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Lipids are organic compounds insoluble in water with a variety of metabolic and non-
metabolic functions. They not only represent an efficient energy substrate but can also act
as key inflammatory and anti-inflammatory molecules as part of a network of soluble
mediators at the interface of metabolism and the immune system. The role of endogenous
bioactive lipid mediators has been demonstrated in several inflammatory diseases
(rheumatoid arthritis, inflammatory bowel disease, atherosclerosis, cancer). The liver is
unique in providing balanced immunotolerance to the exposure of bacterial components
from the gut transiting through the portal vein and the lymphatic system. This balance is
abruptly deranged in liver failure syndromes such as acute liver failure and acute-on-
chronic liver failure. In these syndromes, researchers have recently focused on bioactive
lipid mediators by global metabonomic profiling and uncovered the pivotal role of these
mediators in the immune dysfunction observed in liver failure syndromes explaining the
high occurrence of sepsis and subsequent organ failure. Among endogenous bioactive
lipids, the mechanistic actions of three classes (eicosanoids, pro-resolving lipid mediators
and lysophospholipids) in the pathophysiological modulation of liver failure syndromes will
be the topic of this narrative review. Furthermore, the therapeutic potential of lipid-immune
pathways will be described.

Keywords: liver failure, lipids, metabonome, systems biology, cirrhosis, liver, acute liver failure, acute on chronic
liver failure
1 INTRODUCTION

For many centuries the role of lipids was linked to the metabolic deposition in gallstones or diseased
arteries as described by Michel Eugene Chevreul in1823 in his “A Chemical Study of Oils and Fats of
Animal Origin” (1). A century later dietary fat ingestion in the western world was associated with
mortality as demonstrated by Ancel Keys in his “Seven Countries Study” (2). Between the 19th and early
20th centuries, lipids were discovered at the basis of the cellular membrane structure and were identified
as pathophysiological mediators of intracellular and extracellular processes with the discovery of
prostaglandins by Ulf Von Euler in 1935 and subsequently linked to arachidonic acid (AA) by Sune
Bergström and Bengt Samuelsson. Together with John Vane, they received the Nobel Prize in
org March 2022 | Volume 13 | Article 8672611
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Physiology or Medicine in 1982 for their “discoveries concerning
prostaglandins and related biologically active substances”. They
elucidated the chemical processes in the formation and breakdown
of classical eicosanoids and reported for the first time that anti-
inflammatory compounds such as aspirin act by blocking the
formation of prostaglandins and thromboxanes (3), thus linking
bioactive lipid mediators and inflammation.

Inflammation is a well-conserved mechanism evolved by
vertebrates as an adaptive and defensive response to tissue
injury and invasion of microorganisms that might attempt to
colonize the host (4, 5). Despite the apparent simplicity of its
definition, inflammation is instead an intricate network of cellular
and molecular events, at the core of which, a plethora of pre-
formed or newly synthesized mediators is arranged to obtain
specific temporal and spatial responses (6). Endogenous bioactive
lipids have been demonstrated to be pivotal mediators of
homeostasis as well as of acute and chronic inflammatory
processes, participating in the initiation, maintenance but also
resolution of inflammation. In the early 2000s, Levy and colleagues
demonstrated a switch in lipid mediator class production in
circulating neutrophils during acute inflammation (from pro-
inflammatory to pro-restorative) (7). Accordingly in these
pivotal roles in homeostasis and inflammation, endogenous lipid
mediators exert a myriad of intracellular and extracellular effects
on all cells involved in these mechanisms and especially
endothelial cells, innate and adaptative immune system cells and
tissue-specific cells.

Liver failure is a complex pathophysiological process defined
as acute when occurring on a healthy liver (acute liver failure,
ALF) or acute-on-chronic when a pre-debilitated liver, usually at
an advanced fibrosis/cirrhosis stage, is affected (acute-on-chronic
liver failure, ACLF). These two conditions are characterized by
intense systemic inflammation and immune dysfunction and are
strongly associated with high morbidity and mortality (8, 9).

In this review, we report the growing evidence linking liver
failure syndromes and endogenous lipids mediators, with
particular focus on eicosanoids, specialized pro-resolving lipid
mediators (SPMs) and lysophospholipids classes and discuss
potential therapeutical approaches in these conditions.
2 EICOSANOIDS

2.1 Background
Eicosanoids are bioactive oxygenated polyunsaturated fatty acids
(PUFAs) containing 20 carbons mainly derived from
arachidonic acid (AA) - an omega-6-PUFA - and
predominantly acting in an autocrine and/or paracrine manner
due to their short half-life. They are involved in homeostasis as
well as the initiation, maintenance and resolution of
inflammation. Eicosanoid synthesis has been identified as a
direct outcome of inflammasome activation (10). The class is
composed of more than 100 distinct species and is orchestrated
in one of the most complex pathways to map in physiological
and pathological settings (11). Eicosanoidal biosynthesis
machinery, which is compartmentalized intracellularly, is time-
Frontiers in Immunology | www.frontiersin.org 2
(short or long term stimulation), condition- and cell type-
dependent (11). Of note, the proximity of multiple cell types
also allows the transfer of intermediate eicosanoids and the
creation of true metabolons, temporary structural-functional
complexes formed between sequential enzymes of a metabolic
pathway. The synthesis of all eicosanoids relies on the hydrolysis
of AA of membrane glycerophospholipids, usually esterified
at the stereospecifically numbered (sn) 2 position of
glycerophospholipids, catalysed by the cytosolic phospholipase
A2 (cPLA2) (12). The expression of cPLA2 is stimulated by
active caspase-1 that is generated by multiple inflammasomes
such as neuronal apoptosis inhibitory protein (NAIP)/NOD-like
receptor (NLR) containing a caspase activating and recruitment
domain (CARD) 4 (NLRC4) and NLR family pyrin domain
containing 1 (NLRP1) and is triggered by a change in
intracellular calcium mediated by a receptor-ligand interaction
(10). After its release, AA is processed through three main
biosynthetic pathways, cyclooxygenases (COX), lipoxygenases
(LOX), and cytochrome P450 (CYP), defining the three main
classes of eicosanoids. The main eicosanoids metabolites derived
from AA through these pathways are illustrated in Figure 1.

2.1.1 Cyclooxygenases Pathway
COX-1 and COX-2 participate in the conversion of AA into
prostaglandin (PG) H2, the main precursor of prostanoids (i.e.
prostaglandins, prostacyclins and thromboxanes) (13, 14). The
two COX isoforms are the targets of the widely used nonsteroidal
anti-inflammatory drugs, indicating a role for these enzymes in
pain, fever, inflammation, and tumorigenesis. COX-1 is
constitutively expressed in nearly all tissues with most protein
localized to the blood vessels, smooth muscle cells, interstitial cells,
platelets, and mesothelial cells and participates in homeostasis
maintenance (15). Conversely, COX-2 expression is highly
variable and triggered during inflammation and tumorigenesis
(15). Both COX-1 and COX-2 catalyse the bis-dioxygenation and
reduction to PGH2 (13). PGH2 is subsequently converted into
downstream prostanoids by tissue-specific isomerases that lead to
the final production of only one or two of these. For example,
circulating human platelets form primarily thromboxanes (14).
Conversion of PGH2 into prostaglandins (PGD2, PGE2, PGF2a)
is driven by their synthases (PGDS, PGES, PGFS), while pathways
leading to prostacyclin PGI2 and thromboxane A2 (TXA2)
involve their respective synthases (PGIS and TXAS) (14). All
prostanoids specifically bind to ten G protein-coupled receptors
(GPCRs) that are differentially expressed in cells and tissues. Thus,
PGD2 binds DP1 and DP2, PGE2 binds EP1-2-3-and 4, PGF2a
binds FP, PGI2 binds IP and TXA2 binds thromboxane receptor
(TP) a and b (13, 16). Some COX derivates have also the ability to
bind peroxisome proliferator-activated receptor−a and g (PPARa
and PPARg) which induce anti-inflammatory effects and can
modulate the liver X receptor (LXR) signalling. Through their
binding to the GPCRs and PPARs, prostanoids exert various
effects such as modulation of vascular tone (vasodilatation and
vascular leakage), IL-10 and TNFa levels (7, 17, 18), T cell
activation (19), mast cell maturation (20), eosinophilic
recruitment and allergic response (21), increase in adipogenesis
(22), platelet aggregation (23, 24), and embryo implantation (25).
March 2022 | Volume 13 | Article 867261
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2.1.2 Lipoxygenases Pathway
Three main isoforms of LOX have been identified: 5-LOX, 12-
LOX, and 15-LOX catalysing respectively oxygenation of the 5th,
12th, and 15th carbon atom converting AA into 5-, 8-, 12-, and
15- arachidonic acid 5-hydroperoxide (HpETE), the main
precursors of the LOX pathways. Leukotrienes (LT) are
produced after the concerted action of 5-LOX activating
protein (FLAP) and 5-LOX enzyme converting 5-HpETE to
LTA4. LTA4 after hydrolysation is converted into LTB4, with
high affinity for its receptors BLT1 and BLT2, or conjugated to
cysteine to obtain LTC4, the precursor of the cysteinyl-
leukotrienes (CysLTs) LTD4 and LTE4 which act binging their
receptors CysLTR1 and 2 (11, 13, 26). 12-HpETE are precursors
of 12-oxoETES and hepoxilins A and B, binding TRPV1 and
TRPA1 receptors (27), while 15-HpETE is the main precursor of
lipoxins (LX) A4 and B4 requiring a LOX-LOX pathway and
mostly known as specialized pro-resolving lipid mediators
Frontiers in Immunology | www.frontiersin.org 3
(SPMs) and detailed below (11, 13). Lipoxins have been
described to interact with their specific receptor ALX (also
known as FPR2) (28). LOX derivatives exert therefore peculiar
effects. Thus, while leukotrienes are most known to trigger
neutrophil recruitment, enhancing epithelial barrier function
and vascular leakage (17, 29–31), lipoxins have been reported
to limit neutrophil invasion and favour efferocytosis (32).

