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Abstract
The gamma-Pareto type I convolution (GPC type I) distribution, which has a power function tail, was recently shown to

describe the disposition kinetics of metformin in dogs precisely and better than sums of exponentials. However, this had

very long run times and lost precision for its functional values at long times following intravenous injection. An accelerated

algorithm and its computer code is now presented comprising two separate routines for short and long times and which,

when applied to the dog data, completes in approximately 3 min per case. The new algorithm is a more practical research

tool. Potential pharmacokinetic applications are discussed.
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Introduction

Gamma-Pareto convolutions (GPC), the convolution of a

gamma distribution with some type of Pareto distribution,

are increasingly used for modelling diverse random pro-

cesses like traffic patterns [1], flood rates, fatigue life of

aluminium, confused flour beetle populations [2], and

extreme rainfall events [3]. Although there are multiple

possible GPC models and different nomenclatures used to

describe them, a natural classification would arise from

Pareto distribution classification, types I through IV, and

the Lomax distribution, a type II subtype, which is the
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classification scheme of reference [4] and the Mathematica

computer language [5].1

Convolution was first introduced to pharmacokinetics in

1933 by Gehlen who used the convolution of two expo-

nential distributions,

EDCðt; b; bÞ ¼ be�bx � be�b xðtÞ

¼
b b

e�b t � e�b t

b� b
b 6¼ b

b2t e�b t b ¼ b

�
t� 0

0 g t\0

8>>>><
>>>>:

;
ð1Þ

to describe plasma concentration-time data, and as origi-

nally developed in 1910 by Bateman to model radioactive

decay [6–8]. Much later, in 2006, the Bateman equation

was generalised as an exact gamma-gamma convolution

(GDC) by Di Salvo [9]. Ten years later, this was then

applied to 90 min continuous recordings of radioactivity in

human thyroid glands following injection of 99mTc-MIBI

[10].2 In 1919, Widmark identified integration of a

monoexponential as a model for constant infusion [11].

That integration from zero to t to find a constant infusion

model can be applied not just to exponential functions, but

applies equally well to any area under the curve (AUC)

scaled density-function (pdf)3 model, was shown subse-

quently by Wesolowski et al. [12, 13]. Recently, the dispo-

sition of metformin was described precisely using the type I

GPC model, which as it is asymptotically a Pareto function,

has a power function tail [13]. Using direct comparison rather

than classification, power function tails were shown to be

always heavier than exponential tails, see the Appendix

Subsection entitled Relative tail heaviness of reference [13].

A power function tail, in turn, implies an underlying fractal

structure, where fractal in this context signifies a scale

invariant model of vascular arborisation [14].

The GPC computer algorithm used in 2019 had long run

times and was not accurate beyond 96 h [13]. These

problems were corrected in order to make predictions for

multiple dosing over longer times [15, 16]. Since computer

implementation of new functions is highly specialised, not

easily arrived at by induction and yet indispensable for any

practical application, documentation of a more practical

type I GPC algorithm may facilitate its more widespread

implementation. Accordingly, we now present a series

acceleration computer implementation of a more generally

applicable GPC type I function, with markedly shorter run

times.

Background

The gamma-Pareto convolution distribution
function family

A classification for gamma-Pareto convolutions (GPC) is

proposed that arises from the types of Pareto distributions

[4]. These are types I through IV plus the Lomax distri-

bution, a subtype of II. The Pareto type I distribution is

PDðt; a; bÞ ¼ a
t

b
t

� �a

hðt � bÞ ; ð2Þ

where a is the shape parameter, b is a scale parameter and

hð�Þ is the unit step function such that hðt � bÞ is the unit

step function time-delayed by b, and is used to make a

product that is non-zero only when t[ b.4

A type II Pareto distribution can be written as

PDIIðt; a; b; lÞ ¼
a
b

1þ t � l
b

� ��a�1

hðt � lÞ : ð3Þ

Setting l ¼ 0, this becomes the Lomax distribution;

PDLomaxðt; a; bÞ ¼ a
b

�
1þ t

b

��a�1
hðtÞ; which was used to

derive a Lomax gamma-Pareto distribution [1]. The rele-

vance of this is that the GPC type I and Lomax GPC

derivations are similar. As yet, the type II (not Lomax)

through type IV gamma-Pareto convolutions have not been

published. These convolutions are likely to be infinite sums

and may require series acceleration to be of practical use.

By substitution and reduction of the number of parameters,

there are closed form GPC-like expressions, types II

through IV, that are different distributions [2]. As a full set

of solutions for the entire GPC function family has not

been characterised, it is not known what additional appli-

cations there could be for the GPC family of functions.

Unlike the Lomax GPC, the GPC type I does not start at

t ¼ 0, but at t ¼ b. For pharmacokinetic modelling, b[ 0

is a measure of the circulation time between injection of an

intravenous bolus of drug (t ¼ 0), and its arrival at a

1 Wolfram Research, Inc., (2021) Mathematica, Version 12.3,

Champaign, IL https://reference.wolfram.com/language/ref/ParetoDis

tribution.html.
2 740 MBq technetium-99m labeled hexakis-methoxy-isobutyl-

isonitrile.
3 We retain the acronym pdf without a probability; p, but use f(t)
preferentially. Concentration models are the product of area-under-

the-curve of concentration and density functions whose total area-

under-the-curve is 1 (dimensionless dose fraction). This balances the

classical mechanical units of Mass, Length, and Time, as follows,

CðtÞ ¼ AUC � f ðtÞ ; M
L3
¼ M T

L3
� 1

T

� �
:

4 The unit step function, hðxÞ, is zero for x\0 and 1 for x� 0, such

that hðxÞ is continuous everywhere except at x ¼ 0. When x ¼ t � b
and b[ 0, then hðt � bÞ is a unit step function shifted to later time

(i.e., to the right) by b units in the new coordinate system; t. The unit
step function is faster for numerical computations than the Heaviside

theta function, which later is sometimes also symbolised as hðxÞ. The
Heaviside theta is more mathematically useful when it is continuous

everywhere such that its derivative and Laplace transform are defined.
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peripheral venous sampling site (t ¼ b). The four-param-

eter gamma Pareto (type I) convolution (GPC) density

function was developed to model the disposition of met-

formin in dogs, which exhibited an unexpectedly heavy tail

poorly described by an exponential decay [13]. This heavy

tail implies a prolonged buildup of the body burden of the

drug [15, 17] that may require dose tapering on long-term

use, especially in patients with renal impairment [16].

The Gamma-Pareto type I convolution
and related functions

GPC type I: To form a GPC type I model, the type I Pareto

distribution, Eq. (2), is convolved with a gamma

distribution,

GDðt; a; bÞ ¼ 1

t

e�b tðb tÞ a

CðaÞ hðtÞ ; ð4Þ

where a is a dimensionless shape parameter, b is a rate per

unit time, is the reciprocal of its scale parameter, and Cð�Þ
is the gamma function.5 This yields the GPC function,

GPCðt; a; b; a; bÞ

¼ hðt � bÞ baa ba

CðaÞ ta�a�1
X1
n¼0

ð�b tÞn

n!
B
1�b

t
aþ n;�að Þ ;

ð5Þ

where Bzð�; �Þ is the incomplete beta function.6 This is a

density function (a pdf, or more simply an f, with units per

time; t�1). Equation (5) is from convolution following

Maclaurin series expansion of e�b t, i.e., it is analytic. An

analytic function has any number of sequential multiple

integrals and derivatives, as illustrated in the following

equations. Compared to their prior expression [13], the

equations that follow have been put in simpler terms.

