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Abstract
Sun-exposure is a key environmental variable in the study of human evolution. Several

skin-pigmentation genes serve as classical examples of positive selection, suggesting that

sun-exposure has significantly shaped worldwide genomic variation. Here we investigate

the interaction between genetic variation and sun-exposure, and how this impacts gene

expression regulation. Using RNA-Seq data from 607 human skin samples, we identified

thousands of transcripts that are differentially expressed between sun-exposed skin and

non-sun-exposed skin. We then tested whether genetic variants may influence each indi-

vidual’s gene expression response to sun-exposure. Our analysis revealed 10 sun-expo-

sure-dependent gene expression quantitative trait loci (se-eQTLs), including genes

involved in skin pigmentation (SLC45A2) and epidermal differentiation (RASSF9). The

allele frequencies of the RASSF9 se-eQTL across diverse populations correlate with the

magnitude of solar radiation experienced by these populations, suggesting local adaptation

to varying levels of sunlight. These results provide the first examples of sun-exposure-

dependent regulatory variation and suggest that this variation has contributed to recent

human adaptation.

Author Summary

Varying levels of sun-exposure across the world have significantly shaped human evolu-
tion. Previous analyses have found several skin pigmentation genes with evidence of strong
evolutionary pressures throughout human history, manifesting as large differences in the
frequency of genomic variants across populations. But even within populations, individu-
als respond differently to sun-exposure, suggesting variation in addition to the major dif-
ferences in skin pigmentation across populations. Here we investigated whether genetic
variants associate with response to sun-exposure within Europeans. To measure the
response we analyzed gene expression in sun-exposed and non-sun-exposed skin, and
identified ten genetic variants that associated with the sun-exposure response of nearby
genes. One of these genetic variants, which associated with the sun-exposure response of
the gene RASSF9, showed evidence of adaptation in humans in response to solar radiation.
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Together this evidence suggests that the regulation of gene expression is influenced by
sun-exposure and that the sun-exposure dependent effect on RASSF9 expression may have
had an effect on human fitness. To our knowledge, this is the first example of an environ-
ment-dependent regulatory variant with evidence of adaptation in humans.

Introduction

Despite the many successes of genome-wide association studies (GWAS), the field of human
genetics is still only scraping the surface of questions encountered in day-to-day life. Questions
such as why individuals respond differently to sun exposure, diet, or drugs highlight the promi-
nent role of the environment’s varied effects on every individual.When environmental and
genetic variation modify one another’s effects on phenotypes, this is known as gene-by-envi-
ronment, or GxE, interaction.Many classic examples of GxE interactions exist, such as the
inherited condition xeroderma pigmentosa resulting in extreme UV sensitivity [1–5]. But
because the environment is both unbounded and fluid, the potential number of GxE interac-
tions is infinite, which has hindered progress on basic questions such as the importance of GxE
interactions in evolution and disease [6,7]. Indeed, GxE interactions may help explain the
“missing” broad-sense heritability that has been the Achilles heel of GWAS [8–10].

Identifying newGxE interactions from genome-wide approaches is challenging due to their
typically small effect sizes coupled with a formidable multiple-hypothesis testing burden
[11,12]. However these challenges can be overcome by using gene expression as the trait, i.e.
studying how the combination of genetic and environmental variation affects gene expression
[13]. This is because cis-regulatory variants (also called cis-acting expression quantitative trait
loci, or cis-eQTLs) often have large effect sizes, and identification of these cis-eQTLs requires
testing only the SNPs nearby a given gene, resulting in a smaller multiple-hypothesis testing
burden [14–16]. In addition, the data required to identify GxE interactions affecting gene
expression regulation (hereafter referred to as GxE expression variants) are being produced at
an ever-accelerating pace, in large part by consortia such as GTEx [17]. Several studies have
successfully identifiedGxE expression variants in model organisms and in humans [18–26].
The human studies [23,24,26–29] have investigated the roles of various external immunologi-
cal stimuli, statin exposure, and ionizing radiation in GxE interactions. These studies have
identified a wealth of GxE expression variants associated with health-related conditions, such
as Crohn's disease and drug-inducedmyotoxicity, suggesting the importance of GxE interac-
tions in human health.

Here we investigate the presence of GxE expression variants associated with long-term sun-
exposure. Sun-exposure is associated with diverse human pathophysiologic phenotypes, from
vitamin D synthesis to cancer [30–33]. As humans migrated across the world, changes in solar
radiation exposure resulted in strong signatures of local adaptation [34]. Skin pigmentation
genes have repeatedly arisen as some of the strongest examples of positive selection in humans
[35–37]. Notable examples include SLC45A2 and SLC24A5, which contain non-synonymous
SNPs at high frequency in lighter-skin populations [34].

In addition to protein-coding changes, there is also evidence that non-coding changes have
evolved in response to sun-exposure. Cis-regulatory regions of several skin-pigmentation genes
show signs of selection, such as the intergenic regions of KITLG and the upstream enhancer of
OCA2 [34,38,39]. Polygenic signatures of selection have also been reported: eQTLs for genes
down-regulated by UV exposure show significantly higher allele frequencies of the down-regu-
lating allele in populations with higher UV exposure [40], suggesting that the dynamic
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response to UVmay also be "hard-wired" via adaptive changes in eQTL allele frequencies. Lim-
itations of these studies are that genetic control of gene expression and sun-exposure are often
only indirectly linked (because the SNP, gene expression, and sun-exposure were not all mea-
sured in the same study) and they do not address whether the genetic control of gene expres-
sion itself may be dynamic and depend on the environment.