2.1.3 Cytochrome P450 Pathway
The CYP pathway comprises many enzymes containing a heme
iron commonly localised in the liver. CYP epoxidases convert AA,
through CYP2C and CYP2J families, into epoxyeicosatrienoic acids
(EETs), which are thought to be anti-inflammatory, whereas the
downstream dihydroxyeicosatetraenoic acids (diHETEs) formed by
soluble epoxide hydrolase (sEH) are thought to be pro-
inflammatory or inactive (11, 33). In parallel CYP4A and CYP4F
generate 20-HETE (13, 34) which bind to GPR75 (35). CYP
FIGURE 1 | Schematic illustration of the different pathways of eicosanoids, specialized pro-resolving mediators (SPMs) and lysophospholipids metabolism. Eicosanoid’s
mediators are in red, SPMs mediators in green and lysophospholipids mediators in blue. Enzymes are in round grey areas, common receptors in rectangular grey
areas and alternative receptors in rectangular orange areas. ATX, autotaxin; BLT, leukotriene receptor, C1P, ceramide-1-phosphate; CERS, ceramide synthases; COX,
cyclooxygenase; PLA2, phospholipase A2; CYP, cytochrome P450; CysLTs, cysteinyl leukotrienes; CysLTR, cysteinyl leukotrienes receptors; DHA, docosahexaenoic
acid; DP, prostaglandin D receptor; DPA, docosapentaenoic acid; EET, epoxyeicosatetraenoic acid; EP, prostaglandin E receptor; EPA, eicosapentaenoic acid; ERV,
E-series resolvin receptor; FA, fatty acid; FLAP, 5-LOX activating protein; FP, prostaglandin F receptor; GPR, G protein-coupled receptor; HETE, hydroxy eicosatetraenoic
acid; HpETE, hydroperoxy eicosatetraenoic acid; Hx, hepoxilin; IP, prostacyclin receptor; LGR6, leucine-rich repeat containing G protein-coupled receptor 6; LTB4,
leukotriene B4; LOX, lipoxygenase; LPA, lysophosphatidic acid; LPAR, lysophosphatidic acid receptor; LPC, lysophosphatidylcholine; LPSe, lysophosphatidylserine; LPI,
lysophosphatidylinositol; LX, lipoxin; MaR, maresin; MCTR1, maresin conjugates in tissue regeneration 1; PCTR, protectin conjugates in tissue regeneration; PD,
protectins; PG, prostaglandin; PGS, prostaglandin synthase; PPAR, peroxisome proliferator-activated receptor; RvD, D-series resolvin; RvE, E-series resolvin; RvT,
thirteen-series resolvin; S1P, Sphingosine-1-phosphate; S1PR, Sphingosine-1-phosphate receptor; SM, sphingomyelinase; SPMs, specialized pro-resolving mediator;
SPT, serine -palmitoyl transferase; TRPV, transient receptor potential vanilloide 1; TP, thromboxane receptor; Tx, thromboxane; TXAS, TxA synthase.
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pathway derivative have been reported to mainly bind to PPARs
resulting in the modulation of their target gene expression (36, 37).

2.2 Eicosanoids and Inflammatory
Diseases
AA metabolites are key mediators of the inflammatory response
in acute and chronic settings (38–40). This pivotal role has been
particularly underlined by the efficacy on symptoms of the acute
phase of the inflammatory process of non-steroid anti-
inflammatory drugs (NSAIDs) that preferably target the COXs
pathway in these conditions. New animal approaches with
targeted blockade of the nine GPCRs or their stimulation
through agonists have helped to assess the additional role of
eicosanoids in chronic inflammatory processes. Prostaglandins
(particularly PGE2 and PGI2) act as cytokine amplifiers and
drive the switch between acute and chronic inflammation (41,
42). The mechanisms involved in this switch have been
summarized recently by Chiurchiù et al. and Leuti et al. (1):
enhancement of the pro-inflammatory cytokines release cascade
(2), intensification of innate immune response to pathogen- and
damage-associated molecular patterns (PAMPs and DAMPs)
(3), De novo differentiation of immune cells (4), recruitment of
specific pro-inflammatory subsets of T helper cells, and (5)
increase of pro-inflammatory genes induced by cytokines (6,
13). In cardiovascular diseases, several pathophysiology aspects
and therapeutic approaches are based on eicosanoid pathways.
Indeed, TXA2 is produced by platelets and has a haemostatic role
inducing their aggregation, conversely, PGI2 that is synthesised
by endothelial cells in macro vessels inhibits platelet aggregation,
decreases leukocyte recruitment and promotes vasodilation (43).
Of note, it has been reported an increased density of vascular
expression of thromboxane receptor in patients with
atherosclerosis (44). A low dose of aspirin decreases
cardiovascular risk by decreasing TXA2 formation without
inhibiting PGI2 formation. Moreover, the common risk factors
of cardiovascular diseases such as smoking, obesity, diabetes, and
hypertension are associated with significant modifications in
eicosanoids metabolism (45), favouring chronic inflammatory
process. In auto-immune diseases, eicosanoids metabolism
disturbances have been documented in rheumatic diseases and
particularly in rheumatoid arthritis (RA) (46, 47), systemic lupus
erythematosus (SLE) (48) and celiac disease (49–51). For
instance, in animal models of RA, as well as in patients,
overexpression of cPLA2, COX-2 in joints and enhanced levels
of prostanoids have been reported (47, 52–54). Interestingly,
knocked out murine models for PGES and their receptors exhibit
impaired inflammatory responses and less severity of induced
RA (55, 56). The role of eicosanoids in Crohn’s disease (CD) and
ulcerative colitis (UC) natural history have been studied since the
1980s. Eicosanoids are thought to play a dual role in the
maintenance of the chronic inflammatory state observed in
IBD. Indeed, while some prostaglandins (PGE2 and PGD2)
seem to exert an anti-inflammatory actions and are associated
with long-term remission from UC as well as in murine models
of colitis (57, 58), leukotrienes are overexpressed in patients with
CD and UC (59–61). However, a specific inhibitor of
Frontiers in Immunology | www.frontiersin.org 4
leukotrienes targeting FLAP (FK-590) failed to clinically
improve UC in patients (62).

2.3 Eicosanoids in Liver Failure Syndromes
2.3.1 Eicosanoids in Acute Liver Failure
Although COX inhibitors are associated with drug-induced liver
injury (DILI) (63), prostanoids based modulation in ALF may be
beneficial. In acetaminophen (APAP) induced liver injury in mice,
liver AA and cyclooxygenase expression are correlated to
transaminitis. Moreover, the blocking of COX-2, but not COX-1, or
its deficiency improved liver injury in APAP-induced (64) and
ischaemia-reperfusion (I/R)-induced liver injury respectively (65).
On the other hand, transgenic expression of COX-2 in hepatocytes
accelerates endotoxin-induced acute liver failure in a
lipopolysaccharide/d-galactosamine (LPS/GalN) animal model
(66). These results highlighted the potential role of COX-2 derived
prostanoids in liver injury. The blockade of monoacylglycerol lipase
(MAGL), connecting the endocannabinoid pathway to eicosanoids
(67), improved liver injury particularly by inhibiting eicosanoids
production by hepatocytes (67). Prostanoids, particularly PGE1,
have been associated with immunoregulatory and non-specific
‘‘cytoprotective’’ effects, together with the improvement of vascular
supply to ischemic organs (68–70). This is particularly interesting in
the field of liver transplantation where organs can have ischaemic
damage leading to primary nonfunction and need for re-
transplantation. However, two randomized-controlled studies on
PGE1 in liver transplantation were not associated with any
improvement in patients and graft survival (71, 72) nor in patients
with ALF (73). Prostacyclin (PGI2) was firstly reported to be
hepatoprotective and improving survival in a LPS/GalN model of
ALF (74). PGI2, through its vasodilator effect, has been suggested to
improve liver perfusion and oxygen delivery in patients with ALF
treated with vasopressors (75). Moreover, Beraprost sodium, a
prostacyclin analogue, showed hepatoprotective effects in liver
injury animal models, increasing hepatic blood flow and reducing
pro-inflammatory cytokines (76, 77). After these encouraging
findings, most experimental and clinical studies focused on PGE2 in
the acute liver failure setting. PGE2 acts, through the wnt signalling,
synergistically with N-acetylcysteine (NAC) to prevent liver damage
and APAP-associated toxicity (78–81). In a model of fulminant viral
hepatitis, the hepatoprotective effect of 16,16 dimethyl PGE2
(dmPGE2) was attributed to the blocking of a procoagulant
monocyte/macrophage phenotype (82). In parallel, the microsomal
prostaglandin E synthase (mPGES) -1/PGE2/EP4 pathway is
enhanced during hepatic ischemia-reperfusion by directing
macrophages into a pro-inflammatory phenotype (83) highlighting
the probable disease-specific effects of PGE2. Of note, the benefit of
mesenchymal stem cell transfusion in murine models of ALF is
dependent on PGE2 secretion from the transfused cells promoting
hepatocyte proliferation (84, 85). Regarding 5-LOX pathway
metabolites, some authors have reported an improvement in LPS/
GalN induced liver injury with 5-LOX inhibitor pre-treatment. This
led toadecrease inLTB4andED-1positivecells in the liver suggesting
a beneficial inhibitory effect onmacrophages activation (86). Kupffer
cells are pivotal cells involved in the necro-inflammatory liver injury
process. In the carbon tetrachloride(CCL4)-induced liver injury
March 2022 | Volume 13 | Article 867261
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model, an inhibitor of FLAP, Bay-X-1005, decreased liver damage by
depleting the Kupffer cell pool and reduced LTs and CysLTs
expression in the liver (87). Of note, CysLTs were also reported to
increase in liver injury model (88). Their specific inhibition by
Montelukast®, an antagonist of CysLT receptor 1, decreased APAP-
injurybyupregulatinghepaticglutathione/glutathionedisulfide levels
and reduction of oxidative stress (89). These data have not yet been
confirmed in the clinical setting. Studies evaluating eicosanoids (e.g.
lipoxins) derived SPMswill be discussed in the SPMs section. To our
knowledge, the other eicosanoids andparticularly those derived from
theCYPpathway have not been evaluated in the setting ofALFwhile
dataareavailable incirrhosis,metabolicliverdiseaseandviralhepatitis
(90). Taken together, eicosanoids pathways have been demonstrated
to play a dual role in ALF, both pro-and anti-inflammatory by
modulating hepatocyte death, proliferation and innate immune cell
phenotype.Theevidenceofeicosanoids involvement inALFandtheir
potential therapeutic implications have been summarized inTable 1
and illustrated in Figure 2.
Frontiers in Immunology | www.frontiersin.org 5
2.3.2 Eicosanoids in Acute on Chronic Liver Failure
Lipidomics approaches have recently unveiled the potential
significance of eicosanoids metabolism disturbance in ACLF
although mainly without providing new mechanistic insights.
A study on the CANONIC cohort determined plasma levels of
100 lipid mediators by liquid chromatography coupled to
tandem mass spectrometry (LC-MS/MS) in patients with
ACLF, as compared to patients with acute decompensation of
cirrhosis (AD) and healthy controls (HC). Eleven lipid mediators
discriminated HC from patients at any stage of disease and
among them 5 derivates of AA: 8-HETE, 20-HETE, 11,12-
DiHETrE, 14,15-DiHETrE and 11-keto-TXB2. Two other AA-
derived lipid mediators, LTE4 and 12-HHT, shaped a minimal
plasma fingerprint discriminating patients with ACLF from
those without and LTE4 was associated with disease severity
and short-term mortality (101). Serum and faecal lipids
mediators’ concentration in alcoholic hepatitis (AH), one of
the major precipitants of ACLF, have been associated with the
TABLE 1 | Eicosanoids, specialized pro-resolving mediators (SPMs) and lysophospholipids and their known pathways involved in acute liver failure.