GPC type I integral: Equation (6) is the cumulative

density function (CDF) of the GPC, symbolised by F, the

integral of the f(t) density; FðtÞ ¼
R t

0
f ðsÞ ds,

GPCFðt; a; b; a; bÞ

¼ hðt � bÞ baa ba

CðaÞ ta�a
X1
n¼0

ð�b tÞn

ðaþ nÞn!B1�b
t
1þ aþ n;�að Þ :

ð6Þ

This equation, because it is a CDF, expresses the dimen-

sionless fraction of a unit drug dose eliminated from the

body as a function of time, and was used to calculate a

prolonged retention of metformin in dogs and to explain its

incomplete urinary recovery at 72 h following intravenous

injection in humans [13, 15, 17].

GPC type I double integral: Equation (7) is the double

integral of the density function, f, which is also the single

integral of F, the CDF, and is sometimes called a ‘‘super-

cumulative’’ distribution [18]. It is symbolised by F , i.e.,

FðtÞ ¼
R t

0
FðsÞ ds ¼

R t

0

R s
0
f ðxÞ dx ds. The GPCF in least

terms is

GPCF ðt; a; b; a; bÞ ¼ hðt � bÞ baa b a

CðaÞ t a�aþ1

X1
n¼0

ð�b tÞn

ðaþ nÞð1þ aþ nÞn!B1�b
t
2þ aþ n;�að Þ :

ð7Þ

This equation (units t) was used to construct an intravenous

bolus multidose loading regimen that maintains the same

mean amount of metformin in the body during successive

dose intervals [13] and to predict metformin buildup during

constant multidosing in humans both with normal renal

function and with renal insufficiency [16]. A further use of

this equation is to predict the cumulative distribution

function following a period of constant infusion given only

its bolus intravenous-concentration, fit function.

GPC type I derivative: Equation (8) is the derivative of

the GPC density, GPC0, or in general an f 0,

GPC0ðt; a; b; a;bÞ

¼ hðt � bÞ baa ba

CðaÞ t a�a�2

X1
n¼0

ðaþ n� 1Þð�b tÞn

n!
B
1�b

t
aþ n� 1;�að Þ :

ð8Þ

This equation (units t�2) is useful for finding the peaks of

the GPC function by searching for when it equals zero, and

for calculating disposition half-life from its general

definition,

t1=2; f ðtÞ ¼
def � lnð2Þ f ðtÞ

f 0ðtÞ ;

which is Eq. (6) of reference [13]. Note that there is a

pattern in the sequential integrals and derivatives that

illustrates the analyticity of the GPC function. The inte-

grals and derivatives above follow directly from integration

or differentiation of the GPC formula, for which the fol-

lowing identity from integration by parts7

BzðAþ 1;BÞ ¼ A

Aþ B
BzðA;BÞ �

zAð1� zÞB

Aþ B
;

is useful for simplifying the results.

5 The gamma function, or generalised factorial, is

CðzÞ ¼
R1
0

tz�1

et dt; RðzÞ[ 0

6 The incomplete beta function is Bzða; bÞ ¼
R z

0
ta�1ð1� tÞb�1

dt; RðaÞ[ 0 ^RðbÞ[ 0 ^ jzj\1.

7 The parts are UðxÞ ¼ 1
A

�
1

1�x

��Að1� xÞB, and VðxÞ ¼
�

x
1�x

�A
. The

identity is listed elsewhere: Wolfram Research Inc. (2021), Cham-

paign, IL. http://functions.wolfram.com/06.19.17.0001.01.
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Methods, algorithms for GPC type I series
acceleration and their computation

Data sources and regression methods

The source data for regression analysis and subsequent

algorithm testing consists of seven intravenous bolus

metformin studies performed in healthy mixed-breed dogs

[19]. The 19 to 22 samples per case drawn between 20 min

to 72 h postinjection are listed as open data in Supple-

mentary material 1 (SLSX 49kb) in [13].8 The regression

target was the so-called 1=C2 weighted ordinary least

squares (OLS) method, implemented as minimisation of

the proportional norm, which is also the relative root mean

square (rrms) error, as per the Concentration data and fit-

ting it Appendix Subsection of [13].9 The loss function

chosen to be minimised agreed with the error type the

measurement system assay calibration curve. Both the

metformin assay (5.2% rrms) [20], and the GPC residuals

(8.6% rrms) exhibited proportional error. The reuse of

assay loss functions for regression loss functions is sys-

temically consistent and appears in these references

[10, 13]. The regression method used was Nelder-Mead

Constrained Global Numerical Minimisation as imple-

mented in Mathematica, a global search technique [5].10

For 20 significant figure results for all parameters used was

the Mathematica routine NMinimize with the options:

PrecisionGoal ! 30, AccuracyGoal ! 30, WorkingPre-

cision ! 65, MaxIterations ! 20010, Method ! {‘‘Nel-

derMead’’, ‘‘PostProcess’’ ! False}. Post processing is

disallowed because it launches a constrained convex gra-

dient solution refinement protocol; the interior point

method, which does not converge. The use of parameter

starting value ranges close to the solution helps speed up

convergence. Note that regression can start with 65 sig-

nificant figure accuracy but finish with less than half of that

for some parameter values due to error propagation from

the fit function itself and/or the regression process. In order

to calculate the confidence intervals (CI) of the parameters,

model-based bootstrap [21] was performed, as follows.

Care was taken to verify the normality of fit residuals and

the homoscedasticity of residuals—see [13]—as suggested

by [22]. Those conditions allow for the residuals to be

randomly sampled with replacement, then added to the

model at the sample-times to create synthetic data having

the same properties as the original data, but which have

altered regression parameter solutions. The bootstrap

parameter values so obtained can provide more information

than gradient method parameter CV’s, as the latter only

provides single case-wise estimates, which are not as sta-

tistically useful as case-wise distributed parameter infor-

mation [13]. Table 1 shows both case-wise and population-

wise coefficients of variation from an early version of a GPC

algorithm. The table was amalgamated from Tables 1, 3, and

12 of [13] representing 24 h of 8-core parallel processing of

42 time-sample serum curves. There is thus an obvious need

for a faster algorithm for regression analysis.

GPC type I primary definition: the short-
t algorithm

The primary definition of a gamma-Pareto type I convo-

lution, Eq. (5), is

GPCðt; a; b; a;bÞ
¼ GDðx; a; bÞ � PDðx; a;bÞ ðtÞ

¼ ðb xÞ a e�b x

xCðaÞ hðxÞ
	 


� a
x

b
x

� �a

hðx� bÞ
	 


ðtÞ :

¼ hðt � bÞ t a�a�1 a b
aba

CðaÞ
X1
n¼0

ð�b tÞn

n!
B
1�b

t
ðaþ n;�aÞ

ð9Þ

This contains alternating terms in the summation such that

the sum is rapidly convergent for t not much greater than its

lower limit, b. However, for sufficiently large values of t,

the individual terms of the summation both alternate in sign

and become extremely large in magnitude (i.e., absolute

value) before absolute series convergence. For absolute

convergence of an alternating series the infinite sum of the

absolute values is bounded above, which permits rewrite of

the summation sequence of infinite sums. This, and the

ratio test [23] for it are shown in the Short-t GPC con-

vergence Appendix Subsection. Thus, the order of infinite

summation can be changed to obtain shorter run times

when t � b, and the algorithm is accelerated through an

algebraic rewrite of Eqs. (9) as (10) below. Alternating

infinite series with large magnitude terms occurring before

absolute convergence are common, for example, the infi-

nite-series, primary definition of sinðxÞ ¼ x� x3

3! þ x5

5! � x7

7! þ
x9

9! � � � � has that same property for larger magnitude x-

values. Acceleration for the sine function could include

converting the x-values to be principal sine values

(� p
2
to p

2
), and adjusting the output accordingly.11 For the

GPC(t) function a similar result, i.e., adjusting the
8 https://link.springer.com/article/10.1007/s10928-019-09666-z#

Sec220.
9 https://link.springer.com/article/10.1007/s10928-019-09666-z#

appendices.
10 https://reference.wolfram.com/language/tutorial/ConstrainedOpti

mizationGlobalNumerical.html#252245038.

