
with the same amount of Ti3C2Tx. The hot pressing would
process greatly reduce the layer spacing between the stacked
wavy D-ANF/PVA and enable a large number of Ti3C2Tx
nanosheets wrapped on the D-ANF/PVA framework to effi-
ciently contact. A large number of Ti3C2Tx-Ti3C2Tx contin-
uous conductive paths are formed, which significantly
improve σ of D-Ti3C2Tx/(ANF/PVA) EMI shielding com-
posite films. When the amount of Ti3C2Tx is 80wt%, EMI
SE and SSE/t of D-Ti3C2Tx/(ANF/PVA) EMI shielding com-
posite film achieve 70 dB and 13790 dB·cm2·g-1 (thickness
and density of 120μm and 0.423 g·cm-3), far superior to
R-Ti3C2Tx/(ANF/PVA) EMI shielding composite film
(46 dB and 9062 dB·cm2·g-1, respectively) prepared by
blending-freeze drying followed by hot pressing technology.
The mechanical properties of the D-Ti3C2Tx/(ANF/PVA)
EMI shielding composite films are anisotropic. When the
amount of Ti3C2Tx is 80wt%, the tensile strength and elon-
gation at break stretched parallel to the directional freezing
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direction are 13.1MPa and 4.2%, respectively, significantly
better than the tensile strength (8.4MPa) and elongation at
break (2.7%) of the R-Ti3C2Tx/(ANF/PVA) EMI shielding
composite film. At the same time, the D-Ti3C2Tx/(ANF/
PVA) EMI shielding composite film possesses excellent flex-
ibility and foldability. It can be folded into a paper boat and
bent into circle, “S,” and heart shapes.

4. Materials and Methods

4.1. Preparation of D-ANF/PVA Aerogels. A certain amount
of ANFs and PVA were added into 30mL of deionized
water, to obtain the ANF/PVA dispersion by ultrasonication.
Then, the above mixtures were poured into a homemade
mold (copper at the bottom and polytetrafluoroethylene
around), followed by being placed into the liquid nitrogen
to freeze. Then, the frozen products were placed in the vac-
uum freeze dryer for 72hrs to obtain the D-ANF/PVA aero-
gels with directionally porous structures.

4.2. Fabrication of D-Ti3C2Tx/(ANF/PVA) and R-Ti3C2Tx
/(ANF/PVA) EMI Shielding Composite Films. A certain
amount of Ti3C2Tx (prepared based on the minimally inten-
sive layer delamination (MILD) method in accordance with
our previous works [63]) was dispersed in deionized water to
obtain Ti3C2Tx aqueous dispersion. Subsequently, the
obtained D-ANF/PVA aerogels were immersed in the
Ti3C2Tx dispersion, and the Ti3C2Tx aqueous dispersion
was fully filled into the ANF/PVA aerogels via ultrasonica-
tion and vacuum-assisted impregnation process. Then, the
ANF/PVA aerogels impregnated with Ti3C2Tx aqueous dis-
persion were placed in liquid nitrogen and were then placed
in the vacuum freeze dryer for 72hrs to obtain D-Ti3C2Tx
/(ANF/PVA) aerogels. In this work, D-Ti3C2Tx/(ANF/
PVA) aerogels with Ti3C2Tx amount of 20wt%, 40wt%,
60wt%, and 80wt% were prepared, respectively. Finally,
the D-Ti3C2Tx/(ANF/PVA) aerogels were hot pressed at
50°C and 20MPa for 10min to obtain D-Ti3C2Tx/(ANF/
PVA) EMI shielding composite films.

For comparison, random-structured Ti3C2Tx/(ANF/
PVA) (R-Ti3C2Tx/(ANF/PVA)) EMI shielding composite
films were also prepared. A certain amount of Ti3C2Tx,
ANFs, and PVA were dispersed in deionized water, mixed
uniformly by ultrasonication to obtain Ti3C2Tx/(ANF/
PVA) solution. Subsequently, the beaker containing
Ti3C2Tx/(ANF/PVA) solution was placed in liquid nitrogen,
followed by staying in the vacuum freeze dryer for
72 hrs to obtain R-Ti3C2Tx/(ANF/PVA) aerogels. Finally,
the R-Ti3C2Tx/(ANF/PVA) aerogels were hot pressed at
50°C and 20MPa for 10min to obtain R-Ti3C2Tx
/(ANF/PVA) EMI shielding composite films.

Specific experimental details such as raw materials and
characterizations are provided in Supplementary Materials.

Data Availability

The data in this paper cannot be shared at this time as the
data also forms part of an ongoing study.

Additional Points

Highlights. 1. Directionally porous structure is constructed
so that the highly conductive Ti3C2Tx nanosheets are
wrapped on the directionally ordered D-ANF/PVA frame-
work in order arrangement and overlapped each other. 2.
Hot-press process effectively reduces the layer spacing
between the stacked wavy D-ANF/PVA, to form a large num-
ber of Ti3C2Tx-Ti3C2Tx continuous conductive paths, which
significantly improves the conductivity of the D-Ti3C2Tx/
(ANF/PVA) EMI shielding composite film. 3. When the
amount of Ti3C2Tx is 80 wt%, the EMI SE and SSE/t of D-
Ti3C2Tx/(ANF/PVA) EMI shielding composite film achieve
70 dB and 13790 dB·cm2·g-1 (thickness and density of 120
μm and 0.423 g·cm-3), far superior to R-Ti3C2Tx/(ANF/
PVA) EMI shielding composite film (46 dB and 9062
dB·cm2·g-1, respectively) by blending-freeze drying followed
by hot pressing technology. 4. Mechanical properties of the
D-Ti3C2Tx/(ANF/PVA) EMI shielding composite film are
anisotropic. When the amount of Ti3C2Tx is 80 wt%, the ten-
sile strength of the D-Ti3C2Tx/(ANF/PVA) EMI shielding
composite film stretched parallel to the directional freezing
direction are 13.1 MPa, significantly better than the tensile
strength (8.4 MPa) of the R-Ti3C2Tx/(ANF/PVA) EMI
shielding composite film.
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