Class Major
pathway

Mediator Known
receptors

Pathophysiological roles in acute liver failure Refs

Eicosanoids COX PGE1 EPs TNFa-iNOS dependent hepatoprotective effects
↑vasodilatation with ↑vascular supply
Benefit not confirmed in randomized trials

(68–73)

PGE2 EPs ↓APAP-liver injury through ↓NFkB, ↓iNOS, ↑wnt with ↓apoptosis ↑proliferation
↓viral-induced liver injury by ↓procoagulant activity
↑I/R injury by ↑proinflammatory macrophage through PGE2-EP4 axis
↑hepatocyte proliferation after mesenchymal stem cell transfusion by ↓inflammasome
activation and ↑macrophage M2 phenotype

(78–83,
85)

PGI2 IP
PPARd

↑liver perfusion in patients
↑hepatic blood flow, ↓pro-inflammatory cytokines and ↑survival in experimental models

(74–77)

5-LOX LTB4 BLT1 and 2
PPARa

↓LTB4 either by 5-LOX inhibitor or FLAP inhibitor was associated with ↓necro-inflammatory
features with ↓TNFa
↓Kupfer cell activation/number and ↓MMP2 in LPS/GalN and CCL4 models.

(86, 87)

CysLTs CysLTR1 and
2

↑LTC4 in LPS/GalN model
↓CysLTs by CysLTR1 inhibition led to ↓necro-inflammatory features with ↓ROS, ↓JNK1/2
and ERK1/2 activation

(88, 89)

SPMs 5-LOX LXA4 ALX ↓LPS/GalN-induced liver injury in dose dependent manner with ↓NFkB ↓Kupfer cell activation
↓cell deaths pathways

(91)

5-, 12-, 15-
LOX

RvD1 DRV1 ↓TNFa, ↓MPO, ↑Glutathione, ↓ROS alleviating liver injury in a HO-1 dependent manner in
CCL4 model

(92)

RvD2 DRV2 ↓NETs, ↓liver injury, ↑survival in double hit rat model of major burn (93)
Lysophospholipids SM Ceramide * Pivotal in hepatocyte cell death

↑ in ALF
↑TNFa-induced hepatocyte damages and ↑apoptosis in LPS-GalN model
↓SAM level, ↑caspase activation and ↑liver damage in TNFa-induced liver injury

(94–96)

SK1 and 2 S1P S1P1 to 5 ↑in I/R models, ↑NFkB and iNOS activation, ↑mitochondrial depolarization, ↑neutrophils
infiltration
↑in RHDV, ↑TNFa, ↑NFkB, ↑TLR4 expression in the liver
↑in CCL4 and DMN models, selective inhibition of S1P2 ↑hepatocyte proliferation
↓apoptosis through AKT activation in in TNFa-induced hepatocyte injury

(97–
100)
March 2022 | Volume 13 | Articl
*Ceramide act mainly as a precursor and is metabolized by ceramide kinase and ceramidase into the highly active ceramide 1 phosphate and sphingosine without any binding on a specific
target receptor.
5-LOX, 5 lipoxygenase; AD, acute decompensation; ALX, lipoxin receptor; APAP, acetaminophen; BLT1 and 2, leukotriene B4 receptors; CCL4, carbon tetrachloride; COX,
cyclooxygenase; CysLTs, cysteinyl leukotrienes; CysLTR1 and 2, Cysteinyl leukotrienes receptors; DMN, dimethylnitrosamine; DRV1 and 2, resolvins receptors; EPs, prostaglandin E
receptors; ERK, extracellular signal-regulated kinase; FLAP, 5-LOX activating protein; HO-1, hemo oxygenase-1; iNOS, inductible NOS; IP, prostacyclin receptor; I/R, ischemia
reperfusion; JNK, janus kinase; LTB4, leukotriene B4; LPS/GalN, lipopolysaccharide/d-galactosamine; LXA4, lipoxin A4; MMP2, metalloproteinase 2; MPO, myeloperoxidase; NETs,
neutrophil extracellular traps; NFkB, nuclear factor-kappa B; PGE1, prostaglandin E1; PGE2, prostaglandin E2; PGI2, prostacyclin; PPARd, peroxisome proliferator-activated receptor;
RHDV, rabbit hemorrhagic disease virus; ROS, reactive oxygen species; RvD1, resolvin D1; RvD2, resolvin D2; S1P, sphingosine 1 phosphate; S1P1 to 5, S1P receptors; SAM, S-
adenosyl-L-methionine; SM, sphingomyelinase; SK1 and 2, sphingokinases; TNFa, tumor necrosis factor a.
Eicosanoids are indicated in red, SPMs in green and lysophospholipids in blue.
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pathological features of the disease, including biochemical
markers, such as albumin, disease severity scores, including
Model for End-Stage Liver Disease (MELD), as well as survival.
Authors reported profound changes in the profile of serum and
faecal lipid mediators in alcohol-related liver disease and AH
(e.g. increase in a chemical cluster of HETE, primarily
lipoxygenase-derived oxidized products of AA). According to
variables importance of projection scores (VIP), many AA
derivatives were identified in both serum (8,9 DiHETrE –
Frontiers in Immunology | www.frontiersin.org 6
eicosanoids derived from CYP pathway, LTB4, 12S-HETE) and
faeces (TXB2, 11,12- and 14,15-EpETrE - eicosanoids derived
from CYP pathway, 9-, 8S- and 11-HETE). Of particular interest,
the eicosanoid 20-HETE was associated with increased hepatic
steatosis and polymorphonuclear neutrophils liver infiltration as
well as 90-day mortality (102). Patients with ACLF have
circulating oxidized forms of albumin, namely human non-
mercaptalbumin 1 (HNA1) and 2 (HNA2) (103, 104), which
affect eicosanoids metabolism. This causes indeed a decrease in
FIGURE 2 | Schematic illustration of the pathophysiology of acute liver failure (ALF- left panel) and acute on chronic liver failure (ACLF - right panel). The main
endogenous bioactive lipids are identified with colours: eicosanoids in red, specialized pro-resolving lipid mediators (SPMs) in green, lysophospholipids in blue. Reported
effects of the underlined mediators illustrate only investigation in sepsis models. Left panel: ALF starts with an acute liver insult (viral, toxic, ischemia, traumatism)
occurring on a healthy liver leading to the release of danger-associated molecular patterns (DAMPS), inflammasome activation and secretion of pro-inflammatory
cytokines and chemokines, coagulation activation and mitochondrial dysfunction leading to the release of reactive oxygen species (ROS). In ALF, a global increase in
eicosanoids mediators and ceramide has been reported while the global trend of SPMs level is not known. The consequences are mainly those of perpetuating
hepatocytes damages (cell death by necrosis, apoptosis, defect in liver regeneration aggravated by resident macrophages activation) and activation of circulating
immune compartment through a pro-inflammatory phenotype (bacterial killing with phagocytosis, secretion of pro-inflammatory signals favouring leukocytes recruitment
and tissue infiltration). A switch to a pro-restorative phenotype (decreased bacterial killing capacity and phagocytosis, increased efferocytosis function) occurs during
the disease course exposing leading to systemic immunosuppression. All together these mechanisms lead to severe systemic inflammation and when uncontrolled
infection, multi-organ failures and death. The effect investigated in experimental and translational studies of each lipid mediator is reported. (+) or (-) corresponds to its
action on the pathophysiologic step (e.g., PGE1 decreases the hepatocytes damages in experimental models of ALF). Right panel: ACLF starts with a precipitating
event (e.g., alcoholic hepatitis, infection, drug-induced liver injury, hepatitis B reactivation, gastrointestinal bleeding), occurring on a chronically affected liver. This leads
to an increase in bacterial translocation, mitochondrial dysfunction with the generation of ROS and pro-inflammatory oxidized form of albumin, inflammasome activation
and secretion of pro-inflammatory cytokines and chemokines. In ACLF, a global increase in eicosanoids mediators and LPA and a decrease in SPMs and LPC levels
has been reported. The consequences are mainly a release of pathogen-associated molecular patterns (PAMPs) and DAMPs leading to intense systemic inflammation.
The circulating immune compartment can be either pro-inflammatory or pro-restorative favouring infection, organ failures and death. As for the left panel, the effect
investigated in experimental and translational studies of each lipid mediator is reported. (+) or (-) corresponds to its action on the pathophysiologic step (e.g., PGE2
favours the pro-restorative phenotype of the immune cell compartment). The bottom of the figure reports the different molecules that were clinically shown to modulate
the action of the lipid mediator reported in the left and right panels. ATX, autotaxin, C1P, ceramide-1-phosphate; COX, cyclooxygenase; CysLTs, cysteinyl leukotrienes;
DAMPs, danger-associated molecular patterns; FLAP, 5-LOX activating protein; LTB4, leukotriene B4; LOX, lipoxygenase; LPA, lysophosphatidic acid; LPAR,
lysophosphatidic acid receptor; LPC, lysophosphatidylcholine; LX, lipoxin; MaR, maresin; MCTR1, maresin conjugates in tissue regeneration 1; PAMPs, pathogen-
associated molecular patterns; PG, prostaglandin; RvD, D-series resolvin; RvE, E-series resolvin; S1P, Sphingosine-1-phosphate; S1PR, Sphingosine-1-phosphate
receptor; SPMs, specialized pro-resolving mediator.
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effective albumin binding capacity impairing its activity as carrier
of eicosanoids and particularly prostanoids (105, 106). Moreover,
HNA1 has a direct pro-inflammatory effect and has been shown
to up-regulate the expression of eicosanoid-generating enzymes
(i.e. COX-2 and mPGES-1) and the production of inflammatory
eicosanoids (PGE2, PGF2a, TXB2 and LTB4) in peripheral
blood mononuclear cells (PBMC) and marginal neutrophils
(107). Numerous studies have focused on the modulation of
the eicosadome and particularly prostaglandins in liver disease
and patients with ACLF (108). PGE2 has widespread
immunomodulatory roles and is a key mediator of myeloid-
derived cell dysfunction inhibiting NADPH oxidase-mediated
bacterial killing via the upregulation of cAMP and inhibition of
FcgR-mediated phagocytosis (109, 110). In a highly cited proof of
concept study, O’Brien et al. observed elevated plasma PGE2
concentrations in patients with AD. Plasma from these patients
suppressed macrophage proinflammatory cytokine secretion and
bacterial killing in vitro in a PGE2-dependent manner via EP2
(111). These effects were not observed with plasma from patients
with stable cirrhosis. In vivo administration of human albumin
solution to these patients significantly improved the plasma-
induced impairment of macrophage proinflammatory cytokine
production in vitro. Two mouse models of liver injury also
exhibited EP2-mediated immunosuppression. Conversely,
treatment with COX inhibitors or albumin restored immune
competence and survival following infection with group B
Streptococcus. These findings suggest that albumin infusions
may be used to reduce circulating PGE2 levels, by attenuating
immune suppression and reducing the risk of infection in
patients with AD (111). In this study, the authors reported an
improvement in monocyte-derived macrophage (MDM)
functional capacity and a switch in lipid mediator before and
after albumin infusion (112). Through a targeted lipidomic
approach, the mediators showing the greatest discriminatory
profile were 5,12S-HETE, 5,15-diHETE and leukotrienes (LTB4
and CysLTs). Surprisingly, the effect of albumin on PGs
circulating level was different (decrease vs increase) according
to the baseline inflammatory state (hyperactivated vs
hypoactivated respectively) suggesting that albumin infusion
does not have a unique effect on PGs circulating levels (112).
This hypothesis was particularly explored in a large prospective
randomized study that was however negative on the primary
endpoint (113). The authors secondly explored how the PGE2
pathway modulate monocyte dysfunction in patients with AD,
who might benefit the most from intervention to prevent ACLF.
They reported that PGE2 is produced by both hepatocytes and
circulating monocytes mainly via the COX-/microsomal PGES-1
and COX-2 pathways respectively (114). In this study, through a
specific antagonist approach, PGE2 was shown to mediate
monocyte dysfunction mainly via its EP4 receptor (instead of
EP2) (114). In HBV-related ACLF, an increase in circulating
PGE2 was also observed. However, in this study, the modulation
of the PGE2-EP2 axis by EP2 antagonists led to an increase in the
secretion of IFN-g, IL-6, TNF-a, and MCP-1 as well as ROS
production in monocytes and neutrophils (115). The effects of
PGE2 via EP2 and/or EP4 in ACLF could therefore vary
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according to the underlying disease and needs to be further
explored. The evidence of eicosanoids involvement in ACLF and
their potential therapeutic implications have been summarized
in Table 2 and illustrated in Figure 2.
3 SPECIALIZED PRO-RESOLVING LIPID
MEDIATORS