11 sinð12Þ executes to 65 decimal places in 19 microseconds in the

Mathematica language on an 2.3 GHz 8-Core Intel Core i9 processor.

Current acceleration algorithms for routine functions are many

generations beyond what is outlined here.
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algorithmic behaviour to be accelerated for long-t values,

can be obtained as follows.

GPC type I secondary definition: the long-
t algorithm

Theorem 1 The long-t algorithm is

GPCðt; a; b; a; bÞ

¼ �hðt � bÞ a b
a

CðaÞ t
a�1

X1
k¼1

b
t

� �k ð1� aÞk
k!ðk � aÞ 1F1ða; a� k;�b tÞ

þ hðt � bÞ ba

CðaÞ e
�b tta�1

	

�p cscðp aÞ b
aba

CðaÞ t
a�a�1

1
~F1ða; a� a;�b tÞ



:

ð10Þ

Proof This is shown by substitution of the identities,12

BzðA;BÞ ¼ BðA;BÞ � B1�zðB;AÞ, and BðA;BÞ ¼ CðAÞCðBÞ
CðAþBÞ

into the incomplete beta function of Eq. (9) above and

yields,

B
1�b

t
ðaþ n;�aÞ ¼ Cð�aÞCðaþ nÞ

Cðaþ n� aÞ � Bb
t
ð�a; aþ nÞ :

ð11Þ

Substituting this into the right hand side of Eq. (9) yields,

hðt � bÞ a b
a ba

CðaÞ t a�a�1

X1
n¼0

ð�b tÞn

n!

Cð�aÞCðaþ nÞ
Cðaþ n� aÞ

	
�ð�b tÞn

n!
Bb

t
ð�a; aþ nÞ



;

ð12Þ

the left hand summand of which simplifies to a GPC

asymptote for long times, t,

hðt � bÞa bab aCð�aÞt a�a�1
1
~F1ða; a� a;�b tÞ ;

where 1
~F1ð�; �; zÞ is the regularised confluent hypergeo-

metric function.13 The above formula, as14

�p cscðp aÞ ¼ Cð�aÞCðaþ 1Þ ¼ aCð�aÞCðaÞ, can be

written alternatively as

Table 1 Shown are parameters from gamma densities (GD), Pareto densities (PD) and both from Gamma-Pareto convolution (GPC) fitting of

concentrations data for 7 dogs

Functions GD PD GPC

Parameters a b a b AUC CL Fit error

Unitsa None % 1

h
% None % s % mg�h

L
% ml

min�kg
% %

Dog 1 0.3493 8.09 0.7318 4.84 0.2644 5.13 25 – 31.16 6.22 9.8 6.42 8.7

Dog 2 0.8112 10.5 0.9993 6.89 0.1365 4.90 25 – 28.18 1.09 11.5 1.09 6.3

Dog 3 0.6689 8.67 0.9107 5.95 0.2010 3.81 25 – 12.15 3.77 26.7 3.72 5.9

Dog 4 0.6092 22.3 0.8062 15.9 0.1726 9.80 25 – 16.73 5.65 19.4 5.89 13.8

Dog 5 0.6435 20.6 1.1035 11.4 0.1199 6.11 25 – 26.21 5.37 12.4 5.14 9.5

Dog 6 0.5194 7.42 0.6137 4.93 0.1929 5.85 30 – 28.43 2.15 11.4 2.10 6.1

Dog 7 0.7629 17.7 1.0518 20.3 0.1571 5.82 30 – 22.10 2.31 14.7 2.34 10.0

Case%b 14.8 11.5 6.17 – 4.22 4.26 8.2

Pop.% 29.7 25.0 25.9 – 28.8 39.5 7.5c

aUnits row: None means dimensionless. As b was constrained to be within 25 to 30 s, its variability for the 5 realisations per case is not

meaningful
bUsed with model-based bootstrap root mean square case-wise (Case%, n ¼ 5) and population-wise (Pop.%, n ¼ 35) coefficients of variation,

and fit error
cGeometric mean (GM) was used to calculate group error of fit because the 35 model-based bootstrap fit errors errors were log-normally

distributed for which the GM was 7.5%, not significantly different from the original data GM error of 8.2%. The original data values are case-

wise listed for fit error, and for the parameter values

12 http://functions.wolfram.com/06.19.17.0008.01. and http://func

tions.wolfram.com/06.18.02.0001.01.

13 Where 1
~F1ða; b; zÞ ¼ 1F1ða; b; zÞ=CðbÞ, where 1F1ða; b; zÞ ¼P1

k¼0 z
kðaÞk=½k!ðbÞk� is the not regularised version, and where ðaÞk ¼

Cðaþ kÞ=CðaÞ is the Pochhammer, also called the descending

factorial.
14 http://functions.wolfram.com/06.05.16.0001.01 and http://func

tions.wolfram.com/06.05.16.0002.01.
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�hðt � bÞp cscðpaÞ b
aba

CðaÞ t
a�a�1

1
~F1ða; a� a;�btÞ ; ð13Þ

which obviates having to use a R½Cð�aÞ� computer com-

mand to truncate a zero magnitude imaginary machine

number carry, e.g., Rðxþ 0� iÞ ¼ x, such that Eq. (9) can

be rewritten as

GPCðt; a; b; a;bÞ

¼ �hðt � bÞ a b
ab a

CðaÞ t a�a�1
X1
n¼0

ð�b tÞn

n!
Bb

t
ð�a; aþ nÞ

� hðt � bÞp cscðp aÞ b
ab a

CðaÞ t
a�a�1

1
~F1ða; a� a;�b tÞ ;

ð14Þ

where a 6¼ 0; 1; 2; 3; . . ., which is Eq. (25) of the first type I

GPC publication [13]. Note that not only is the summation

of the above absolutely convergent, but as the last line

above is an asymptote for t ! 1 of the GPC function [13],

the summation converges to zero as t ! 1 relatively more

rapidly than the asymptote.

The summation terms,

� a b ab a

CðaÞ t a�a�1
X1
n¼0

ð�b tÞn

n!
Bb

t
ð�a; aþ nÞ ;

are rearranged for acceleration at long times using the

infinite series definition of the incomplete beta function,15

Bb
t
ð�a; aþ nÞ ¼ b

t

� ��aX1
k¼0

b
t

� �k

ð1� a� nÞk
k!ðk � aÞ

for
b
t










\1 and a 6¼ 0; 1; 2; 3; . . . ;

ð15Þ

by substituting it into the summation and simplifying to

yield,

� a b a

CðaÞ t
a�1

X1
n¼0

ð�b tÞn

n!

