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SLAM-MS: Mutation scanning of 
stem-loop amplicons with TaqMan 
probes by quantitative DNA 
melting analysis
V. N. Kondratova, I. V. Botezatu, V. P. Shelepov & A. V. Lichtenstein*

DNA Melting Analysis (DMA) with a TaqMan probe covering the mutation “hot spot” is a simple, 
sensitive, and “closed tube” method of mutation detection. However, DMA requires asymmetric PCR to 
produce single-stranded amplicons capable of interacting with TaqMan probes. This makes quantitative 
analysis impossible owing to low amplification efficiency. Moreover, bi-strand mutation detection 
necessitates two independent PCRs. The SLAM-MS (Stem-Loop AMplicon Mutation Scanning) assay, 
in which symmetric PCR is performed using primers with 5'-universal primer sequence (UPS), has been 
developed to detect KRAS mutations. Some of the resulting amplicons, sense and antisense, adopt 
single-stranded stem-loop conformation and become unable to renature, but able to hybridize with 
TaqMan probes. Hybrids of stem-loops and complementary TaqMan probes are suitable for melting 
analysis and simultaneous bi-strand mutation scanning. In addition, the areas under the melting peaks 
are determined by the PeakFit software, a non-linear iterative curve fitting program, to evaluate the 
wild-type/mutant allele ratio. Thus, the SLAM-MS assay permits quantification of both the number 
of copies of the target sequence and the percentage of mutant alleles. For mutant enrichment, the 
SLAM-MS assay uses TaqMan probes as PCR blocking agents allowing an ~10 times higher mutation 
detection sensitivity than High Resolution Melting (HRM) assay.

In basic cancer research, priority is given to large-scale (genome- and exome-wide) next generation sequencing 
(NGS) methods, which give a panoramic picture of defects in the cancer genome. However, for clinical diagnos-
tics, a “targeted approach” is more often required, i.e. screening of previously known clinically important muta-
tions, in particular in the KRAS, NRAS, BRAF, EGFR, and PIK3CA genes1–7. In this case, the priorities are the 
feasibility of the method in a clinical laboratory, and its simplicity, performance, and sensitivity.

These requirements are largely met by asymmetric PCR with a TaqMan probe covering the mutation “hot 
spot” and subsequent DMA (DNA Melting Analysis), which is one of the most simple, fast, and least costly 
methods to detect DNA mutations. Moreover, it is implemented in the “closed tube format” that avoids any 
additional manipulations and eliminates sample cross-contamination8,9. The short length of the TaqMan probes 
(20–30 nucleotides) facilitates strong mismatch-induced changes in melting curves and clear discrimination of 
wild-type and mutant melt peaks. Computation of the areas under the peaks using specialized software permits 
quantification of the ratio of wild and mutant alleles9. Furthermore, under special (suboptimal) PCR conditions, 
the TaqMan probes serve as blocking agents contributing to the enriched synthesis of mutant alleles10.

An inherent drawback of this method is the asymmetric mode of PCR necessary for accumulation of 
single-stranded amplicons (“targets” for TaqMan probes). This leads to a number of limitations: (i) a decrease in 
the amplification efficiency, and the inability to estimate the copy number of the target sequence; (ii) the need for 
two independent PCRs for bi-strand mutation scanning; (iii) increased costs of time and labour. A simple solution 
to the problem is the use of combined primers, consisting of 5'-universal and 3'-specific sequences, in symmetric 
PCR. This leads to the formation of single-stranded stem-loop amplicons along with the typical double-stranded 
amplicons. The stem-loop conformation precludes single strands from interactions with each other owing to 
topologic constraints, but creates a constant environment for hybridization with TaqMan probes. This is the 
basis for the quantitative SLAM-MS (stem-loop amplicon mutation scanning) assay that includes a number of 
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technical novelties: (i) multifaceted use of TaqMan probes as real time indicators of symmetric amplification, 
blocking agents, and hybridization probes for DNA melting analysis; (ii) one-test bi-strand mutation scanning; 
(iii) quantitation of DNA melting analysis. In conclusion, the bi-strand mutant-enriched SLAM-MS seems very 
promising as a simple, moderately sensitive, cost-effective, and quantitative method of the “first line” diagnostics.

To develop the SLAM-MS assay, the KRAS oncogene was used as a prototype. This is one of the most clinically 
significant genes, exhibiting mutations in ~40% of colon cancer cases11.

Material and Methods
DNA samples.  Samples of blood and tumour tissue (colon cancer) were obtained at the N.N. Blokhin Russian 
Cancer Research Center clinic. All patients consented to the use of their tissue samples. Formalin-Fixed Paraffin-
Embedded (FFPE) or fresh-frozen primary tissues were used for detection of KRAS mutations (codons 12 and 
13). DNA from the human colorectal carcinoma cell line SW480 (ATCC CCL-228, Manassas, VA, USA) with a 
homozygous mutation in the KRAS codon 12 (GGT/GTT)12 was used for serial dilutions of mutant DNA with 
wild-type DNA. DNA from blood cells of healthy donors, cultured cells, and tumour tissues was isolated using a 
proteinase K and phenol-chloroform deproteinization method. DNA was extracted from FFPE tissues using the 
QIAamp DNA FFPE tissue kit (QIAGEN, Valencia, CA, USA) as per the manufacturer’s protocol. DNA concen-
trations were determined spectrophotometrically (Nano-Drop 1000, Thermo Fisher Scientific, Wilmington, DE, 
USA).