3.1 Background
Scientists recently unveiled the bioactive effects of a class
involved in the resolution of inflammation counterbalancing
the main accepted pro-inflammatory effects of eicosanoids’
class. These molecules participate in the resolution of
inflammation but also modulate host defence, pain, and tissue
regeneration (32). Lipoxins (LXs) – first discussed above as AA
derivatives - comprise a family of trihydroxy-eicosanoids
including LXA4 and LXB4 and the aspirin-triggered epimers
15−epi-LXA4 and 15−epi-LXB4 (132, 133). This family has
grown to include di- and tri-hydroxylated fatty acids derived
from the w−3 fish oils eicosapentaenoic acid (EPA), n-3
docosapentaenoic acid (DPA) and docosahexaenoic acid
(DHA) that have been isolated from inflammatory exudates
and leukocytes to create the superfamily of SPMs (32). DHA,
EPA and DPA are metabolised by the same pathway of
eicosanoids (COX-, LOX- and CYP-pathways) ultimately
leading to the transcellular biosynthesis of Resolvins, Maresins,
Protectins and Lipoxins (13, 32). They act as the main
orchestrators of inflammatory resolution through the
coordinated action of neutrophils, macrophages, platelets and
endothelial cells (13, 132). These cells are indeed involved in class
switching of lipid mediators after eicosanoids storm as firstly
described more than 20 years ago (7). SPMs also prevent chronic
inflammation and autoimmunity by limiting the persistent
activation and the autoreactive responses of almost all subsets
of T lymphocytes (134–136). As eicosanoids, SPMs are
synthesised from PUFA detached from the membrane by the
action of PLA2. PLA2 has been involved in class switching lipid
mediators during inflammasome activation enabling the release
of the precursors of SPMs pre-emptively stored in one cell to
initiate pro-resolution signals (137). The different pathways are
illustrated in Figure 1.

3.1.1 DHA-Derived SPMs
DHA is the common precursor of the most heterogeneous class
of SPMs including Maresins (MaR1 and MaR2), firstly
discovered SPMs (138), D-series Resolvins 1-6 (RvD1-6),
derived from DHA as opposed to E-series derived from EPA,
secondly discovered SPMs (139) and Protectins (PD1 and PDX).
Tissue-regenerative potent disulfidoconjugates of Maresins
(MCTRs), Resolvins (RCTRs) and Protectins (PCTRs) have
been recently discovered (140, 141) and merged under the
denomination of Cysteinyl-SPMs (142). Maresins have been
reported to alleviate pain and favour tissue regeneration
(143, 144) while Resolvins facilitate monocyte/macrophage
uptake of debris, efferocytosis, and killing/clearing microbes
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(139, 145–147). Protectins have been demonstrated of protective
effect in retina, brain and pain release (148, 149).

The generation of DHA-derives SPMs requires metabolisation
by cell-specific LOX- and COX-pathways enabling the biosynthesis
of 14- and 17-HpDHA (140, 150) that are converted to key
transient epoxy derivatives 4- and 7- hydroperoxy17-HDHA. D
series Resolvins are then generated from 4(S)- and 7(8)-epoxy 17-
HDHA, Protectins from 16,17 epoxy-protectin, andMaresins from
13S,14S-epoxy-maresin after hydrolysation (13). Alternatively, the
epoxy-maresin can be transformed into MCTRs through the
addition of glutathione molecule (by LTC4S or glutathione
transferase (GSTM4) and metabolisation by g-glutamyl
transferase (GGT) and dipeptidase (13, 151). Similar series of
reactions are observed to generate PCTRs from epoxy-protectins
(152, 153).

While the field of knowledge about SPMs is growing, the
number of identified receptors in DHA-derived SPMs is still low.
Frontiers in Immunology | www.frontiersin.org 8
Indeed, only 4 have been reported so far: RvD1, RvD3 and RvD5
binding GPR32, a G protein-coupled orphan receptor (DRV1)
(140); GPR18 (DRV2) has been identified as RvD2 receptor
(154), GPR37 has been reported to regulate macrophage
phagocytosis through PD1 binding (155) and LRG6 (Leucine-
Rich Repeat Containing G Protein-coupled Receptor 6) has been
reported as a receptor of MaR1 (156). MaR1 has also been to act
as an antagonist of the leukotrienes’ receptor BLT1 (157). Of
note, some Resolvins, namely RvD1 and RvD3, are also known to
bind the lipoxins’ ALX receptor (13) while MCTRs bind CysLT
receptors (121).

3.1.2 AA-Derived SPMs
AA derives-lipoxins, LXA4 and LXB4, decrease neutrophil
recruitment on inflammation sites as well as enhance
efferocytosis (32, 140). They are produced through two
pathways. They can be synthesised either as downstream of
TABLE 2 | Eicosanoids, specialized pro-resolving mediators (SPMs) and lysophospholipids and their known pathways involved in acute on chronic liver failure.

Class Major pathway Mediator Known
receptors

Pathophysiological roles in acute on chronic liver failure Refs

Eicosanoids COX PGE2 EPs ↑by oxidized albumin form.
↑in experimental models of ACLF.
↓proinflammatory macrophages phenotype with ↓bacterial killing modulated by albumin
infusion in a EP2 and/or 4 dependent manners.
↑proinflammatory monocytes and neutrophils and ↓phagocytosis in HBV-ACLF model.

(111–
115)

TXAS 12-HHT BLT2 ↑in ACLF and part of the minimal fingerprint differentiating ACLF vs. patients with AD
↑ with kidney, coagulation, and circulatory failure

(101)

5-LOX LTE4 CysLTRs ↑in ACLF and part of the minimal fingerprint differentiating ACLF vs. patients with AD
↑with disease severity, bacterial infection, portal hypertension and mortality.

(101)

CYP4A/F 20-HETE GPR75 ↑with hepatic steatosis, neutrophils infiltration and mortality in AH.
Inversely correlated to albumin concentration.

(35, 102)

SPMs 5-LOX LXA5 TP ()? ↓in ACLF, negatively correlates with IL-8 level, cell death marker, liver failure and death. (101,
116)

5-, 15-LOX RvD1 DRV1
ALX

↓excessive inflammation ↓neutrophils recruitment ↓bacterial burden ↑phagocytosis
monocytes and macrophages in CLP sepsis models.
↓HMGB1 ↓excessive inflammation ↓neutrophils recruitment in LPS/GalN model
↓hepatocyte apoptosis in a dose dependent manner in LPS/GalN model

(117,
118)

CYP450, aa-
COX, 5-LOX

RvE1 ERV ↑mitochondrial function ↓LPS induced cardiac dysfunction ↓bacterial burden in sepsis
models ↑phagocytosis of macrophages

(119,
120)

12-LOX MCTR1 CysLTRs
antagonist

↓LPS induced kidney and cardiac dysfunction ↓ferroptosis and ↑survival in CLP sepsis
model

(121–
123)

aa-COX, 5-LOX AT-RvD1 ALX ↓integrin expression in kidney ↓IL-6 level and blocked STAT3 phosphorylation ↓kidney
injury in LPS induced AKI

Lysophospholipids SK1 and 2 S1P S1P1 to 5 ↓observed in patients with AD, ALCF and sepsis
↓associated with worse outcome
↑pathogen recognition and killing
modulated by albumin level

(124–
128)

PLA1 and 2 LPC TLR 2/4
GPR132

↓ in ACLF and correlated to ACLF grade and anti-inflammatory monocyte phenotype
↑after albumin infusion
↑neutrophils bactericidal activity and ↓mortality in CLP sepsis model

(124,
129–131)

ATX LPA LPAR1 to 6 ↑in ACLF
↓pro-regulatory phenotype of CD14+ monocytes: ↑TNFa and IL-6 secretion but no
effects on phagocytosis

(129)
March 2022 | Volume 13 | Arti
5-LOX, 5 lipoxygenase; aa-COX, aspirin acetylated cyclooxygenase; AD, acute decompensation; AH, alcoholic hepatitis; AKI, acute kidney injury; ALX, lipoxin receptor; ATX, autotaxin;
BLT 2, leukotriene B4 receptor 2; CLP, caecum ligation an puncture; COX, cyclooxygenase; CysLTRs, cysteinyl leukotrienes receptors; DRV, resolvins receptor 1; EPs, prostaglandin E
receptors; ERV, resolvin receptor; GPR75, G-protein coupled receptor 75; HMGB1, high mobility group box-1; LPA, lysophosphatidic acid; LPAR1 to 6, lysophosphatidic acid receptors;
LPC, lysophosphatidylcholine; LPS/GalN, lipopolysaccharide/d-galactosamine; LTE4 leukotriene E4; LXA5, lipoxin A5; MCTR1, maresin conjugates in tissue regeneration 1; MPO,
myeloperoxidase; PGE1, prostaglandin E1; PGE2, prostaglandin E2; PLA1 and 2, phospholipase A1 and A2; RvD1, resolvin D1; RvE1, resolvin E1; S1P, sphingosine 1 phosphate;
S1P1 to 5, S1P receptors; SK1 and 2, sphingokinases; STAT3, Signal transducer and activator of transcription 3; TNFa, tumor necrosis factor a, TP, thromboxane receptor; TXAS,
thromboxane synthase.
Eicosanoids are indicated in red, SPMs in green and lysophospholipids in blue. Lipid mediator underlined means that the pathophysiological roles have been reported in sepsis
models only.
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LTA4 by 12-LOX activity yielding epoxide precursor of lipoxins
(13, 158) or directly from AA by a sequential 15-LOX and 5-LOX
pathway (159). A G protein-coupled receptor, formyl peptide
receptor 2 (FRP2/ALX), has been identified as lipoxins’ target
(160). Lipoxins are particularly reported to decrease neutrophil
recruitment on inflammation sites as well as enhance
efferocytosis (32, 140).