X1
k¼0

b
t

� �k

ð1� a� nÞk
k!ðk � aÞ : ð16Þ

Given absolute convergence (Short-t GPC convergence

Appendix Subsection) the order of infinite summation can

be changed with impunity by distributing the outer sum

over the inner sum, and factoring, as follows,

� a ba

CðaÞ t
a�1

X1
k¼0

X1
n¼0

ð�b tÞn

n!

b
t

� �k
ð1� a� nÞk
k!ðk � aÞ ;

� a ba

CðaÞ t
a�1

X1
k¼0

b
t

� �k

k!ðk � aÞ
X1
n¼0

ð�b tÞnð1� a� nÞk
n!

:

ð17Þ

Fortunately, the inner sum in the above formula simplifies

to a closed form, allowing it to be rewritten as

� a ba

CðaÞ t
a�1

X1
k¼0

b
t

� �k ð1� aÞk
k!ðk � aÞ 1F1ða; a� k;�b tÞ : ð18Þ

The k ¼ 0 term of that sum simplifies to be the gamma

distribution function part of the GPC convolution. Splitting

off that term and adjusting the lower summation index

from k ¼ 0 to k ¼ 1 yields,

ba

CðaÞ e
�b tt a�1

� a ba

CðaÞ t
a�1

X1
k¼1

b
t

� �k ð1� aÞk
k!ðk � aÞ 1F1ða; a� k;�b tÞ

: ð19Þ

Next, the quickly convergent sum term, Eq. (19), is added

to the gamma distribution plus asymptotic formula Eq. (13)

to create a series accelerated algorithm rewrite of Eq. (5)

for long t-values,

GPCðt; a; b; a; bÞ

¼ �hðt � bÞ a b
a

CðaÞ t
a�1

X1
k¼1

b
t

� �k ð1� aÞk
k!ðk � aÞ 1F1ða; a� k;�b tÞ

þ hðt � bÞ ba

CðaÞ e
�b tt a�1

	

�p cscðp aÞ b
aba

CðaÞ t
a�a�1

1
~F1ða; a� a;�btÞ



:

This is identically Eq. (10), which completes the proof of

the long-t theorem. h

The term beginning with þ h ðt � bÞ of the above

equation is an asymptote of the GPC function. The above

equation’s first line when written as a list of terms to be

summed has all negative elements when k[ a, which was

the case for metformin [13]. If k\a for the first few k, then

the simplified summation terms are initially positive until

k[ a, but in any case the magnitude of those terms is

strictly monotonically decreasing such that increasing

precision to sum those terms is unnecessary. The confluent

hypergeometric functions in those terms and their effects

on convergence are presented in detail in the Long-t GPC

convergence rapidity Appendix Subsection, which shows

that the absolute value of the ratio of the ðk þ 1Þth to kth

terms is approximately b
k t, where the k in the denominator

insures that the absolute values of the simplified terms of

the summand for the above formula are monotonically

decreasing, and that each ðk þ 1Þst term is many times

closer to zero than the kth term, such that it is unnecessary

to test for convergence using the sum to infinity of all the

remainder terms, i.e., in practice it is sufficient to test the

absolute value of the last term and to stop the summation

when that magnitude is less than the desired precision (e.g.,

\10�65).

15 http://functions.wolfram.com/06.19.06.0002.01.
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Other long-t functions; the integrals
and derivative

GPC type I long-t integral: The derivation of a similarly

accelerated series for t� 4 b of the CDF of GPC, i.e., its

0 to t integral, GPCF , follows from its primary definition,

Eq. (6), using the same procedure as Eqs. (9) to (10),

leading to,

GPCFðt; a; b; a; bÞ

¼ �hðt � bÞ a ba

Cð1þ aÞ t
a

X1
k¼1

b
t

� �k ð�aÞk
k!ðk � aÞ 1F1ða; a� k þ 1;�b tÞ

þ hðt � bÞ
"
1� Qða; b tÞ

� p cscðp aÞ b
aba

CðaÞ t
a�a

1
~F1ða; a� aþ 1;�b tÞ

#
;

ð20Þ

where Qða; b tÞ ¼ Cða; b tÞ
CðaÞ is the regularised upper incom-

plete gamma function, and is the complementary cumula-

tive density function (CCDF ¼ 1�CDF) of the gamma

distribution.16 Note that GPCF is a CDF, such that the

upper limit of Eq. (20) as t increases is 1 or 100% of initial

dose eliminated from the body.

GPC type I long-t double integral: Similarly, the super

cumulative distribution, i.e., the integral from s ¼ 0 to t of

the CDF is,

GPCF ðt; a; b; a; bÞ

¼ �hðt � bÞ a b
at aþ1

Cðaþ 1Þ
X1
k¼2

b
t

� �k ð�aÞk
k!ðk � aÞða� k þ 1Þ 1F1ða; a� k þ 2;�b tÞ

þ hðt � bÞ
�
t e�b tðb tÞa

Cðaþ 1Þ � a b
a� 1

½1� Qða; b tÞ�

þ t � a

b

� �
½1� Qðaþ 1; b tÞ�

� p cscðp aÞ b
aba

CðaÞ t
a�aþ1

1
~F1ða; a� aþ 2;�b tÞ

�
:

ð21Þ

Note that the sum term is now indexed from k ¼ 2, for

which each simplified summation element has a negative

value when k[ a, and a multiplied out positive first term

when a\2.

GPC type I long-t derivative: The GPC derivative’s

algorithm for t[ 4b, i.e., long-t, is

GPC0ðt; a; b; a;bÞ

¼ hðt � bÞbata�2

(
a� b t � 1

CðaÞ e�b t

þ
p a cscðp aÞ b

t

� �a

Cðaþ 1Þ

"
ðaþ 1Þ 1 ~F1ða; a� a;�b tÞ

� a 1
~F1ðaþ 1; a� a;�b tÞ

#

þ a
CðaÞ

X1
k¼1

ð1� aÞk
b
t

� �k

k!ðk � aÞ

"
b t 1F1ða; a� k;�b tÞ

� ða� k � 1Þ 1F1ða� 1; a� k � 1;�b tÞ
#)

:

ð22Þ

The combined short- and long-t algorithm
for GPC series acceleration

There are now two algorithms, an algorithm that converges

quickly only for short t-values, and another that converges

quickly only when t-values are long. This section describes

how the algorithms are combined to produce a new

accelerated algorithm for any value of t. A full set of

functions for the derivative and integrals of the GPC

algorithm follows the same pattern as the Mathematica

source code of the GPC type I accelerated algorithm

Appendix Subsection. The two algorithms are combined by

choosing t ¼ 4 b as the floor (least) value for use of the

long-t algorithm, makes the next term at worst approxi-

mately 1/4 that of the current term. Given a next term

fraction of b
k t times the current term, the t ¼ 4 b floor value

is not critical, the trick is to avoid second to first term ratios

that initially approach 1 as t ! b, for which the short-

t algorithm has fewer terms and converges faster. See the

Choosing when to use the short-t and long-t algorithms

Appendix Subsection for further information (Fig. 1).

The program uses so-called infinite magnitude numbers

such that numbers like 	10	100000 can be used without

overflow or underflow (code: $MaxExtraPrecision = 1).