PCR design.  Thermodynamic calculations of Tm for primers and probes were performed using the MeltCalc 
program13. Folding of single-stranded amplicons was determined using the Mfold web server14. Primers for the 
KRAS sequence (GenBank Accession number NG_007524.1) were designed using the Vector NTI Advance 10 
program (Invitrogen Corp., Carlsbad, CA, USA). The sequences of primers and probes are presented in Table 1. 
The scheme of the KRAS amplicons is shown in Fig. 1. The TaqMan probes are “shifted” relative to each other to 
prevent their mutually absorbing hybridization. Amplicons of 114 and 174 bp were synthesized using the standard 
and combined primers, respectively. The combined primers contain a universal GC-enriched Universal Primer 
Sequence (UPS) at the 5′-end15.

SLAM-MS.  PCR was performed in 25-μl reactions in 96-well plates on a CFX96 instrument (Bio-Rad 
Laboratories, Hercules, CA). The incubation mixture contained 67 mM Tris-HCl, pH 8.8; 16.6 mM (NH4)2SO4; 
0.01% Tween 20; 2.5 mM MgCl2; 0.25 mM each of deoxynucleoside triphosphates; 0.2 μM forward and reverse 
combined primers; 0.2 μM TaqMan probes (sense and antisense, either alone or together); 1 unit Hot-rescue Taq 
polymerase (Syntol, Russia); 5 μl of DNA solution (10–30 ng) in water. The PCR conditions included an initial 

Standard primers [amplicon K2(114)]

Forward 5'-gcctgctgaaaatgactg

Reverse 5'-ttggatcatattcgtccacaa

Combined primers [amplicon K2(174)]

Forward 5'-GCGGGCGTACTAGCGTACCGCTAGCGACGGgcctgctgaaaatgactg

Reverse 5'-GCGGGCGTACTAGCGTACCGCTAGCGACGGttggatcatattcgtccacaa

TaqMan probes

K2-ROX(25)s 5'-ROX-acttgtggtagttggagctggtggc-BHQ2

K2-Cy5(25)as 5'-Cy5-aaggcactcttgcctacgccaccag-BHQ2

K2-FAM(23)as 5'-FAM-cactcttgcctacgccaccagct-RTQ1

Table 1.  Primers and TaqMan probes. The Universal Primer Sequence (UPS) is shown in italics and bold; 
specific sequences are indicated by lowercase letters; the TaqMan probe name indicates the amplicon, 
fluorophore, oligonucleotide length and direction (sense and antisense probes are designated by signs ‘s’ and ‘as’, 
respectively).

Figure 1.  Scheme of the amplicons K2(114) and K2(174). The locations of the primers (standard and combined 
with the UPS sequence), as well as the TaqMan probes and the mutation “hot spot” (codons 12/13) are shown by 
arrows.
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denaturation of 5 min at 95 °C; followed by 55 cycles of 25 s at 95 °C, 30 s at 56 °C, and 30 s at 72 °C, with fluores-
cence acquisition at 72 °C. Subsequently, the PCR products were denatured for 3 min at 95 °C, then cooled in 
one of three modes: average cooling rate (directly in the instrument), slowly (at room temperature), quickly (by 
immersing the plate in a water–ethanol mixture pre-cooled to −20 °C). DNA was melted, raising the temperature 
from 50 °C to 85 °C (increments of 0.4 °C, dwell time of 6 s, rate of heating of 3.3 °C/s). Data were analysed using 
the Bio-Rad CFX Manager program (version 1.6). Intercalating dyes (such as SYBR Green and EvaGreen) were 
not added to the incubation medium.

Mutant-enriched SLAM-MS.  PCR conditions were as described above except that after primary DNA 
denaturation (5 min at 95 °C), a two-stage PCR was performed: 50 short cycles (15 s at 95 °C, 1 s at 50 °C) preceded 
the standard 35 cycles (25 s at 95 °C, 30 s at 56 °C, 30 s at 72 °C). The DNA melting conditions remained the same.

Quantitation of DNA melting analysis.  Quantitation of DNA melt peaks was carried out as described 
earlier9. We assume that the number ratio of mutant and wild-type alleles has a linear relationship with the area 
ratio of respective melting peaks. The latter were calculated using PeakFit (v. 4.12.00; SeaSolve Software Inc., 
San Jose, CA, USA), a nonlinear peak separation software for spectroscopy and chromatography analyses. An 
iterative least-squares curve fitting procedure was employed to measure the areas under the curves of separate 
and overlapping Gaussian peaks after background subtraction. The goodness of curve fitting criteria, such as the 
R2 coefficient of determination, the standard error, 95–99% confidence interval, and the F-statistics for the fit 
are presented (Fig. 2). The correlation between the mutation fraction measured by the Peak Fit software and the 
actual mutation fraction obtained by serial dilutions of SW480 DNA with wild-type DNA was determined using 
GraphPad Prism 8.2.0 (GraphPad Software, San Diego, CA, USA).