3.1.3 EPA-Derived SPMs
The E series Resolvins are the main SPMs biosynthesised from
the CYP pathway to 18-HpEPE and converted into RvE1 and
RvE2 by a concerted action of 5-LOX, a peroxidase and a
hydrolase or into RvE3 by a 12/15-LOX (161). Recently, a
novel E series Resolvin, RvE4, was uncovered. Its biosynthesis
from EPA requires two subsequent lipoxygenations (162). The
chemerin receptor 23 (ChemR23) also known as E-resolvin
receptor (ERV) engage RvE1 and RvE2 and is the only ERV
described to date. As MaR1, RvE1 and RvE2 can antagonise the
leukotrienes’ receptor BLT1 (140). E-series Resolvins are known
to be involved in alleviation of pain particularly in the post-
traumatic setting (163, 164) and modulation of innate immune
cell phagocytosis and transmigration as well as apoptosis signals
(140, 165–168). Of note, LXA5 and LXB5 are produced in
leukocytes through the same sequential 15-LOX and 5-LOX
pathways as LXs derived from AA (116, 169). Only a few
studies evaluated their biological abilities that were reported to
be similar to those of AA-derived LXs (170).

3.1.4 n-3 DPA-Derived SPMs
Recently DPA has been identified as another precursor of SPMs.
The latter is represented by the 13-series Resolvins (RvTs) and
the n-3 DPA-derived counterpart of DHA-derived SPMs termed
RvDs n-3 DPA, PDs n-3 DPA and MaRs n-3 DPA (171–173) for
which only one receptor has been identified so far GPR101
engaging RvD5 n-3 DPA (174). They have been shown to
participate in leukocyte phagocytosis and efferocytosis
(174, 175).

3.1.5 Aspirin-Triggered SPMs
Aspirin, through COX-2 acetylation and p450 enzymes,
contributes to the biosynthesis of R-configuration alcohols in
Lipoxins, Resolvins and Protectins (176) identified as being the
aspirin-triggered (AT)-SPMs, including AT-epimers of Lipoxins
(15−epi-LXA4 and 15−epi-LXB4), AT-Rvs and AT-PDs. These
AT-SPMs have been largely reported to be involved in the known
effect of aspirin such as pain release and pro-resolving functions
(140, 176). Of note, statins also lead to COX-2 S-nitrosylation
that, like aspirin, changes the enzyme’s catalysis to produce
predominantly R-epimer–containing intermediates, exemplified
by novel 13-series resolvins (RvTs) from vascular n-3 DPA
(140, 172).

3.2 SPMs and Inflammatory Diseases
SPMs are produced by monocytes/macrophages and
granulocytes during acute inflammation, switching from
eicosanoids to SPMs secretion in coordinated waves. SPMs
accumulate on the target site and promote pro-restorative
Frontiers in Immunology | www.frontiersin.org 9
macrophage differentiation, enabling efferocytosis after
neutrophils apoptosis induction. To regulate adaptive
responses, SPMs also promote de novo generation of FoxP3-
expressing regulatory T cells from naive CD4+ T cells (134, 177).
During chronic inflammation, both families of eicosanoids and
SPMs are present, with specific molecules being overly or
inadequately produced, according to the different inflammatory
diseases and tissues introducing the notions of temporal and
spatial resolution. It has been recently advocated that a vast
majority of chronic inflammatory diseases may be related to an
impairment of pro-resolution machinery (6, 13). In
cardiovascular diseases, it has been reported that an imbalance
between SPMs, particularly RvD1, and pro-inflammatory LTB4
promotes the instability of atherosclerotic plaques (178). In
experimental models, MaR1 and RvD2 have been associated
with the prevention of atherosclerosis progression (179), while
RvE1 particularly through its downstream receptor ERV/
ChemR23 has been associated with the modulation of low-
density lipoprotein (LDL) uptake and increased atherosclerotic
plaque size and necrotic core formation (180–183). In chronic
heart failure, a decrease in RvD1 and LXA4 (184, 185) correlating
with clinical parameters has been reported, while in ischemia-
reperfusion models, administration of RvE1 and RvD1 exerted
protective effects on the prevention of fibrosis (186–188). In
autoimmune diseases such as RA, experimental treatment with
RvD1, RvD3, MaR1 led to reduced clinical score and time of
recovery (189–191). Patients with RA had also decreased levels of
MaR1 in synovial fluids while in inactive patients MaR1 levels
were increased (13, 192). In IBD, a lower level of LXA4 has been
reported in the colic mucosa of patients suffering from UC while
remission was associated with a higher expression of LX4 and
ALX receptors (193, 194). In a dextran sodium sulfate (DSS)-
induced colitis in rats the increase in LXA4 after misoprostol
therapy was associated with reduced severity score during both
acute and healing phases (195). Mar1, as well as PD1n-3 DPA
and RvD5n-3 DPA, were reported to exert a protective effect in
DSS-induced colitis and improved by aspirin treatment through
its AT-LXs and AT-RvDs derivatives (175, 196–198).
3.3 SPMs and Liver Failure Syndromes
3.3.1 SPMs and Acute Liver Failure
There are limited investigations on the role of SPMs in acute liver
failure. Lipoxin A4 has been reported as hepatoprotective in a
LPS/GalN model of ALF through a possible inhibition of NF-kB
activation, reducing TNF-a and IL-6 secretion and inhibiting of
hepatocyte apoptosis (91). In a CCl4-induced acute liver injury
model, RvD1 has been suggested to exert anti-inflammatory and
hepatoprotective effects in a heme-oxygenase-1 dependant
manner (92). Interestingly, some authors focused on the
prevention of organ failures in major burns that are associated
with neutrophil decreased migration capacity in parallel to an
excessive activation including the release of neutrophil
extracellular traps (NETs). In a preliminary study, they
observed that administration of RvD2 restored speed and
directionality in neutrophils and reduced mortality in a rat
model of major burn injury. In a second prospective
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randomized animal study, authors reported a protective effect of
RvD2 administration in both liver and kidney burn-induced
injury. They particularly observed a decrease in alanine
aminotransferase (ALT), total bilirubin and a lower amount of
chromatin in the circulation and NETs in tissues in animals
treated with RvD2 (93). The few pieces of evidence of SPMs
involvement in ALF suggest beneficial effect of SPMs by
decreasing systemic inflammation and immune dysfunction as
well as exerting direct hepatoprotective effects. They are
summarized in Table 1 and illustrated in Figure 2.

3.3.2 SPMs and Acute on Chronic Liver Failure
Lipoxins biosynthesis is altered in patients with AD (199).
Recently, in a large targeted lipidomic study in ACLF, an
imbalance between commonly pro-inflammatory-considered
omega-6 AA and anti-inflammatory considered omega-3 EPA
was reported. This suggests an excess of systemic inflammation
that is not effectively counterregulated by pro-resolving
machinery (101). Plasma concentrations of the EPA-derived
LXA5 were associated with liver failure and death and
negatively correlated with IL-8 and death cell markers (101).
The same investigators later confirmed a switch in lipid mediator
profile between survivor and non-survivor in patients with AD.
This switch comprises a large array of SPMs from DHA derived
SPMs including D-series Resolvins (RvD1, RvD2, RvD3, RvD4,
RvD5, RvD6, 17R-RvD1, and 17R-RvD3), Protectins (PD1 and
17R-PD1), and Maresins (MaR1 and MaR2), n-3 DPA-derived
SPMs including Resolvins (RvT1, RvT3, RvT4, RvD1n-3 DPA,
RvD2n-3 DPA, and RvD5n-3 DPA), Protectins (PD1n-3 DPA),
and Maresins (MaR1n-3 DPA), EPA-derived SPMs, namely E-
series Resolvins (RvE1, RvE2, and RvE3) and AA-derived
lipoxins (LXA4, LXB4, 15-epi-LXA4, and 15-epi-LXB4) (200).
However, this switch was not universal in patients with poor
outcomes. Further studies are needed to determine the
pathophysiological significance of these findings particularly in
the field of ACLF that are not available to date.

As recently proposed by Clària et al, in the absence of much
information on SPMs in ACLF, lessons can be learned from
experimental models of sepsis, a condition sharing multiple key
features with ACLF, including major systemic inflammation,
innate immune dysfunction, decreased energy production, and
mitochondrial oxidative dysfunction leading to organ failures (9,
103, 201–203). In caecal ligation and puncture (CLP) sepsis
animal model, RvD1 increased survival by preventing the
activation of the inflammatory response via modulation of
leukocyte trafficking and particularly the neutrophil
recruitment to the infection site as well as enhancement of
bacterial clearance (117, 118). In the LPS/GalN model of
sepsis, RvD1 administration significantly reduced high mobility
group box-1 (HMGB1), TNF-, IL-6 and macrophage
chemotactic protein – 1 (MCP-1) in parallel to a decreased
neutrophil recruitment. Finally, RvD1 was shown to reduce
apoptosis in the liver (204). SPMs, namely Mar1 and RvE1,
have been also involved in mitigating mitochondrial dysfunction
in CLP and PBMCs culture inflammation experiment (119, 205).
RvE1, was also shown to improve survival in CLP models by
enhancing bacterial clearance (120).
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SPMs have also been shown to prevent extrahepatic organ
damage during sepsis, such as myocardial and kidney
dysfunction. Indeed, RvE1 and MCTR1 enabled to improve the
LPS-induced cardiac dysfunction either by modulating
intracardiac inflammatory response or ab improvement of
mitochondrial biogenesis and function in a silent information
regulator 1 (Sirt1) -dependent manner (120, 122). Some SPMs
have also been identified as enhancing the resolution of
inflammation in acute sepsis-induced kidney injury (AKI). AT-
RvD1 has been reported to exert such an effect through a decrease
in integrins expression in the kidney as well as blocking in IL-6
mediated signalling (206). MCTR1 has been shown to suppress
ferroptosis, a newly described cell death pathway, through nuclear
factor-erythroid-2-related factor 2 (Nrf2) and improve AKI as
well as multi-organ injury and survival in CLP sepsis model (123).

SPMs are therefore involved in key mechanisms of immune
response and organ damage in sepsis. Considering this and the
data issued from lipidomic approaches in ACLF there is an
urgent need to explore the impact of the modulation of SPMs
pathways in ex vivo experiments and experimental models of
ACLF. The current knowledge of SPMs involvement in ACLF
has been summarized in Table 2 and illustrated in Figure 2.
4 LYSOPHOSPHOLIPIDS

4.1 Background
Lysophospholipids are derived from two main classes of lipids:
glycerophospholipids and sphingolipids. They are composed of a
long hydrophobic carbon chain and a hydrophilic head group
attached to a glycerol or sphingosine backbone. Hence, these
lysophospholipids display different properties compared with
their original phospholipids or sphingolipids. In cells, these
lysophospholipids are intermediate precursors for the
biosynthesis of other lipids in the cells and their intracellular
concentrations are low. In contrast, these lysophospholipids are
highly abundant in the extracellular environment in which they
bind to protein carriers (207, 208) or can diffuse in the plasma
due to their amphipathic properties. They are important
signalling molecules with a wide range of physiological
functions such as membrane shaping, cell growth and death,
but also involved in the inflammatory processes modulating
innate immune function (13, 209, 210).