However, there is another concern; precision. Machine

precision was 53 bits, or approximately 16 significant fig-

ures. When 10�100 and 1 are added, one has to have a

precision of 100 significant figures to avoid truncation. For

the short-t algorithm the extended precision needed is

precalculated using machine precision of large numbers,

which are stored as simplified terms, and are searched to
16 CCDF is sometimes loosely referred to as a survival function, S(t).
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find the largest magnitude number (code: Ordering[stor-

age,�1�½½1�� � 1). It is then that number as a rounded base

10 exponent (code: Round[Log10[Abs[outmax]]]) plus 65

significant figures that is used as the required precision of

the computation. The terms of the summand are then

recalculated to that high precision, then summed, such that

the result has approximately 65 significant figures remain-

ing even though the calculation itself may have needed a

thousand or more significant figures to yield that result. The

same approach could be used to calculate sinðxÞ from its

infinite series definition. As mentioned above, in practice

that is not used, and instead the equivalent principal sine

values of x are computed. For the GPC(t) computation, one

can invert the range related extra precision problem by

reordering the series to make it increasingly less demand-

ing to calculate long-t values by direct application of

Eq. (10) and that is precisely what the long-t GPC type I

algorithms does. The value t ¼ 4b is used to transition

between shorter t-values for use by the short-t algorithm,

and longer t-values for use with the long-t algorithm. As

mentioned, that time of transition between long and short

algorithms is not critical and is more formally presented in

the Choosing when to use the short-t and long-t algorithms

Appendix Subsection.

Results

This Results section shows examples for GPC algorithm

run times and diagnostics, of how it can and should be used

including the use for extended same dose multidosing, and

a subsection illustrating confidence interval (CI) and

coefficient of variation (CV) diagnostic quality assurance.

Algorithm run time analysis

The GPC combined short- and long-t algorithm was defined

in terms of how to calculate it efficiently, as above. Imple-

mentation of the combined short and long time algorithm

using Mathematica 12.3 without parallel processing on a 2.3

GHz 8-Core Intel i9 processor allows long t-value execution

times of around 1.2 millisecond with typical 63 to 67 dec-

imal place accuracy. (The full range of run times is

approximately from 42 to 1.2 milliseconds for t-values

ranging 30 s to 1/2 year.) This contrasts with the short-t

implementation of GPC Eq. (9), which, as t increases, needs

more terms and higher precision to maintain a given preci-

sion of the final result, with a processing time that pro-

gressively becomes intractably long. Figure 2 shows the

relative performance of the algorithms in these respects

using the GPC parameters from fitting metformin data for

dog 1 [13]. This dog showed the median regression error of

8.7% of the seven studied. Despite having the fastest

elimination at 72 h, the concentration level for that dog was

predicted to be 2� 10�7 of peak at one year, a small number

but much larger than could be produced assuming a terminal

exponential tail. For the short-t algorithm the run-time to

calculate concentration at one-half year following injection

was 1809 s, versus 1.2 milliseconds for the new algorithm.

This difference is because the short-t algorithm used at long

times had 8883 terms to sum, and the call to gpcshort was

used twice; once at machine precision to find the maximum

absolute value term ð1:0796 � 101392Þ of all of the summand

terms in order to calculate that 1457 place precision was

required to obtain 65 place precision in the output, and once

again to do the 1457 place summation arithmetic. For the

combined (new) algorithm this is not needed as for short

times the short-t algorithm does not have large oscillating

terms, and the long-t algorithm has monotonically decreas-

ing term magnitude both for each sequentially summed

term, and as t increases, for each first term magnitude. For

example, the first (and only) term of the long-t algorithm’s

summand at one-half year was negligible

ð�1:851 � 10�1403Þ. These effects are illustrated in Fig. 3.

For our test case example, the two algorithms, short-t

and long-t, agreed to within 63 to 67 decimal places. In

practice, the short-t algorithm is used for short times and

the long-t algorithm is used for long times. It makes little

difference what cut-point time between short- and long-t

algorithms is used, and the time 4b, albeit around 100–120

s, was chosen as a division point between algorithms short

enough to ensure that extra precision padding for the short-

t algorithm would be unnecessary.

Regression processing elapsed times
and extended multidosing

For evaluating the 72 h data for seven dogs, the new,

combined short- and long-t algorithm run time for curve

fitting was approximately 1:15 to 3:00 (min:s) average

values, the program prior version with hardware and soft-

ware accelerations for the short-t algorithm and without

sufficiently extended precision (despite using at least 65

place arithmetic) had run times in the approximate range of

34 to 35 min, but with occasional errors in parameter

values of 	2� 10�14. With proper precision extension the

error dropped below 10�20 for all 5 parameters and 7 cases,

but the run time increased to 50 min, using a partly

accelerated short-t algorithm (Eq. (14)) and 8-core hard-

ware acceleration. The current combined short- and long-

t algorithm does not use those additional accelerations.

Forty model-based bootstrap cases generated for the first

dog’s data—see next Subsection—took 49:45 (min:s), or

1:15 per case. That is a lot faster than the 33:51 per case it

took to generate 35 bootstrap models using the old software

198 Journal of Pharmacokinetics and Pharmacodynamics (2022) 49:191–208

123



(19:44:55). Overall, the run time is very approximately 27

times faster than prior, but is variable depending on the

problem being solved, the computer hardware used, and the

other software running on the computer at that time. For

example, Fig. 4a, with a current run time of 7.1 s, could not

be computed at all using the earlier software version.

Notice that if we wish to glean information during

metformin multidosing with plasma or serum sampling, the

best time to do so is just prior to the next scheduled dosing

as those concentrations change for each dose interval,

whereas the peak concentration change over time is very

small. However, because the tissue dosage17 accumulates,

the amount of drug in the body (Fig. 4b) cannot be pre-

dicted from serum (or plasma) concentration alone. Note

that approximately one entire dose has accumulated in

tissue by 14 days despite most of the cumulative dosage

having been eliminated over that time. That is, during the

first dose interval, the mean drug mass remaining in the

body was 0.175 doses, and during the 14th dose interval the

mean drug mass remaining in the body was 1.118 doses,

where 12.88 dose masses were eliminated.

Which are better, confidence intervals
or coefficients of variation?

With reference to Table 2, confidence intervals (CI) of the

mean were extracted from model-based bootstrap with 40

cases generated for the first dog’s data. For calculating CI’s

of the mean, the Student’s-t method was used (Verified

assumptions: Central Limit Theorem, n[ 30, light-tailed

distributions). However, as a result of extensive testing the

degrees of freedom were set at n rather than the more

typical n� 1, as it was found that for smaller values of n,

physically impossible results were obtained, whereas even

for n ¼ 2, when n was used, rather than n� 1, the results

were accurate. For n ¼ 40 it made very little difference

whether n� 1 or n were used. Also shown are CI’s of the

model based bootstrap (A.K.A., parametric bootstrap)

results calculated directly from the n ¼ 40 data using the

nonparametric quantile (A.K.A, percentile) method of

Weibull [24].18 Note that the Pareto rate parameter, b was

not presented. Since many (38 of 40) of the results were at

the constraint boundaries of 25 to 30 s, one already knows

what the confidence interval largely is; the constraint val-

ues themselves. Another situation entirely exists for coef-

ficients of variation (CV). Note in the table that when n ¼ 5

as during the prior study, that the values so obtained were

too small. It is theoretically possible to use bootstrap (in

our case that would be bootstrap of model-based bootstrap)

to obtain confidence interval quantiles for the median CV,

and although median values of CV’s have shown sufficient

robustness to construct confidence intervals for n suffi-

ciently large [25], the correction for n-small is problematic

as per Table 2 and the Discussion Section that follows.