High resolution melting analysis.  PCR was performed in 25-μl reactions in 96-well plates on a CFX96 
instrument (Bio-Rad Laboratories, Hercules, CA). The incubation mixture contained 67 mm Tris-HCl, pH 8.8; 
16.6 mM (NH4)2SO4; 0.01% Tween 20; 2.5 mM MgCl2; 0.2 μM forward and reverse K2(114) primers; 1.25 μl of 
intercalating dye 20 x EvaGreen (Dialat, Moscow, Russia); 0.25 mM each of deoxynucleoside triphosphates; 1 unit 
Hot-rescue Taq polymerase (Syntol, Moscow, Russia); 5 μl of DNA solution (10 ng) in water. The PCR conditions 
included an initial denaturation of 5 min at 95 °C; followed by 40 cycles of 25 s at 95 °C, 30 s at 56 °C, and 30 s at 
72 °C (fluorescence acquisition at 72 °C) and a final extension at 72 °C for 5 min. Subsequently, the PCR products 
were denatured for 3 min at 95 °C, then cooled 3 min at 50 °C. DNA was melted, raising the temperature from 
50 °C to 95 °C (increments of 0.2 °C, dwell time of 10 s, rate of heating of 3.3 °C/s). Data were analysed using the 
Bio-Rad Precision Melt Analysis Software 1 (v. 4.0.52.0602).

Gel electrophoresis.  DNA was separated by electrophoresis in 7% standard polyacrylamide gel, prepared in 
0.5 x Tris-acetate buffer, pH 8.0, 6 h at 100 V (5 V/cm) and 4 °C. The gel was stained with EtBr (0.5 μg/ml).

Single strand conformation polymorphism (SSCP).  Electrophoresis in a neutral gel with a high degree 
of crosslinking and under high voltage was carried out in a 12% polyacrylamide gel (acrylamide/bisacrylamide 
ratio 1:50), with 0.5 x Tris-acetate buffer, pH 8.0, for 2.5 h at 400 V (20 V/cm) and 4 °C16,17. The gel was stained 
with SYBR Gold fluorescent dye (dilution 1:10000).

Sanger sequencing.  KRAS amplicons were sequenced bi-directionally at the Syntol sequencing facility 
(Moscow) using the Sanger sequencing method.

Results
Experimental and clinical studies typically require evaluation of the copy number of a target gene and the pres-
ence of polymorphisms, particularly mutations. Quantitative real time PCR with TaqMan probes is often used 
to evaluate copy number, and post-PCR DMA to detect polymorphisms8,9,18. A disadvantage of this approach is 
that the quantitative real time PCR is symmetric, while DMA with TaqMan probes requires an asymmetric PCR; 
therefore, two independent specific reactions are necessary. In this study, we combined symmetric PCR and DMA 
in one assay by using primers with 5'-universal primer sequence. As a result, parts of the sense and antisense 
single-stranded amplicons adopt the stem-loop conformation15 and are able to hybridize with complementary 
TaqMan probes.

Products of PCR amplification.  The comparison of possible structures arising during asymmetric PCR 
with standard primers and symmetric PCR with combined primers is presented in Fig. 3. In both cases, a signif-
icant portion of PCR products are ordinary double-stranded amplicons (rods) that cannot interact with TaqMan 
probes. In addition, asymmetric PCR produces a certain number of single-stranded amplicons (random coils) of 
one particular type, either sense or antisense, capable of hybridizing with a complementary probe.

In comparison, symmetric PCR with combined primers should generate a more diverse range of products: 
(i) double-stranded rods, (ii) single-stranded stem-loops (sense and antisense), (iii) partially complementary 
“clamps” (sense-sense and antisense-antisense). The stem-loops and clamps have single-stranded regions proba-
bly capable of hybridizing with complementary probes. These assumptions were tested by electrophoretic analysis 
of products synthesized by symmetric PCR of this type (Fig. 4).

In addition to the expected 174 bp amplicon band, three further bands were observed. These presumably rep-
resent, in order of increasing migration rate, a single band of clamps and two bands of stem-loops. One can sug-
gest that the ratios between the competitive conformations may change depending on renaturation conditions. 
Indeed, perfect complementary rods are the most thermodynamically favourable and, therefore, should be domi-
nant. But, the bimolecular reaction of hybridization is concentration- and time-dependent, while the formation of 
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stem-loops is an intramolecular, concentration-independent reaction that proceeds very quickly. So, the faster the 
cooling of amplicons after denaturation, the higher the expected proportion of stem-loop amplicons. The clamps 
are less thermodynamically advantageous than rods and slower than stem-loops. So, their proportion should be 
negligible. These assumptions are supported experimentally: fast cooling leads to an increase in intensity of the 
stem-loop bands (compare tracks 1, 2, and 3 in Fig. 4) and enlarged DNA melt peaks (Supplementary Fig. S1). 
Thus, it seems reasonable to perform the renaturation step at the maximal cooling rate for the instrument. In most 

Figure 2.  DMA quantitation. (A) KRAS GGT12GTT mutation from colorectal cancer was assayed by DMA 
with K2-ROX(25)s probe. (B) The melt peaks were subjected to the signal processing procedure using the 
PeakFit software. Upper panel - the fitted melt peak curve after background subtraction within 99% confidence 
interval; lower panel - separated melt peaks and their percentages.
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cases, the instrumental cooling is enough to produce an adequate signal, but sometimes accelerated (outside the 
instrument) cooling of the plate and repeated melting may be recommended to enhance the DMA signal.