4.1.1 Lysosphingolipids
Lysosphingolipids are mainly composed of ceramide and
sphingosine and their phosphorylated derivatives respectively
sphingosine-1-phosphate (S1P) and ceramide-1-phosphate
(C1P). They have in common the sphingosine molecule, which
is an amino alcohol with a long unsaturated carbonic open chain.
Dihydrosphingosine (d18:0) is a product from de novo synthesis
of sphingolipids, from serine and palmitoyl CoA, catalysed by
the rate-limiting enzyme, serine palmitoyl-transferase (SPT) and
a precursor a ceramide itself converted into sphingosine by
ceramidase (Figure 1) and into Ceramide 1-Phosphate (C1P)
after phosphorylation by ceramide kinase. Sphingosine can also
be metabolised from ceramide issued from the conversion of
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membrane sphingomyelin by sphingomyelinase (208, 211, 212).
Sphingos ine-1-phosphate (S1P) i s produced af ter
phosphorylation of sphingosine by the sphingosine kinases 1
and 2 (SK1 and SK2). The effects of S1P are principally mediated
by 5 G-protein coupled receptors S1P-1 to 5. Among these five
receptors, S1P1–3 are widely expressed in various tissue and cell
types while S1P4 and 5 have a rather limited distribution pattern
(208, 213–217). Lysosphingolipids have been implicated in the
regulation of a myriad of cell signals and particularly cell
survival, adhesion, migration and barrier integrity that led to
considering sphingolipids metabolism as a true rheostat of the
inflammatory processes with pro-and anti-inflammatory
capacities (208, 214, 218–220).

4.1.2 Lysoglycerophospholipids
The lysoglycerophospholipids include lysophosphatidylcholine (LPC),
lysophosphatidylethanolamine (LPE), lysophosphatidylserine (Lyso-
PS), lysophosphatidylinositol (LPI), and lysophosphatidylglycerol
(LPG) that are derived from corresponding phospholipids. They are
the products of PLA1 and PLA2 hydrolysation of the membrane
phospholipids. In cells, their concentration is low compared to their
corresponding phospholipids due to the ubiquitous expression of
lysoacyl-transferases, which generate corresponding phospholipids
(208, 221). In contrast, lysoglycerophospholipids are abundant in
interstitial fluids and plasma. After hydrolysation by PLA, all
lysoglycerophospholipids can undergo second hydrolysis through
autotaxin (ATX)/lysophospholipase D (PLD) to generate
lysophosphatidic acid (LPA). LPA can also be produced from
phosphatidic acid (PA), from phospholipids through PLD, or
diacylglycerol through diacylglycerol kinase converted directly to
LPA by the actions of either PLA1 or PLA2 (151, 222). Plasma
LPA species include LPA 16:0, LPA 18:0, LPA 18:1, LPA 18:2, LPA
20:4 and LPA 22:6 while LPC species include four main types, namely
LPC 16:0, LPC 18:1, LPC 20:4, and LPC 22:6. LPC and LPA are the
most bioactive lysoglycerophospholipids. LPC can engage the toll-like
receptors (TLRs) 2 and 4 (223) while its direct action on GPR132/
G2A is uncertain (224, 225). The physiological roles of circulating
LPA are to induce signalling via stimulation of LPA receptors. There
are six known LPA receptors (LPAR1–6) with distinct and
overlapping functions (226) that belong to the same GPCR family
of S1P receptors (13, 227). LPC has been shown to play
immunomodulatory effects, pro- or anti-inflammatory depending
on its biochemical structure, LPC 16:0 vs. LPC 22:4 and 22:6
respectively (208, 228, 229), as well as anti-haemostatic effect
through inhibition of platelet aggregation (230). LPA is known to
exert a very large array of effects depending on time, cells subtype and
condition. For example, the LPA1 receptor has been reported
involved in changes in cell shape through alterations in the actin
cytoskeleton, cell migration, adhesion and cell-cell contact (226,
231, 232).

4.2 Lysophospholipids and Inflammatory
Diseases
C1P and S1P are tightly connected to eicosanoid metabolism
through the cPLA2-COX2 pathway. Indeed, sphingosine kinase
and S1P regulate the expression of COX2 while the ceramide
Frontiers in Immunology | www.frontiersin.org 11
kinase and C1P have been reported to activate cPLA2 in response
to cytokines finally driving the production of PGE2 (233). It has
also been demonstrated that S1P bound to high-density
lipoprotein regulates lymphopoieses and neuroinflammation by
modulation of S1P receptor 1 (S1P1R) pathways (234). Overall,
despite oversimplistic assumptions, sphingosine and ceramide are
mainly described as pro-inflammatory and pro-apoptotic while
S1P and C1P are anti-inflammatory and anti-apoptotic (13, 235).
LPA and LPC are the most studied lysoglycerophospholipids
species modulating acute and chronic inflammatory processes.
While LPC has mainly been reported as pro-inflammatory
(induction of COX2, expression of adherence molecule on
leukocyte as well as chemokine expression favouring tissue
infiltration) (210, 236, 237), LPA seems to exert both anti- and
pro-inflammatory effects in acute and chronic inflammatory
processes respectively according to the few available in vivo
studies (210, 238, 239). In cardiovascular diseases, sphingolipids
are key regulators of aortic atherosclerotic lesions development.
Indeed, sphingolipids levels are directly related to the ability of
macrophages to accumulate cholesterol and to be converted into
foam cells. In keeping with this, sphingomyelin synthetase
deficiency mice are less atherogenic (240, 241) while
atherogenesis has been linked to increased activity of
sphingomyelinase and increased level of ceramide following
acute inflammation (242). In a murine model of myocardial I/R
injury, inhibition of ceramide de novo synthesis particularly
reduced the infarcted area (243). Interestingly, plasma
concentrations of C18:0 and C18:1 ceramides were a strong
predictor of a cardiovascular event in healthy subjects in a
population-based study (244), while C24:1 ceramide and
sphingomyelin were associated with cardiovascular mortality in
patients hospitalised for coronary arteriography (245). Ceramide
also favours lipoproteins aggregation and induced macrophage
foam cells formation (246). In accordance with the anti-
inflammatory effect of phosphorylated derivate reported in some
conditions, circulating S1P levels have been inversely correlated
with atherosclerotic disease (247, 248). These anti-inflammatory
benefits were confirmed with the use of the S1P agonist FTY720 in
multiple models of atherosclerosis in mice (249–254). Besides,
some lysoglycerophospholipids have also been reported to
modulate atherogenesis. For instance, the ATX-LPA axis has
been reported to exert a pro-inflammatory effect with leukocytes
recruitment, while specific LPA4 deletion improved inflammatory
cells recruitment in atherosclerotic lesions (255, 256). In chronic
auto-immune diseases, lysophospholipids are mainly reported to
exert pro-inflammatory signals and participate in the maintenance
the chronic inflammation. As an example, in RA, the axis S1P-
S1PR act on fibroblast-like synoviocytes (FLS) that are involved in
joint destruction to promote the production of pro-inflammatory
cytokines and eicosanoids (13, 257–259). S1P is also involved in
VEGF-driven angiogenesis in osteoblasts in RA (260). Similarly,
lysoglycerophospholipids have been reported as active mediators
of inflammatory maintenance in RA. LPA and LPAR1 levels were
increased in RA patients. LPA treatment-induced pro-
inflammatory signals (IL-6, CCL2 and MMP-3) by FLS, while
antagonism of LPAR1modulated synovial inflammation and bone
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and cartilage damage, induced FLS apoptosis and inhibited
differentiation of TH17 and osteoclasts (13, 261, 262). In SLE,
the S1P-S1PR pathway has been shown in mice and humans to
exert anti-inflammatory effects and prevent disease progression
while improving phenotype (263, 264). Of particular interest, miR-
155, a negative regulator of S1PR, deletion ameliorates
autoimmune inflammation and alleviate lupus-like disease in
mice (265). LPC is elevated in the serum of patients with SLE
and impairs phagocytosis of dead cells by human macrophages
participating in the perpetuation of SLE (266). In IBD, lipidomic
approaches have identified sphingolipids as the most differentially
abundant metabolite in stool (267). The impact of the sphingolipid
metabolism on the IBD development and maintenance have been
exhaustively reviewed recently (268). The sphingosine kinase/S1P/
S1PRs axis is one of the most prominent TNFa-induced
downstream targets in various cells and exacerbated IBD
conditions in a preclinical colitis model and in patients with UC
(269, 270). Deletion of sphingosine kinase 1 was associated with
lower S1P concentrations and reduced severity of dextran sulfate
sodium (DSS)-induced colitis (271). In keeping with these results,
inhibitors of sphingosine kinase were efficient in experimental
models of mice (272, 273). Bacteroides-produced sphingolipids
were shown to cooperate with the sphingolipidome of the host to
maintain gut immune homeostasis (274). Among the few available
data exploring lysoglycerophospholipids in IBD, it is worth noting
that ATX-LPA pathway blocking improved inflammation by
regulating Th17 cell differentiation in DSS-induced colitis (275).