Discussion

Wise [26] first proposed that power functions or gamma

distributions should be used in pharmacokinetic modelling

as superior alternatives to sums of exponential terms. This

has been reinforced more recently, for example by

Macheras [27]. While convolution models and fractal

Fig. 1 Standard flow chart for the Mathematica source code of the GPC type I accelerated algorithm Appendix Subsection. The predefined short-

and long-t routines are also described in the text

17 For a single dose, body drug mass is MðtÞ ¼ Dose ½1� GPCFðtÞ�.

18 This uses the Weibull method for extracting confidence intervals,

which in Microsoft Excel (2007) would format for the lower tail as

PERCENTILE.EXC(A1:A40,0.025) and from Mathematica 12.3 [5]

as Quantile[data, 0.025, ff0; 1g; f0; 1gg], https://mathworld.wolfram.

com/Quantile.html.
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consistent models have been shown to be superior models

in some cases and find occasional use [10, 12, 13, 28, 29]

compartmental modelling software is widely available and

is used by default. For example, compared to biexponential

clearance evaluation of 412 human studies using a

glomerular filtration rate agent, adaptively regularised

gamma distribution (Tk-GV method [30, 31]) testing was

able to reduce sampling from 8 to 4 h and from nine to four

samples for a more precise and more accurate, yet more

easily tolerated and simplified clearance test [29]. Despite

this, few institutions have implemented the Tk-GV method

at present. In the case of metformin, a highly polar ionised

base, the extensive, obligatory active transport of the drug

into tissue produces a rate of expansion of the apparent

volume of distribution having the same units as renal

clearance, yielding the Pareto (power function) tail. This

heavy tail, and Fig. 4, help to explain why metformin

control of plasma glucose levels had delayed onset, e.g.,

following 4-weeks of oral dosing [32], and provides hints

concerning the lack of a direct correlation between drug

effect and blood metformin concentrations [33]. Other

basic drugs whose active transport dominates their dispo-

sition may show similar behaviour. The long tail in the

disposition of amiodarone may be a reflection of its very

high lipid solubility rather than, or in association with,

active tissue uptake. Weiss [34] described its kinetics after

a 10 min intravenous infusion with an s-space Laplace

transform convolution of a monoexponential cumulative

distribution with an inverse Gaussian distribution and a

Pareto type I density, which lacked a real or t-space inverse

transform such that the modelling information had to be

extracted numerically. A real space f(t) model convolution

Fig. 2 Log–log plots comparing the performance of the short time

(red connected open circles), the long time algorithm (green

connected open triangles) and the either short or long time (blue

connected open diamonds) algorithms’ performance for the GPC

model of metformin disposition in dog 1 of reference [13]. Panel a
shows that the long or short-t algorithm is more than one million

times faster than the short-t algorithm when the time after injection is

very long, e.g., for predicting a serum concentration at one half year

(4396 h), and more than 20 times faster than the long-t algorithm for

t ¼ 30 s. Panel b shows the number of summed terms (n) for each
method. Note that for long t-values, the combined algorithm used the

long-t method and only calculates one term, whereas the short-

t algorithm would have used many terms. Panel c shows the precision
needed to accommodate the largest of the terms for each algorithm.

As t increases, the short-t function uses an increasing number of

significant figures, but for the long-t or combined algorithms that

number increases only slightly to preserve accuracy for lower

concentrations at longer times. Panel d shows the largest term

magnitude as powers of 10 for the short- and long-t algorithms. For

long times, the short-t algorithm alternating sign intermediate terms

reach quite large magnitude, while for the long-t algorithm the largest

magnitude term collapses to vanishingly small values. (Color

figure online)
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of time-limited infusion effects of a GPC type I distribution

is simple to construct and would be the same as Weiss’s

model in the one essential aspect that matters; testing of the

amiodarone power function tail hypothesis, for which a

GPC derived model would have the advantage of being

more transparently inspectable. Similarly, Claret et al. [35]

used finite time difference power functions to investigate

cyclosporin kinetics for which GPC and related model

testing may be appropriate.

We were able to use Nelder–Mead global search

regression model-based bootstrap to provide more infor-

mation and better information for parameter variability

than would be available from a gradient matrix. Some

readers would prefer to use the Levenberg–Marquardt

algorithm convex gradient regression method, so that the

gradients can be used to estimate case-wise coefficients of

variation. The logarithm of sums of exponential terms is

always convex. The GPC-metformin loss function is non-

convex, as shown by failure of the interior point method to

improve on solutions as reported in the Data sources and

regression Methods Subsection. Constrained nonconvex

gradient methods are comparatively rarely implemented;

there appears to be no such implementation in Mathematica

at present.

Correction of standard deviation (SD) for small numbers

(n\30) using bootstrap of model-based bootstrap and v2

were used as mentioned elsewhere [36], and led to using n

rather than n� 1 for Student’s-t degrees of freedom.

Whereas variance is unbiased, when the square-root of

variance is taken, the result, standard deviation becomes

Fig. 3 Individual terms of the sums for the short-t and long-t
algorithms for the GPC model of metformin disposition in dog 1 of

reference [13]. These terms are stored in a list variable called,

somewhat unimaginatively, storage. Note that f ðt ¼ 4b hÞ, is an

explicit replacement rule meaning that an f(t) is evaluated f ð4bÞ,
where t ¼ 4b h. Panels a and b show the values of the short-t
algorithm’s summand terms. Panel a shows the values for the short-t
algorithm at the upper limit of t of its usage in the combined, new,

algorithm at t ¼ 4b (100 s in this case). The blue dots are positive

values, and the red dots are negative values of the summand of

Eq. (5). Panel b shows what happens when the short-t algorithm is

used at 12 h. That is the oscillatory terms would have intermediate

values that grow in magnitude before they converge. While this poses

little problem at 12 h, this time is not used in the new, combined

algorithm and in the extreme the oscillatory intermediate terms of the

summand grow to very large magnitude as t-values increase. Thus,

before the summand is calculated for long t-values when using the

short-t algorithm, preliminary calculation of the required extended

precision is necessary, which prologues execution time markedly.

Panel c shows the region of values for the long-t algorithm at 12 h.

Note that there are fewer terms than for the short-t algorithm at that

same time (panel b), that all terms are negative (red), and that they

decrease by one or more orders of magnitude between successive

terms. Panel d shows that by 100 h for the long-t algorithm, there are

fewer terms than at 12 h, and that their magnitude is very small even

for the largest magnitude, first, term. (Color figure online)
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biased. Arising from v2, a standard deviation from only two