In subsequent band-shift experiments, PCR products were analysed using the SSCP method to evaluate the 
possibility of interactions between stem-loops and TaqMan probes. During SSCP electrophoresis designed for 
the analysis of conformational polymorphisms16,17, single-stranded coils move slower than linear rods and are 
resolved better than in standard electrophoresis. The band shifts arising when the probes K2-ROX(25)s and/
or K2-Cy5(25)as are added to the amplification products indicate that stem-loop/probe interactions are pos-
sible (Fig. 5). It is also evident that K2-ROX(25)s hybridizes more efficiently than K2-Cy5(25)as, which can be 
explained by various steric effects of their specific fluorophores.

Figure 3.  Possible structures resulting from asymmetric PCR with standard primers and symmetric PCR 
with combined primers. Designations: s - sense, as - antisense, s-l - stem-loops, F - fluorophore, Q - quencher. 
Interactions of TaqMan probes with single-stranded amplicons and stem-loops are indicated by arrows.

Figure 4.  Electrophoresis of PCR products. PCR products synthesized by symmetric PCR with combined 
primers were separated in a 7% polyacrylamide gel after various modes of renaturation. Lanes: 1 - instrument 
cooling; 2 - quick cooling; 3 - slow cooling. Designations: M - molecular weight markers. s-l - stem-loops.
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Mutant-enriched SLAM-MS with quantitative DNA melting analysis.  The combined primers 
appear to be quite effective in real time PCR (Fig. 6), although Cq values in this case are about 5 cycles higher than 
those with the standard primers.

The presence in the post-PCR mixture of both sense and antisense stem-loop amplicons allows the use of either 
one or both TaqMan probes for melting analysis. Thus, a mutation can be scanned in any one or both amplicon 
strands. The option of bi-strand scanning seems preferable, because, first, it increases the reliability of the analysis 
(two tests differing in resolution of normal and mutant alleles complement each other), and, second, the combi-
nation of two TaqMan probes provides maximal mutant enrichment during PCR amplification (see below). An 
illustrative example of bi-strand SLAM-MS of a DNA sample from colorectal cancer with the KRAS GGC13GAC 
mutation shows a high resolution of wild-type and mutant melt peaks upon examination of both strands (Fig. 7). 
It appeared important to select the optimal sizes of the loop and probe (114 and 23–25 nucleotides, respectively, in 
this case). Although a detailed study of this phenomenon was not the aim of this work, we found in preliminary 
experiments that either increasing or decreasing the loop size diminished the DMA signal, probably due to steric 
hindrances of the probe fluorophore and/or quencher. It is noteworthy that specificity of the fluorophore also influ-
ences the probe hybridization ability as demonstrated by the band-shift experiments (Fig. 5).

Figure 5.  Band-shift experiments. Products of symmetric PCR incubated with TaqMan probes were separated 
by SSCP electrophoresis. Designations: M - molecular weight markers, s-l - stem-loops. Band shifts are 
indicated by arrows.

Figure 6.  Standard curve of PCR amplification with combined primers. Real time PCR amplification was 
carried out with combined primers and K2-ROX(25)s probe using serially diluted wild-type DNA as template. 
(A) Amplification curves; (B) standard curve (E = 99%, R2 = 0.988).
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Figure 7.  Bi-strand mutation scanning. SLAM-MS assay of KRAS GGC13GAC mutation was carried out with 
K2-ROX(25)s (curve 1) and K2-Cy5(25)as (curve 2) TaqMan probes. Positions of wild-type and mutant melt 
peaks are marked by arrows.

Figure 8.  Sensitivity testing of mutant-enriched SLAM-MS assay. Sensitivity testing was carried out using 
SW480 DNA serially diluted with wild-type DNA. DNA samples with concentration of the mutant allele from 
0% to 100% were analysed using ROX(25)s (A) and FAM(23)as (B) TaqMan probes (for convenience, the 
melting peaks obtained using these probes are presented separately). The wild-type and mutant melt peaks and 
the melt peaks of DNA samples with 0.4% mutant allele are marked by arrows.
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The DMA assay permits detection of ~5% of mutant alleles in wild-type DNA9. A range of techniques are used 
for mutant enrichment during PCR. It seems likely, however, that the most economical and simplest of these is 
based on the fact that oligonucleotides, such as snapback primers19 or TaqMan probes10, hybridized with the tem-
plate and located on the Taq polymerase pathway, reduce its extension rate20. Since this effect is more pronounced 
in the case of perfect hybrids, compared to mismatched ones, the TaqMan probes can be used for mutant enrich-
ment. If relatively minor variances in the stability of the probe/template complexes do not give a noticeable effect 
under standard PCR conditions, then under suboptimal PCR conditions (for example, short PCR cycles), a strong 
effect of mutant enrichment and many-fold increase in sensitivity can be achieved9,10,19.

Mutant-enriched SLAM-MS uses TaqMan probes as blocking agents in such a way that, first, 50 short PCR 
cycles precede 35 ordinary cycles, and, second, both, sense and antisense, TaqMan probes are present in the 
incubation mixture. In common, they produce strong mutant enrichment (Fig. 8). Analysis of serial dilutions 
of SW480 DNA in wild-type DNA demonstrates an ~10-fold increase in sensitivity of the mutant-enriched 
SLAM-MS (mutant allele detection limit ~0.4%) compared to the standard protocol (~5%).