4.3.1 Lysophospholipids and Liver
Failure Syndromes
4.3.1 Lysophospholipids and Acute Liver Failure
TNFa and IL-1b are important mediators of liver inflammation
and injury. In vitro, treatment of hepatocytes with either TNFa
or IL-1b results in increased ceramide accumulation (276–278).
This accumulation has been suggested to be crucial in several
approaches to acute liver injury. For instance, in TNFa-treated
hepatocytes, increased intracellular ceramide resulted in
hepatocellular death by activation of the mitochondrial
membrane permeability transition (279). Sphingomyelinase has
been also here to play a key role in the mediation of liver injury in
TNFa, LPS/GalN- and I/R-induced hepatocyte toxicity (94, 95).
Indeed, sphingomyelinase knockout mice, exhibit minimal liver
injury in these models as sphingomyelinase, and consequent
ceramide accumulation, promotes hepatocyte apoptosis by
mitochondrial targeting of glycosphingolipids, namely
ganglioside GD3 (94), as well as downregulating the liver-
specific methionine adenosyl-transferase 1A. The latter
synthetizes S-adenosyl-L-methionine (SAM) involved in the
production of biogenic amines and glutathione (GSH) and
exert a hepatoprotective role (96). In I/R-induced liver injury,
the sphingosine kinase 2 has been shown to modulate
mitochondrial dysfunction and hepatocyte death. Following I/
R, hepatic SK2 and S1P mRNA expression was increased.
Selective inhibition of SK2, resulting in inhibition of S1P
production, decreased mitochondrial depolarisation in parallel
to a decreased expression of inducible nitric oxide synthase,
phosphorylated NFkB-p65, TNFa and neutrophil infiltration
Frontiers in Immunology | www.frontiersin.org 12
(97). In the rabbit haemorrhagic disease virus (RHDV) model
of ALF, melatonin, known to be hepatoprotective, was reported
to exert these effect by inhibiting the SK1/S1P pathway and the
subsequent proinflammatory signalling (98). S1P2 deficient mice
showed accelerated regeneration and decreased fibrosis deposit
after liver injury in CCL4 and dimethylnitrosamine (DMN)
administration models (99). However, S1P also showed anti-
apoptotic effect on hepatocytes in TNFa liver injury (100). To
our knowledge, the scarce data of lysoglycerophospholipids in
ALF are descriptive and issued from metabo-lipidomic
approaches. LPCs were reported decreased in pig and mouse
models of ALF (280, 281) while plasma LPA and ATX activity
was increased in liver injury in rats and related to disease severity
(282). These data together suggest a metabolization of LPC to
LPA by ATX during ALF that should be further explored to
understand how lysoglycerophospholipids metabolism impacts
ALF natural history. In ACLF, we recently reported that LPC-
ATX-LPA axis modulates innate immunity (see below). Innate
immunity is known to be associated with outcome in ALF (129,
283), thus the study of LPC-ATX-LPA in this setting could be of
great interest. Lysosphingolipids seem indeed related to multiple
aspects of ALF and particularly hepatocyte death, mitochondrial
and immune dysfunctions, however further studies are needed to
elucidate the mechanisms involved. The evidence of
lysophospholipids involvement in ALF and their potential
therapeutic implications have been summarized in Table 1.

4.3.2 Lysophospholipids and Acute on Chronic
Liver Failure
Untargeted lipidomics has been recently performed in patients
with AD and ACLF reporting decreased levels in sphingomyelin/
ceramide and S1P in both conditions and particularly in ACLF
with association with mortality (124). In cirrhosis, a low plasma
level of S1P was associated with increased mortality as well as in
sepsis, a condition commonly observed in ACLF (125, 126). The
S1P role in sepsis has been recently reviewed, showing
modulation of pathogen-host interaction and activation of
antibacterial immunity in this setting (127). S1P was confirmed
to remain an independent marker of short term mortality with
high diagnostic accuracy (area under the curve (AUROC), 0.874;
p<0.0001) (128). Consequently, if experimental data confirm the
S1P’s role in ACLF and particularly on immune responses and
hepatocyte regeneration, S1P analogues, such as FTY720, would
be a promising therapeutic area of development. In experimental
sepsis, LPC administration protected mice against lethality after
CLP or intraperitoneal injection of E. Coli by increasing
bactericidal activity of neutrophils but not macrophages (130).
Metabolomics analyses identified LPC and PC downregulation in
non-survivor patients with AD and ACLF (124, 131). Among
LPCs, LPC 16:0 levels predicted 90-days mortality with high
accuracy (AUROC 0.94; p<0.0001). Interestingly, ACLF patients
who received albumin had increased levels of LPC after albumin
therapy underlining the close relationship of LPC carriers and its
circulating level (124). Serum of ACLF patients was depleted in
LPCs with up-regulation of LPA levels (129), with higher ACLF
grades associated with lowest LPC concentrations. The latter also
correlated with an anti-inflammatory monocyte profile, with
March 2022 | Volume 13 | Article 867261

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Artru et al. Bioactive Lipids in Liver Failure
high Mer-tyrosine-kinase (MerTK) and CD163 expressions and
low HLA-DR expression. Ex vivo LPA treatment reduced CD163
and MerTK expression on monocytes in ACLF patients.
Moreover, LPA induced the production of proinflammatory
cytokines by CD14+ cells without increasing phagocytic
capacity. Altogether these data suggest a pivotal role of the
LPC-ATX-LPA axis in the immune dysfunction observed in
ACLF that could be corrected through modulation of the axis
(129) (Figure 2). The evidence of lysophospholipids involvement
in ACLF and their potential therapeutic implications have been
summarized in Table 2.
5 THERAPEUTIC APPROACHES
TARGETING EICOSANOIDS, SPMS AND
LYSOPHOSPHOLIPIDS METABOLISM

While many data are available regarding the modulation of
eicosanoids, SPMs and lysophospholipids pathways in
experimental models, only a few have been reported in the clinical
setting of liver diseases. However, due to their early identification,
prostanoids have been to date the most tested therapeutic agents.
Among them, two randomized-controlled studies evaluated PGE1
given intravenously in liver transplantation without any
improvement in patient and graft survival (71, 72). In a small
double-blind randomized study of 13 non-transplantable ALF
patients, PGE1 infusion wasn’t associated with a better outcome
(73). Although, PGI2 improved liver perfusion and oxygen delivery
in 30 patients with ALF treated with norepinephrine or epinephrine,
both PGE1 and PGI2 were no more prospectively evaluated in liver
failure syndromes. Indeed, other available prostanoids analogue (e.g.
travoprost) and EP3 agonists are currently developed for the
treatment of glaucoma. In the recent ATTIRE (Albumin to
Prevent Infection in Chronic Liver Failure) trial, authors aimed to
evaluated the effect of albumin infusion, known to modulate
circulating PGE2 levels and the associated immune dysfunction.
The trial included patients hospitalized with AD and was negative in
its composite endpoint (infection, kidney failure or death) (113).
Ifetroban®, a selective thromboxane-prostanoid receptor antagonist,
is currently under investigation as a treatment of portal
hypertension in cirrhotic patients (NCT02802228). Among the LT
receptors antagonists drugs (Montelukast®, Pranlukast® and
Zafirlukast®) only Montelukast® is clinically evaluated in the
metabolic liver disease setting (NCT04080947).

SPMs as therapeutic agents have mainly been investigated in
liver diseases through omega-3 dietary supplementation with the
aim to increase the bioavailability levels of their derived SPMs.
Research has mainly focused on omega-3 supplementation in the
setting of metabolic liver diseases (284–286) and in parenteral
nutrition induced liver injury (287, 288). A recent randomized
controlled trial of 90 patients with ACLF evaluated the effect of
omega-3 lipid emulsion on immune modulation, incidence of
bacterial sepsis and mortality. The authors report a decrease in
sepsis by 86% together with an increase of toll-like receptor (TLR)
2 and 4 on monocytes, macrophages, and neutrophils. However,
these benefits were not translated into an increase in survival (289).
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Two analogues of RvE1 (RX-10045) and LXA4 (BLXA4) have
been recently developed but weren’t evaluated in liver diseases so
far. Besides, several medications modulating lysosphingolipids
pathways have been approved for the treatment of multiple
sclerosis and UC (Fingolimod®, Siponimod® and Ozanimod®

- S1PR modulators) but have not been evaluated in liver diseases
yet. Finally, during the last decade, many research campaigns
have focused on the development of drugs targeting the ATX-
LPA axis [ATX inhibitors: Ziritaxestat® (GLPG1690), BBT-877;
LPAR antagonists: SAR100842, BMS 986020) in interstitial
pulmonary fibrosis and systemic sclerosis (NCT03711162,
NCT03830125 (290, 291)]. None of these molecules has been
evaluated in liver diseases but is of interest considering the
growing field of knowledge of the ATX-LPA axis in the
pathophysiology of liver failure syndromes. The potential
therapeutic approaches, already available or in development, to
modulate eicosanoids, SPMs and lysophospholipids pathways
have been summarized in Figure 2.
6 CONCLUSION

Endogenous bioactive lipid mediators are involved in a myriad of
cellular processes from homeostasis to inflammation initiation,
maintenance, and resolution. Among them, eicosanoids, SPMs
and lysophospholipids have been shown to play a pivotal role in
participating in the active modulation of these processes in a close
relationship to the immune system cells. These mediators are
involved in many chronic inflammatory diseases and the field of
knowledge is growing in liver failure syndromes. In these
syndromes, they can act either as pro-inflammatory or pro-
resolutive mediators impacting on the tissue damages, infection
occurrence and consequently death in many experimental models.
As a relatively newly discovered super-family and considering the
numbers of mediators, the role of SPMs has been understudied as
compared to the two other classes in both settings of ALF and
ACLF. The current knowledge in sepsis, sharing multiple
pathophysiological steps with liver failure syndromes, help to fill
the gaps and provide a wider view of SPMs properties in these
syndromes. The few clinical studies in the field focused on
eicosanoids metabolism modulation. However, the major new
pieces of evidence coming from lipidomic approaches and the
advances in the development of molecules targeting SPMs and
lysophospholipids axes, will certainly help in the design of clinical
study in liver failure syndrome in the next future.
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199. Clària J, Titos E, Jiménez W, Ros J, Ginès P, Arroyo V, et al. Altered
Biosynthesis of Leukotrienes and Lipoxins and Host Defense Disorders in
Patients With Cirrhosis and Ascites. Gastroenterology (1998) 115:147–56.
doi: 10.1016/s0016-5085(98)70376-2

200. Becares N, Härmälä S, China L, Colas RA, Maini AA, Bennet K, et al.
Immune Regulatory Mediators in Plasma From Patients With Acute
Decompensation Are Associated With 3-Month Mortality. Clin
Gastroenterol Hepatol (2020) 18:1207–15.e6. doi: 10.1016/j.cgh.2019.08.036

201. Moreau R, Clària J, Aguilar F, Fenaille F, Lozano JJ, Junot C, et al. Blood
Metabolomics Uncovers Inflammation-Associated Mitochondrial
Dysfunction as a Potential Mechanism Underlying ACLF. J Hepatol (2020)
72:688–701. doi: 10.1016/j.jhep.2019.11.009
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Lipid Mediators and Liver Disease. Biochim Biophys Acta Mol Cell Biol Lipids
(2021) 1866:159023. doi: 10.1016/j.bbalip.2021.159023

204. Murakami T, Suzuki K, Tamura H, Nagaoka I. Suppressive Action of
Resolvin D1 on the Production and Release of Septic Mediators in D-
Galactosamine-Sensitized Endotoxin Shock Mice. Exp Ther Med (2011)
2:57–61. doi: 10.3892/etm.2010.170

205. Gu J, Luo L, Wang Q, Yan S, Lin J, Li D, et al. Maresin 1 Attenuates
Mitochondrial Dysfunction Through the ALX/cAMP/ROS Pathway in the
Cecal Ligation and Puncture Mouse Model and Sepsis Patients. Lab Invest
(2018) 98:715–33. doi: 10.1038/s41374-018-0031-x

206. Chen J, Shetty S, Zhang P, Gao R, Hu Y, Wang S, et al. Aspirin-Triggered
Resolvin D1 Down-Regulates Inflammatory Responses and Protects Against
Endotoxin-Induced Acute Kidney Injury. Toxicol Appl Pharmacol (2014)
277:118–23. doi: 10.1016/j.taap.2014.03.017