samples, is on average only 79.8%,
ffiffi
2
p

q
, of the population

standard deviation [24].19 Gradient methods lack pre hoc

testing of the implicit assumption of residual normality and

do not post hoc provide any parameter distribution

information. From the trace of the gradient matrix, one

obtains a standard deviation with degrees of freedom that

are n� p� 1 (n-samples, p parameters) [36]. For standard

deviations in the case where n� p� 1 is small, the cor-

rections for standard deviation are large. Overall, the ratio

between gradient based error propagation results and that

from bootstrap is not unusually a factor of two larger or

smaller [37]. Moreover, average fit errors using any loss

function [ 10%, for assay methods with errors\10% may

suggest that the algorithm/data combination is suspect

[10, 13, 22, 38], and for the metformin dog data that is the

case for two- and three-compartment models, but not for

Fig. 4 Multidosing of the GPC function for dog 1 with one 18.248

mg/kg body weight dose every 24 h. Panel a shows the predicted

concentration curve. Note that the peak concentrations did not

increase much following 14 doses (0.089%), but that the trough

values increased rather more substantially (2.48 times) For panel

b showing number of doses retained in the body, one first sees a 1

dose peak increasing to a 1.97 dose peak for the 14th dose, whereas

the trough initially at 0.117 doses, increased 8.85 fold to finish at a

1.03 dose trough

Table 2 Example parameter results and quality assurance are shown for dog 1

Primary result 95% CI bootstrap Mean 95% CI of mean SD CV% Prior CV%

n 1 40 40 40 40 40 5

rrms % 8.71 4.72 to 9.88 7.52 7.16 to 7.89 1.15 15.3 –

R2 0.99872 0.99773 to 0.99950 0.99872 0.99860 to 0.99884 0.00038 0.039 –

a 0.349 0.198 to 0.516 0.350 0.324 to 0.376 0.0802 22.9 8.09

b 0.732 0.558 to 0.889 0.735 0.708 to 0.761 0.0821 11.2 4.84

a 0.264 0.235 to 0.322 0.268 0.261 to 0.275 0.021 7.85 5.13

AUC 31.2 26.8 to 38.0 31.3 30.4 to 32.2 2.77 8.84 6.22

CL 9.76 8.01 to 11.3 9.78 9.52 to 10.05 0.829 8.47 6.42

The relative root mean square error of fit (rrms %) and R2 values are acceptable. Confidence intervals (CI) are shown for the parameter values

and the mean parameter values

19 Given only two samples, the population mean is not located

midway between them, however, the midpoint (mean) is used to

estimate the population mean in the standard deviation formula. The

correction formula multiplier for an unbiased estimator (r̂) of

population standard deviation (r) from sample standard deviation

(s) is r̂ ¼ cns, where cn ¼
ffiffiffiffiffiffi
n�1
2

q
C n�1

2

� �
C n

2

� ��1
[24].
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the GPC model, which latter model was the only one to fit

the data better than 10% (average 8.6% rrms with assay

error of 5.2% rrms), as well as being the only model to

exhibit normality and homoscedasticity of residuals [13].

When the fit error is[10%, one should, at a minimum, test

residuals for homoscedasticity and normality, and if these

are not present, a better fit model should be sought for its

own sake, and bootstraping becomes problematic [22].

The use of coefficients of variation is sometimes prob-

lematic. Suppose that we have lots of data, but because

CV ¼ SD=mean, if by chance in a particular case espe-

cially if we have small n, some of the multiply generated

mean values may approach zero, which injects some

erratically high CV-values into a distribution of values. It is

for that reason, numerically instability, that the more data

one has, the worse the mean CV-value can be, with the

solution being to first calculate many CV values, and then

take their median value [25]. Even though the mean value

may be not useful, the median may be, and confidence

intervals for CV could be established using bootstrap

quantiles, but not by using the gradient matrix approach

because correction for n-small is problematic. That is, for

mean values that can be rewritten as being proportional and

having an established maximum range, e,g., Likert scale

minus 1 variables, correcting CV underestimation for small

values of n is possible. However, if, as is the case here,

there is no theoretical maximum CV, one needs to invent a

correction based upon the observed confidence intervals of

the mean [39], such that CI-values are unavoidable for

determining the meaning of the preponderance of CV

results. Finally, comparison for significant differences

between parameters for one subject versus another are easy

to construct using CI, but more difficult to obtain for CV.

Thus, CV-values cited without explicit quality assurance

should be regarded as qualitative results.

Limitations

A major deficiency of the first article that applied and

compared the gamma-Pareto type I convolution (GPC)

model to other models [13] was the lack of an algorithm

that could be used for independent investigation and/or for

application to other drugs. The accelerated algorithm pre-

sented herein is the first publication of code for a gamma-

Pareto type I convolution (GPC). As such, the algorithm

was kept in a simple form without using all possible

acceleration tools or stopping conditions. While it could be

optimised for even shorter run-times using vector addition

of subsets of the summands, by using Eq. (14) to reduce

summand magnitudes for the short-t algorithm and/or

combining partial sums of the summands for the short- or

long-t algorithms, by eliminating diagnostic parameters

such as run-time calculations, by compiling it, and by

multiple other means. However, that would be at the

expense of clarity and/or simplicity of presentation. It is

complicated to compute the values of functions like the

sinðxÞ efficiently. For example, an answer with precalcu-

lated exact precision can be quickly generated for sin x

using the CORDIC procedure, which is optimised for

binary register operations at the machine level [40]. At a

much higher and slower level, compared to the GPC(t)

short-t algorithm, the sinðtÞ function’s series expansion has

even larger magnitude terms for long t-values. In its current

form, the combined short- and long-t GPC algorithm is so

much faster than the previously published run times using

the seven dogs 72 h data and more generally valid that it is

now a practical algorithm. The current implementation is

no longer limited as to how long t is, and the propagated

error of up to 2� 10�14 for parameter values obtained from

regression of 72 h data has been reduced to \10�20. That

error demonstrates the major extent to which errors from

65 decimal place precision can propagate during process-

ing of tens of thousands of calculations, especially during

regression, which typically, by default, halves the number

of significant figures—see the Data sources and regression

Methods Subsection. This does not affect any of the

parameter values listed in Table 1, but the ability to

quickly calculate a larger number of model-based bootstrap

results would improve the parameter CI estimates. Another

consideration is how to obtain exactly n significant fig-

ures precision when n are requested. Currently, for 65

significant figures requested, a result precise to several

significant figures greater or lesser than 65 is returned and

the algorithm is written only for 65 significant figure pre-

cision. Generalising this to request to obtain an arbitrary

specific precision for a GPC functional height awaits the

next several generations of algorithmic refinement.

Conclusions

The new GPC type I algorithm consists of two parts, one

for very early times, and another for late times. At times

less than approximately 4 b, i.e., 100-120 s for the met-

formin data, the short-t algorithm is actually faster than the

long-t algorithm. For early data, the short-t algorithm has

alternating sign terms of monotonically decreasing mag-

nitude. However, when used at long times, the short-t GPC

algorithm required precalculation of the precision needed

for later summation, which represents an improvement

over the algorithm previously used [13]. In the newly-

proposed, combined short and long-t algorithm this pre-

calculation is unnecessary because of the long-t algorithm

usage for all but the shortest t-values, resulting in markedly
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accelerated convergence, and the new ability to predict

concentration at any time, no matter how long.

Appendix

This section provides information concerning convergence

of the short- and long-t algorithms, when they should be

used, and how to encode them in the Mathematica [5]

language.

Short-t GPC convergence

The short-t algorithm is an alternating series sum. For

alternating series one can distinguish two types of con-

vergence. Conditional convergence in which the value of

the infinite sum depends on the order in which summation

is performed as shown by the Riemann rearrangement

theorem, and absolute convergence for which any order, or

permutation, of summation process yields the same,

unique, sum. Convergence is defined as conditional when

an alternating series converges but its absolute value does

not [41]. For example, the alternating harmonic seriesP1
n¼1

ð�1Þnþ1

n has an absolute value ratio of next term to

current term of n
nþ1

, whose limit as n ! 1 is 1. That means

that as n increases, the next term approaches the same size

as the nth term, such that the absolute sum of terms is not

bounded above, and the order of addition of the original

series determines what the total sum is, making changes in

order of summation yield different, i.e., ambiguous, results.