Figure 9.  SLAM-MS quantitation. Calibration curves of mutant-enriched SLAM-MS quantitation with 
ROX(25)s and FAM(23)as probes were obtained within 95% confidence interval to correlate the mutant fraction 
measured by the PeakFit software to the actual mutant fraction (in %). Triplicate experiments were analysed; 
error bars indicate standard deviation. Note the logarithmic X scale. The percentage of actual mutant fraction in 
DNA samples can be estimated using the calibration curves.

Figure 10.  Sensitivity testing of HRM assay. Sensitivity testing was carried out using SW480 DNA serially 
diluted with wild-type DNA. DNA samples with concentration of the mutant allele from 0% to 100% were 
analysed. (A) Normalised melt curves. (B) Difference curves. The HRM assay curves (100%, 50%, 25%, 12.5%, 
and 6.25% mutant) are marked by arrows, wild-type curves are shown in red.
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The mutant enrichment was quantified by the signal processing procedure (see Materials and Methods) to 
allow determination of the mutant/wild-type allele ratios in DNA samples. A highly increased measured muta-
tion percentage was obtained using the mutant-enriched SLAM-MS compared with the actual mutation percent-
age (Fig. 9). The detection limit of mutant alleles is ~0.4%.

Figure 11.  Mutant-enriched SLAM-MS of clinical DNA samples. Mutation scanning of FFPE DNA samples 
from normal (A) and colorectal cancer (B–I) tissues was carried out with the TaqMan probes ROX(25)s and 
FAM(23)as (shown in red and blue, respectively). Positions of the wild-type (WT) allele are shown by arrows. 
The mutation type was determined by Sanger sequencing. The actual mutant allele percentage was determined 
with the calibration curves presented in Fig. 9.
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It is widely adopted that HRM (High Resolution Melting) assay is one of the most effective methods for 
scanning single nucleotide polymorphisms, aberrantly methylated sequences, and mutations3,21–34. This “closed 
format” method is notable for its simplicity, cost-efficiency, and sensitivity. Since it is routinely used, in par-
ticular, for the analysis of KRAS oncogene3,32,34–38, it seemed reasonable to compare its sensitivity with that of 
mutant-enriched SLAM-MS. Figure 10 shows the sensitivity testing of HRM assay using standard K2(114) prim-
ers and SW480 DNA serially diluted with wild-type DNA. DNA samples with concentration of the mutant allele 
from 0% to 100% were analysed. The detection limit of mutant KRAS by this method is ~6%, it is in good agree-
ment with the literature data35–37,39. Thus, the mutant-enriched SLAM-MS is about an order of magnitude more 
sensitive than the HRM assay.

Analysis of clinical DNA samples.  We used mutant-enriched SLAM-MS assay for the analysis of a panel 
of FFPE colorectal cancer specimens. In many of these samples, the presence of mutant KRAS was not detected 
by the standard PCR-DMA owing to its low concentration. Following enrichment, the presence of mutant KRAS 
became obvious in all samples studied and the type of each mutation was revealed by Sanger sequencing (Fig. 11). 
Thus, the bi-strand mutant-enriched SLAM mutation scanning allows reliable identification of the most common 
KRAS mutations.

Discussion
To increase sensitivity of mutant detection, especially in samples like liquid biopsies, various techniques are 
used, such as sophisticated sequencing methods40–42, droplet digital PCR43, allele-specific PCR7, SNPase-AMRS 
qPCR44, COLD-PCR (co-amplification at lower denaturation temperature-PCR)45, HRM assay30,32,34,46,47, com-
petitive probe blocking48, peptide nucleic acid-mediated PCR clamping49, and DNA terminal structure-mediated 
enzymatic reaction50. However, none of these contain all the optimal qualities: high sensitivity and specificity, 
simplicity and cost-efficiency, feasibility in clinical settings. Some of these techniques are expensive, others are 
complex and time-consuming, and many involve several successive stages and the “open tube” format which is 
objectionable in clinics.

The existence of different methods can be justified by the fact that DNA samples isolated from FFPE tumour 
tissues or blood plasma are highly variable in terms of the quantity, quality, and the percentage of mutant alleles. 
Since the mutant allele percentage in plasma cell-free DNA (cfDNA) varies in cancer patients as widely as from 
0.1% to 60%7,51,52, certain methods may be warranted in specific “niches”, thus avoiding an impractical “overkill” 
approach. Given that the median percentage of mutant alleles in cfDNA is ~1% in patients with diverse (gastro-
intestinal, brain, lung, breast, head, and neck) cancers52, one can suggest that in the majority of cases, mutant 
detection is feasible using methods with a moderate sensitivity (0.1–1%). It is also noteworthy that the practically 
limited availability of DNA from FFPE tumour tissues and blood plasma puts a physical limit on the capabilities 
of ultrasensitive methods, such as ddPCR (its proclaimed detection of 0.001%, or 1 mutant in 100,000 wild-type 
alleles, would require 1 μg/well DNA, which is hardly feasible in practice).

Therefore, it seems reasonable to suggest a framework in which a clinical DNA sample is initially tested with 
the “first line” diagnostics (i.e. a simple and rapid method), and only those samples that were found negative or 
questionable at the initial stage and contained sufficient amount of DNA for ultrasensitive analyses, would be 
liable to the sophisticated and expensive “second line” diagnostics. In a clinical setting, such an approach could 
ensure the efficient use of time, labour, and money.