207. Makide K, KitamuraH, Sato Y, OkutaniM, Aoki J. Emerging Lysophospholipid
Mediators, Lysophosphatidylserine, Lysophosphatidylthreonine,
Lysophosphatidylethanolamine and Lysophosphatidylglycerol. Prostaglandins
Other Lipid Mediat (2009) 89:135–9. doi: 10.1016/j.prostaglandins.2009.04.009

208. Tan ST, Ramesh T, Toh XR, Nguyen LN. Emerging Roles of
Lysophospholipids in Health and Disease. Prog Lipid Res (2020)
80:101068. doi: 10.1016/j.plipres.2020.101068

209. Maceyka M, Spiegel S. Sphingolipid Metabolites in Inflammatory Disease.
Nature (2014) 510:58–67. doi: 10.1038/nature13475

210. Sevastou I, Kaffe E, Mouratis M-A, Aidinis V. Lysoglycerophospholipids
in Chronic Inflammatory Disorders: The PLA(2)/LPC and ATX/LPA
Axes. Biochim Biophys Acta (2013) 1831:42–60. doi: 10.1016/j.bbalip.2012.
07.019

211. Albi E, Cataldi S, Ceccarini MR, Conte C, Ferri I, Fettucciari K, et al.
Gentamicin Targets Acid Sphingomyelinase in Cancer: The Case of the
Human Gastric Cancer NCI-N87 Cells. Int J Mol Sci (2019) 20:E4375.
doi: 10.3390/ijms20184375

212. Gault CR, Obeid LM, Hannun YA. An Overview of Sphingolipid
Metabolism: From Synthesis to Breakdown. Adv Exp Med Biol (2010)
688:1–23. doi: 10.1007/978-1-4419-6741-1_1

213. Liu Y, Wada R, Yamashita T, Mi Y, Deng CX, Hobson JP, et al. Edg-1, the G
Protein-Coupled Receptor for Sphingosine-1-Phosphate, is Essential for
Vascular Maturation. J Clin Invest (2000) 106:951–61. doi: 10.1172/JCI10905
Frontiers in Immunology | www.frontiersin.org 19
214. Montrose DC, Scherl EJ, Bosworth BP, Zhou XK, Jung B, Dannenberg AJ,
et al. S1P₁ Localizes to the Colonic Vasculature in Ulcerative Colitis and
Maintains Blood Vessel Integrity. J Lipid Res (2013) 54:843–51. doi: 10.1194/
jlr.M034108

215. Yanagida K, Liu CH, Faraco G, Galvani S, Smith HK, Burg N, et al. Size-
Selective Opening of the Blood-Brain Barrier by Targeting Endothelial
Sphingosine 1-Phosphate Receptor 1. Proc Natl Acad Sci USA (2017)
114:4531–6. doi: 10.1073/pnas.1618659114

216. Green JA, Suzuki K, Cho B, Willison LD, Palmer D, Allen CDC, et al. The
Sphingosine 1-Phosphate Receptor S1P₂ Maintains the Homeostasis of
Germinal Center B Cells and Promotes Niche Confinement. Nat Immunol
(2011) 12:672–80. doi: 10.1038/ni.2047

217. Kim GS, Yang L, Zhang G, Zhao H, Selim M, McCullough LD, et al. Critical
Role of Sphingosine-1-Phosphate Receptor-2 in the Disruption of
Cerebrovascular Integrity in Experimental Stroke. Nat Commun (2015)
6:7893. doi: 10.1038/ncomms8893

218. Hisano N, Yatomi Y, Satoh K, Akimoto S, Mitsumata M, Fujino MA, et al.
Induction and Suppression of Endothelial Cell Apoptosis by Sphingolipids:
A Possible In Vitro Model for Cell-Cell Interactions Between Platelets and
Endothelial Cells. Blood (1999) 93:4293–9. doi: 10.1182/blood.V93.12.
4293.412k26_4293_4299

219. Cuvillier O, Pirianov G, Kleuser B, Vanek PG, Coso OA, Gutkind S, et al.
Suppression of Ceramide-Mediated Programmed Cell Death by
Sphingosine-1-Phosphate. Nature (1996) 381:800–3. doi: 10.1038/381800a0

220. Olivera A, Spiegel S. Sphingosine-1-Phosphate as Second Messenger in Cell
Proliferation Induced by PDGF and FCS Mitogens. Nature (1993) 365:557–
60. doi: 10.1038/365557a0

221. Harayama T, Eto M, Shindou H, Kita Y, Otsubo E, Hishikawa D, et al.
Lysophospholipid Acyltransferases Mediate Phosphatidylcholine
Diversification to Achieve the Physical Properties Required In Vivo. Cell
Metab (2014) 20:295–305. doi: 10.1016/j.cmet.2014.05.019

222. Yung YC, Stoddard NC, Chun J. LPA Receptor Signaling: Pharmacology,
Physiology, and Pathophysiology. J Lipid Res (2014) 55:1192–214.
doi: 10.1194/jlr.R046458

223. Carneiro AB, Iaciura BMF, Nohara LL, Lopes CD, Veas EMC, Mariano VS,
et al. Lysophosphatidylcholine Triggers TLR2- and TLR4-Mediated
Signaling Pathways But Counteracts LPS-Induced NO Synthesis in
Peritoneal Macrophages by Inhibiting NF-kb Translocation and MAPK/
ERK Phosphorylation. PloS One (2013) 8:e76233. doi: 10.1371/
journal.pone.0076233

224. Kabarowski JH, Zhu K, Le LQ, Witte ON, Xu Y. Lysophosphatidylcholine as
a Ligand for the Immunoregulatory Receptor G2A. Science (2001) 293:702–5.
doi: 10.1126/science.1061781

225. Witte ON, Kabarowski JH, Xu Y, Le LQ, Zhu K. Retraction. Science (2005)
307:206. doi: 10.1126/science.307.5707.206b

226. Kihara Y, Maceyka M, Spiegel S, Chun J. Lysophospholipid Receptor
Nomenclature Review: IUPHAR Review 8. Br J Pharmacol (2014)
171:3575–94. doi: 10.1111/bph.12678

227. Suckau O, Gross I, Schrötter S, Yang F, Luo J, Wree A, et al. LPA1, LPA2,
LPA4, and LPA6 Receptor Expression During Mouse Brain Development.
Dev Dyn (2019) 248:375–95. doi: 10.1002/dvdy.23

228. Huang LS, Hung ND, Sok D-E, Kim MR. Lysophosphatidylcholine
Containing Docosahexaenoic Acid at the Sn-1 Position is Anti-
Inflammatory. Lipids (2010) 45:225–36. doi: 10.1007/s11745-010-3392-5

229. Ojala PJ, Hirvonen TE, Hermansson M, Somerharju P, Parkkinen J.
Acyl Chain-Dependent Effect of Lysophosphatidylcholine on
Human Neutrophils. J Leukoc Biol (2007) 82:1501–9. doi: 10.1189/jlb.
0507292

230. Yuan Y, Jackson SP, Newnham HH, Mitchell CA, Salem HH. An Essential
Role for Lysophosphatidylcholine in the Inhibition of Platelet Aggregation
by Secretory Phospholipase A2. Blood (1995) 86:4166–74. doi: 10.1182/
blood.V86.11.4166.bloodjournal86114166

231. Choi JW, Herr DR, Noguchi K, Yung YC, Lee C-W, Mutoh T, et al. LPA
Receptors: Subtypes and Biological Actions. Annu Rev Pharmacol Toxicol
(2010) 50:157–86. doi: 10.1146/annurev.pharmtox.010909.105753

232. Mutoh T, Rivera R, Chun J. Insights Into the Pharmacological Relevance of
Lysophospholipid Receptors. Br J Pharmacol (2012) 165:829–44.
doi: 10.1111/j.1476-5381.2011.01622.x
March 2022 | Volume 13 | Article 867261

https://doi.org/10.1016/j.prostaglandins.2015.04.001
https://doi.org/10.1016/j.prostaglandins.2015.04.001
https://doi.org/10.4049/jimmunol.1202743
https://doi.org/10.4049/jimmunol.1101305
https://doi.org/10.1155/2013/748160
https://doi.org/10.1016/s0016-5085(98)70376-2
https://doi.org/10.1016/j.cgh.2019.08.036
https://doi.org/10.1016/j.jhep.2019.11.009
https://doi.org/10.1016/j.jhep.2021.08.009
https://doi.org/10.1016/j.bbalip.2021.159023
https://doi.org/10.3892/etm.2010.170
https://doi.org/10.1038/s41374-018-0031-x
https://doi.org/10.1016/j.taap.2014.03.017
https://doi.org/10.1016/j.prostaglandins.2009.04.009
https://doi.org/10.1016/j.plipres.2020.101068
https://doi.org/10.1038/nature13475
https://doi.org/10.1016/j.bbalip.2012.07.019
https://doi.org/10.1016/j.bbalip.2012.07.019
https://doi.org/10.3390/ijms20184375
https://doi.org/10.1007/978-1-4419-6741-1_1
https://doi.org/10.1172/JCI10905
https://doi.org/10.1194/jlr.M034108
https://doi.org/10.1194/jlr.M034108
https://doi.org/10.1073/pnas.1618659114
https://doi.org/10.1038/ni.2047
https://doi.org/10.1038/ncomms8893
https://doi.org/10.1182/blood.V93.12.4293.412k26_4293_4299
https://doi.org/10.1182/blood.V93.12.4293.412k26_4293_4299
https://doi.org/10.1038/381800a0
https://doi.org/10.1038/365557a0
https://doi.org/10.1016/j.cmet.2014.05.019
https://doi.org/10.1194/jlr.R046458
https://doi.org/10.1371/journal.pone.0076233
https://doi.org/10.1371/journal.pone.0076233
https://doi.org/10.1126/science.1061781
https://doi.org/10.1126/science.307.5707.206b
https://doi.org/10.1111/bph.12678
https://doi.org/10.1002/dvdy.23
https://doi.org/10.1007/s11745-010-3392-5
https://doi.org/10.1189/jlb.0507292
https://doi.org/10.1189/jlb.0507292
https://doi.org/10.1182/blood.V86.11.4166.bloodjournal86114166
https://doi.org/10.1182/blood.V86.11.4166.bloodjournal86114166
https://doi.org/10.1146/annurev.pharmtox.010909.105753
https://doi.org/10.1111/j.1476-5381.2011.01622.x
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Artru et al. Bioactive Lipids in Liver Failure
233. Pettus BJ, Kitatani K, Chalfant CE, Taha TA, Kawamori T, Bielawski J, et al.
The Coordination of Prostaglandin E2 Production by Sphingosine-1-
Phosphate and Ceramide-1-Phosphate. Mol Pharmacol (2005) 68:330–5.
doi: 10.1124/mol.104.008722

234. Blaho VA, Galvani S, Engelbrecht E, Liu C, Swendeman SL, Kono M, et al.
HDL-Bound Sphingosine-1-Phosphate Restrains Lymphopoiesis and
Neuroinflammation. Nature (2015) 523:342–6. doi: 10.1038/nature14462
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