If a limiting term ratio is less than 1, for example 1
2
, the

series is absolutely convergent, e.g., the limiting infinite

sum ratio of 1
2
for some eventual term is, in binary arith-

metic, 0:111111. . .2 ! 12 ¼ 1. It is fair to call series,

whose limiting absolute value term ratio is 0, eventually-

rapidly convergent. In the case of the short-t algorithm the

infinite sum of its absolute values is, for sufficiently large

values of t, a very large number. However, for any real

valued time, t, no matter how large, there is a real number,

M, that is greater than the magnitude of the infinite sum of

absolute values of Eq. (9). That M can be fantastically

large, but never infinite, makes it difficult to use Eq. (9)

without precision that is explicitly extended for the purpose

of accurately forming the infinite sum for certain values of

the parameters and long times, but it does not make con-

vergence conditional.

Lemma 1 In the case of the short-t GPC algorithm, convergence is
absolute and eventually rapid, such that the Riemann rearrangement
theorem prohibition for resequencing infinite sums does not apply.

Proof To show absolute convergence of the short-t GPC type I

algorithm, we construct the absolute value of the ratio of the ðnþ 1Þth
to nth term. First, we take the infinite series definition of the

incomplete beta function,20

BzðA;BÞ ¼ z A
X1
j¼0

z jð1� BÞj
j!ðAþ jÞ

¼ z A
1

A
� B� 1

Aþ 1
zþ ðB� 1ÞðB� 2Þ

2!ðAþ 2Þ z 2 � . . .

	 

;

jzj\1 ^ :ð�a 2 Z ^ �a� 0Þ :

Although this is an alternating sign series with a restricted

range of convergence, we term by term, without permuta-

tion, substitute into it the incomplete beta function

parameters of Eq. (9)’s nth and ðnþ 1Þth terms; B
1�b

t
ðaþ

n;�aÞ; and B
1�b

t
ðaþ nþ 1;�aÞ; and substitute that into

the absolute value of the ðnþ 1Þth to nth term ratio of the

summand of Eq. (9), and simplify to yield,

b ðt � bÞ
nþ 1

1
aþnþ1

þ ðaþ1Þ
aþnþ2

1� b
t

� �
þ ðaþ1Þðaþ2Þ

2!ðaþnþ3Þ 1� b
t

� �2

þ. . .

1
aþn þ

ðaþ1Þ
aþnþ1

1� b
t

� �
þ ðaþ1Þðaþ2Þ

2!ðaþnþ2Þ 1� b
t

� �2

þ. . .

\
b ðt � bÞ
nþ 1

:

As 1[ t[ b, neither the infinite series numerator or

denominator is alternating, their ratio is absolutely con-

vergent as
b ðt�bÞ
nþ1

is an asymptote of, and upper bound for,

the ratio of consecutive absolute value terms as n ! 1.

While b ðt � bÞ[ nþ 1, if that occurs, for example for

long t-values, we would expect the magnitude of the terms

of the summands to increase for n small enough, but as n

increases b ðt � bÞ 
 nþ 1 eventually, and the ðnþ 1Þth
relative term magnitude can be made as asymptotically

close to zero as desired, and convergent by the ratio test

[23]. h

Thus, the magnitude of alternating terms is eventually

monotonically decreasing such that the absolute error of

summation from truncating at an nth term for n sufficiently

large is less than the magnitude of the ðnþ 1Þth term by the

alternating series remainder theorem. Moreover, the first

term of the summand is some definite positive real number

proportional to 1. Setting the first term to be 1, we conclude

that the sum of the absolute value of the summands of

Eq. (9) is proportional to a number bounded above by

M /
X1
k¼0

½bðt � bÞ�k

k!
¼ ebðt�bÞ ;

20 http://functions.wolfram.com/06.19.06.0002.01.
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such that the sum of absolute values of summands of

Eq. (9) is bounded above by some positive constant value

times an exponential function of t, and Eq. (9) is absolutely

convergent.

Long-t GPC algorithm convergence rapidity

This subsection examines the rapidity of convergence of

the long-t GPC algorithm. In Lemma 1 directly above, it

was shown that the short-t algorithm is absolutely con-

vergent. Therefore, its infinite series rewrite as the long-

t Theorem 1, Eq. (10), is also convergent but how many

summation terms are needed for convergence and which

parameters determine this convergence can be clarified

using the substituted definition of the confluent hypergeo-

metric series21 as follows.

1F1ða; a� k;�b tÞ ¼
X1
j¼0

ðaÞjð�b tÞ j

j!ða� kÞj

¼ 1� a b t

a� k
þ aðaþ 1Þðb tÞ2

2!ða� kÞða� k þ 1Þ � . . . :

Note that in the limit as k ! 1 the above equation is

asymptotically (� ) 1. Next, the ratio of the ðk þ 1Þth to kth
term is asymptotic to b

k t for k sufficiently large,

b
t

a� k

ðk þ 1Þða� k � 1Þ
1� a

a�k�1
b t þ aðaþ1Þ

2ða�k�1Þða�kÞ ðb tÞ
2 � � � �

1� a
a�k b t þ

aðaþ1Þ
2ða�kÞða�kþ1Þ ðb tÞ

2 � � � �
� b

k t
:

For that reason, for longer t-values, one can expect faster

convergence of the long-t algorithm with fewer terms

summed.

Choosing when to use the short-t and long-
t algorithms

As above, the absolute value of the ratio of the next term to

the current term for the short-t algorithm is bounded above

by
b ðt�bÞ
nþ1

. For the long-t algorithm, the ratio of the ðk þ 1Þth
to kth term approaches b

k t for k sufficiently large. Note that

these are in the opposite direction, that is, while t-values

increase,
b ðt�bÞ
nþ1

increases and b
k t decreases. It is not critical

exactly at what t value one elects to use the short- and long-

t algorithms, as the major cost in computational time and

number of terms needed occurs at the extreme values of t,

but in an opposite direction for each algorithm. Figure 5

shows the tradeoff for dog 1 of the metformin series

between numbers of terms for summation, time following

bolus injection, and the magnitude of the natural logarithm

of GPCðtÞ, where GPCðtÞ ¼ CðtÞ
AUC. Selecting t ¼ 4b as a cut

point for switching between algorithms means that the

short-t algorithm absolute sum of terms is bounded above,

from substitution into ebðt�bÞ, by e3b b times the first term’s

value, not a large number, and the long-t algorithm has an

approximate maximum ðk þ 1Þth to kth term ratio of 1
4k for

the shortest t-value used, which can still be made as small

as desired for k sufficiently large.

Mathematica source code of the GPC type I
accelerated algorithm

Computer implementation of the GPC type I function is

provided as a notebook (nb file type) in the Mathematica

language as Supplementary Materials 1. Without access to

Mathematica itself that file cannot be easily reviewed.

Therefore, an image of that file’s contents is provided

below.

Fig. 5 The tradeoff between the time elapsed following bolus

intravenous injection (x-axis), the number of terms to be summed

for calculating the GPC function’s value (y-axis), and the natural

logarithm of the GPC function at that time (z-axis). Panel a shows

short-t algorithm performance and panel b shows the long-t algorithm
performance. Note that only for very early elapsed times does the

short-t algorithm have fewer terms than the long-t algorithm

21 http://functions.wolfram.com/07.20.06.0002.01.
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