In this “proof of principle” study we showed that use of stem-loop amplicons permits rapid, simple, and quan-
titative bi-strand mutation scanning with a sufficiently high analytical sensitivity. The TaqMan probes widely used 
in genetic research make the current approach flexible and easily adaptable to a wide range of targets. In a small 
panel of FFPE colorectal cancer specimens, the mutant-enriched SLAM-MS showed reliable identification of the 
most common KRAS mutations confirmed by Sanger sequencing. Based on the analytical sensitivity of SLAM-MS 
(0.4% mutant alleles in an excess of wild-type DNA), the required DNA input would be ~3 ng. However, DNA 
isolated from FFPE tissues or blood plasma is extremely fragmented. As a result, the number of effective templates 
(determined by the size of the amplicon tested) may be significantly smaller than those suggested by spectro- or 
fluorimetry. Therefore, the value of 3 ng should be considered minimal. With regard to the clinical indicators of 
sensitivity and specificity of this method, i.e. the percentage of patients and healthy individuals identified cor-
rectly by the assay, further evaluation is needed. One can suggest that owing to the higher analytical sensitivity of 
the SLAM-MS over the widely used HRM assay, its diagnostic performance would be significantly higher.

Overall, the bi-strand mutant-enriched SLAM-MS is very promising as a simple, moderately sensitive, 
cost-effective, easy-to-use, and quantitative method of mutation scanning. It is implemented in the “closed tube 
format”, minimizing the risk of sample cross-contamination. In this study, it was applied for scanning mutant 
KRAS, but apparently, could be adapted for analysis of many other genes.

Data availability
All relevant data are within the manuscript and its Supplementary Fig. S1 file.

Received: 11 January 2020; Accepted: 9 March 2020;
Published: xx xx xxxx

References
	 1.	 Otandault, A. et al. Recent advances in circulating nucleic acids in oncology. Ann. Oncol. 30, 374–384 (2019).
	 2.	 Kristensen, T., Clemmensen, O. & Hoejberg, L. Low incidence of minor BRAF V600 mutation-positive subclones in primary and 

metastatic melanoma determined by sensitive and quantitative real-time PCR. J. Mol. Diagn. 15, 355–361 (2013).

https://doi.org/10.1038/s41598-020-62173-x


1 1Scientific Reports |         (2020) 10:5476  | https://doi.org/10.1038/s41598-020-62173-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

	 3.	 Mancini, I. et al. The use of COLD-PCR and High-Resolution Melting Analysis improves the limit of detection of KRAS and BRAF 
mutations in colorectal cancer. J. Mol. Diagn. 12, 705–711 (2010).

	 4.	 Mouliere, F. et al. Circulating cell-free DNA from colorectal cancer patients may reveal high KRAS or BRAF mutation load. Transl. 
Oncol. 6, 319–328 (2013).

	 5.	 Oh, J. E. et al. Detection of low-level KRAS mutations using PNA-mediated asymmetric PCR clamping and melting curve analysis 
with unlabeled probes. J. Mol. Diagn. 12, 418–424 (2010).

	 6.	 Tatsumi, K. et al. Rapid screening assay for KRAS mutations by the modified smart amplification process. J. Mol. Diagn. 10, 520–526 
(2008).

	 7.	 Thierry, A. R. et al. Clinical validation of the detection of KRAS and BRAF mutations from circulating tumor DNA. Nat. Med. 20, 
430–435 (2014).

	 8.	 Huang, Q. et al. Multiplex fluorescence melting curve analysis for mutation detection with dual-labeled, self-quenched probes. PLoS 
One 6, e19206, https://doi.org/10.1371/journal.pone.0019206 (2011).

	 9.	 Botezatu, I. V. et al. Asymmetric mutant-enriched polymerase chain reaction and quantitative DNA melting analysis of KRAS 
mutation in colorectal cancer. Anal. Biochem. 590, 113517 (2020).

	10.	 Botezatu, I. V. et al. TaqMan probes as blocking agents for enriched PCR amplification and DNA melting analysis of mutant genes. 
Biotechniques 62, 62–68 (2017).

	11.	 Prior, I. A., Lewis, P. D. & Mattos, C. A comprehensive survey of RAS mutations in cancer. Cancer Res. 72, 2457–2467 (2012).
	12.	 Capon, D. J. et al. Activation of Ki-ras2 gene in human colon and lung carcinomas by two different point mutations. Nature 304, 

507–513 (1983).
	13.	 Schutz, E. & von Ahsen, N. Spreadsheet software for thermodynamic melting point prediction of oligonucleotide hybridization with 

and without mismatches. Biotechniques 27, 1218–1224 (1999).
	14.	 Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406–3415 (2003).
	15.	 Guthrie, P. A. et al. Amplification ratio control system for copy number variation genotyping. Nucleic Acids Res. 39, e54, https://doi.

org/10.1093/nar/gkr046 (2011).
	16.	 Orita, M., Iwahana, H., Kanazawa, H., Hayashi, K. & Sekiya, T. Detection of polymorphisms of human DNA by gel electrophoresis 

as single-strand conformation polymorphisms. Proc. Natl. Acad. Sci. USA 86, 2766–2770 (1989).
	17.	 Yap, E. P. & McGee, J. O. Nonisotopic discontinuous phase single strand conformation polymorphism (DP-SSCP): genetic profiling 

of D-loop of human mitochondrial (mt) DNA. Nucleic Acids Res. 21, 4155 (1993).
	18.	 Botezatu, I. V. et al. Optimization of melting analysis with Taqman probes for detection of KRAS, NRAS and BRAF mutations. Anal. 

Biochem. 491, 75–83 (2015).
	19.	 Zhou, L. et al. Enrichment and detection of rare alleles by means of snapback primers and rapid-cycle PCR. Clin. Chem. 56, 814–822 

(2010).
	20.	 Montgomery, J. L., Rejali, N. & Wittwer, C. T. The influence of nucleotide sequence and temperature on the activity of thermostable 

DNA polymerases. J. Mol. Diagn. 16, 305–313 (2014).
	21.	 Wojdacz, T. K. & Dobrovic, A. Methylation-sensitive high resolution melting (MS-HRM): a new approach for sensitive and high-

throughput assessment of methylation. Nucleic Acids Res. 35, e41, https://doi.org/10.1093/nar/gkm013 (2007).
	22.	 Wittwer, C. T., Reed, G. H., Gundry, C. N., Vandersteen, J. G. & Pryor, R. J. High-resolution genotyping by amplicon melting analysis 

using LCGreen. Clin. Chem. 49, 853–860 (2003).
	23.	 Seipp, M. T., Durtschi, J. D., Voelkerding, K. V. & Wittwer, C. T. Multiplex amplicon genotyping by high-resolution melting. J. 

Biomol. Tech. 20, 160–164 (2009).
	24.	 Wittwer, C. T. & High-resolution, D. N. A. melting analysis: advancements and limitations. Hum. Mutat. 30, 857–859 (2009).
	25.	 Palais, R. & Wittwer, C. T. Mathematical algorithms for high-resolution DNA melting analysis. Methods Enzymol. 454, 323–343 

(2009).
	26.	 van der Stoep, N. et al. Diagnostic guidelines for high-resolution melting curve (HRM) analysis: an interlaboratory validation of 

BRCA1 mutation scanning using the 96-well LightScanner. Hum. Mutat. 30, 899–909 (2009).
	27.	 Malentacchi, F., Forni, G., Vinci, S. & Orlando, C. Quantitative evaluation of DNA methylation by optimization of a differential-high 

resolution melt analysis protocol. Nucl. Acids Res. 37, e86, https://doi.org/10.1093/nar/gkp383 (2009).
	28.	 Zhou, L., Wang, L., Palais, R., Pryor, R. & Wittwer, C. T. High-resolution DNA melting analysis for simultaneous mutation scanning 

and genotyping in solution. Clin. Chem. 51, 1770–1777 (2005).
	29.	 Vossen, R. H., Aten, E., Roos, A. & den Dunnen, J. T. High-resolution melting analysis (HRMA): more than just sequence variant 

screening. Hum. Mutat. 30, 860–866 (2009).
	30.	 Vorkas, P. A. et al. PIK3CA hotspot mutation scanning by a novel and highly sensitive high-resolution small amplicon melting 

analysis method. J. Mol. Diagn. 12, 697–704 (2010).
	31.	 Erali, M. & Wittwer, C. T. High resolution melting analysis for gene scanning. Methods 50, 250–261 (2010).
	32.	 Borras, E. et al. Clinical pharmacogenomic testing of KRAS, BRAF and EGFR mutations by high resolution melting analysis and 

ultra-deep pyrosequencing. BMC Cancer 11, 406 (2011).
	33.	 Gonzalez-Bosquet, J. et al. Detection of somatic mutations by High-Resolution DNA Melting (HRM) Analysis in multiple cancers. 

PLoS One 6, e14522, https://doi.org/10.1371/journal.pone.0014522 (2011).
	34.	 Harle, A. et al. Comparison of COBAS 4800 KRAS, TaqMan PCR and high resolution melting PCR assays for the detection of KRAS 

somatic mutations in formalin-fixed paraffin embedded colorectal carcinomas. Virchows Arch. 462, 329–335 (2013).
	35.	 Simi, L. et al. High-resolution melting analysis for rapid detection of KRAS, BRAF, and PIK3CA gene mutations in colorectal cancer. 

Am. J. Clin. Pathol. 130, 247–253 (2008).
	36.	 Pinto, P. et al. Comparison of methodologies for KRAS mutation detection in metastatic colorectal cancer. Cancer Genetics 204, 

439–446 (2011).
	37.	 Jancik, S. et al. A comparison of direct sequencing, pyrosequencing, high resolution melting analysis, TheraScreen DxS, and the 

K-ras StripAssay for detecting KRAS mutations in non small cell lung carcinomas. J. Exp. Clin. Cancer Res. 31, 79 (2012).
	38.	 Guedes, J. G. et al. High resolution melting analysis of KRAS, BRAF and PIK3CA in KRAS exon 2 wild-type metastatic colorectal 

cancer. BMC Cancer 13, 169 (2013).
	39.	 Krypuy, M., Newnham, G. M., Thomas, D. M., Conron, M. & Dobrovic, A. High resolution melting analysis for the rapid and 

sensitive detection of mutations in clinical samples: KRAS codon 12 and 13 mutations in non-small cell lung cancer. BMC Cancer 6, 
295 (2006).

	40.	 Forshew, T. et al. Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA. Sci. 
Transl. Med. 4, 136ra68, https://doi.org/10.1126/scitranslmed.3003726 (2012).

	41.	 Leary, R. J. et al. Detection of chromosomal alterations in the circulation of cancer patients with whole-genome sequencing. Sci. 
Transl. Med. 4, 162ra154, https://doi.org/10.1126/scitranslmed.3004742 (2012).

	42.	 Newman, A. M. et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat. Med. 20, 
548–554 (2014).

	43.	 Sanmamed, M. F. et al. Quantitative cell-free circulating BRAFV600E mutation analysis by use of droplet digital PCR in the follow-
up of patients with melanoma being treated with BRAF inhibitors. Clin. Chem. 61, 297–304 (2015).

	44.	 Stadler, J. et al. SNPase-ARMS qPCR: Ultrasensitive mutation-based detection of cell-free tumor DNA in melanoma patients. PLoS 
One 10, e0142273, https://doi.org/10.1371/journal.pone.0142273 (2015).

https://doi.org/10.1038/s41598-020-62173-x
https://doi.org/10.1371/journal.pone.0019206
https://doi.org/10.1093/nar/gkr046
https://doi.org/10.1093/nar/gkr046
https://doi.org/10.1093/nar/gkm013
https://doi.org/10.1093/nar/gkp383
https://doi.org/10.1371/journal.pone.0014522
https://doi.org/10.1126/scitranslmed.3003726
https://doi.org/10.1126/scitranslmed.3004742
https://doi.org/10.1371/journal.pone.0142273


1 2Scientific Reports |         (2020) 10:5476  | https://doi.org/10.1038/s41598-020-62173-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

	45.	 Pinzani, P. et al. BRAFV600E detection in melanoma is highly improved by COLD-PCR. Clin. Chim. Acta 412, 901–905 (2011).
	46.	 Ladas, I. et al. Multiplexed elimination of wild-type DNA and high-resolution melting prior to targeted resequencing of liquid 

biopsies. Clin. Chem. 63, 1605–1613 (2017).
	47.	 Ladas, I. et al. Enhanced detection of microsatellite instability using pre-PCR elimination of wild-type DNA homopolymers in tissue 

and liquid biopsies. Nucleic Acids Res. 46, e74, https://doi.org/10.1093/nar/gky251 (2018).
	48.	 Zhou, L., Wang, Y. & Wittwer, C. T. Rare allele enrichment and detection by allele-specific PCR, competitive probe blocking, and 

melting analysis. Biotechniques 50, 311–318 (2011).
	49.	 Chen, Y. L. et al. Verification of wild-type EGFR status in non-small cell lung carcinomas using a mutant-enriched PCR on selected 

cases. J. Mol. Diagn. 16, 486–494 (2014).
	50.	 Wu, T. et al. DNA terminal structure-mediated enzymatic reaction for ultra-sensitive discrimination of single nucleotide variations 

in circulating cell-free DNA. Nucleic Acids Res. 46, e24, https://doi.org/10.1093/nar/gkx1218 (2018).
	51.	 Abbosh, C., Birkbak, N. J. & Swanton, C. Early stage NSCLC - challenges to implementing ctDNA-based screening and MRD 

detection. Nat. Rev. Clin. Oncol. 15, 577–586 (2018).
	52.	 Schwaederle, M. et al. Genomic alterations in circulating tumor DNA from diverse cancer patients identified by next-generation 

sequencing. Cancer Res. 77, 5419–5427 (2017).

Acknowledgements
We thank Dr. A. Kolomeytseva for collection of cancer tissue samples. We would like to thank Editage (www.
editage.com) for English language editing. This work was supported by funding from the N.N. Blokhin Cancer 
Research Center, Moscow, Russia.

Author contributions
V.N.K., acquisition of data and analysis; I.V.B., acquisition of data and analysis; V.P.S., analysis of data and 
software; A.V.L., conception of the work and writing.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41598-020-62173-x.
Correspondence and requests for materials should be addressed to A.V.L.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2020

https://doi.org/10.1038/s41598-020-62173-x
https://doi.org/10.1093/nar/gky251
https://doi.org/10.1093/nar/gkx1218
http://www.editage.com
http://www.editage.com
https://doi.org/10.1038/s41598-020-62173-x
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	SLAM-MS: Mutation scanning of stem-loop amplicons with TaqMan probes by quantitative DNA melting analysis

	Material and Methods

	DNA samples. 
	PCR design. 
	SLAM-MS. 
	Mutant-enriched SLAM-MS. 
	Quantitation of DNA melting analysis. 
	High resolution melting analysis. 
	Gel electrophoresis. 
	Single strand conformation polymorphism (SSCP). 
	Sanger sequencing. 

	Results

	Products of PCR amplification. 
	Mutant-enriched SLAM-MS with quantitative DNA melting analysis. 
	Analysis of clinical DNA samples. 

	Discussion

	Acknowledgements

	Figure 1 Scheme of the amplicons K2(114) and K2(174).
	Figure 2 DMA quantitation.
	Figure 3 Possible structures resulting from asymmetric PCR with standard primers and symmetric PCR with combined primers.
	Figure 4 Electrophoresis of PCR products.
	Figure 5 Band-shift experiments.
	Figure 6 Standard curve of PCR amplification with combined primers.
	Figure 7 Bi-strand mutation scanning.
	Figure 8 Sensitivity testing of mutant-enriched SLAM-MS assay.
	Figure 9 SLAM-MS quantitation.
	Figure 10 Sensitivity testing of HRM assay.
	Figure 11 Mutant-enriched SLAM-MS of clinical DNA samples.
	Table 1 Primers and TaqMan probes.