To identify genetic variants whose effect on gene expression depends on sun-exposure, we
analyzed RNA-seq data from 607 skin samples [17] including sun-exposed skin (357 samples,
hereafter denoted as SE) and non-sun-exposed skin (250 samples, hereafter denoted as NSE),
which differ in lifetime sun-exposure.We then investigated whether the sun-exposure-depen-
dent eQTLs show signs of local adaptation. Although evidence for positive selection of skin-
pigmentation genes due to sun-exposure is strong, explanations for how these adaptations
improved fitness are debated [33]. Hypotheses range across a gamut of health associations,
including Vitamin D synthesis, folate-dependent neurological development, cancer, dehydra-
tion, and innate immunity [32,33]. By identifyingGxE expression variants, we aim to identify
the genes, and ultimately the specific traits, that have been critical for our recent adaptation to
local climates around the world.

Results

The effect of sun-exposure on the skin transcriptome

We first examined the transcriptome-wide gene expression of the skin samples relative to the
other tissues. Principal components of all GTEx samples were calculated. The 1st to 6th princi-
pal components primarily distinguished the samples by tissue, while the SE and NSE skin sam-
ples grouped together indistinguishably (Fig 1A, S1 Fig, Methods). Hierarchical clustering of
the expression data also clustered the SE and the NSE samples together (S2 Fig, Methods).
Thus, we estimate that sun-exposure has a subtle effect on gene expression in skin, when com-
pared to the differences between tissues.

Because the principal component analysis was able to discriminate between tissues, we next
investigated whether we could distinguish the exposure-type of the skin samples by performing
the analysis on the skin samples alone. The first six principal components did not segregate the
samples by exposure-type and the percent variance explained by each principal component

Fig 1. Sun-exposed and non-sun-exposed skin samples. (A) First and second principal components of all GTEx samples with selected tissue-

types highlighted by color. (B) First and second principal components using all genes in only the skin samples. (C) Fold enrichment of 2-fold

differentially expressed genes from Choi et al. [43] as a function of the stringency in calling differentially expressed genes from the GTEx samples.

doi:10.1371/journal.pgen.1006382.g001
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was relatively small (PC1 explained 7.2% variance, PC2 explained 4.2%; percent variance
cumulative in PC1-6 was 20.8%). This suggests that sun-exposure does not explain a large frac-
tion of the variance in gene expression among these samples (Fig 1B, S3 Fig).

Despite this similarity in the SE and NSE samples, we have high power to detect differential
expression because of the large sample sizes (196 NSE and 302 SE, after removal of technical
replicates; seeMethods).We performed differential expression analysis with DESeq2 [41],
revealing 12,320 differentially expressed genes at a Benjamini-Hochberg FDR< 0.01 (out of
37,412 genes tested, S4 Fig, S1 Table). Among these genes, 522 genes had greater than 2-fold-
change. We investigated the Gene Ontology enrichment of these genes using DAVID [42],
identifying several enriched gene sets (S2 Table). Genes that were upregulated in SE were most
strongly enriched for the GO term "Epithelial Cell Differentiation" (Bonferroni-corrected
p = 1.5x10-4), whereas those upregulated in NSE were most strongly enriched for "Intermediate
Filament" (Bonferroni-correctedp = 6.1x10-9).

As a critical control, we investigated whether the gene expression differences between the
SE and NSE samples, which were obtained from the lower-leg and suprapubic skin of post-
mortem samples, reflect effects of sun-exposure. To test this, we compared the list of differen-
tially expressed genes with genes that were differentially expressed in human skin after
repeated exposures to UVB [43]. We observed significant enrichment (Fisher's exact test
p = 3.2x10-6 for differentially expressed genes at Benjamini-Hochberg FDR< 0.01, Fig 1C),
indicating that sun-exposure differences in the post-mortemGTEx skin samples are broadly
consistent with experimental UVB exposure.We also tested for overlap with genes differen-
tially expressed in human skin fibroblasts in response to UV radiation [44], and found a similar
trend (Fisher's exact test p = 1.6x10-6 for differentially expressed genes at Benjamini-Hochberg
FDR< 0.01, S5 Fig). Investigating whether sun-exposure responses differed between ethnici-
ties, we observed similar responses between individuals with predominantly European and
African ancestry (see S1 Text).

Differential cis-eQTLs: Sun-exposure association with the strength of

cis-eQTL

We next investigated whether sun-exposuremay affect cis-regulation, specifically at genomic
loci that associate with mRNA levels (eQTLs). Previous studies of differential cis-regulation
across tissues or environments have identified potential pitfalls that could lead to false posi-
tives, such as the “winner's curse” and differences in power, which we carefully aim to avoid in
our analysis [45–47] (Fig 2A). To focus on the most replicable eQTLs, we first identified the
strongest local eQTLs within 1 Mb of each gene. We used a Bayesian approach to map eQTLs
in the SE samples and the NSE samples jointly (302 SE samples and 196 NSE samples after
restricting to only samples with individual genotypes, mapped using eQTL-BMA [46]). By
using only the strongest eQTL from joint-sample mapping, we remove the bias of inflated
effect size estimates due to the “winner's curse”, a confounding effect that reduces the apparent
replication rate when the strongest eQTL in one group is tested in another group [48]. eQTLs
were selected as those that had a posterior probability greater than 0.95, resulting in 8739
eQTLs (1 SNP per gene, S6 Fig). These genes predominantly overlapped with GTEx eQTL tar-
get genes, and the posterior probabilities in our analysis were strongly correlated with the
GTEx p-values, indicating that joint-sample mapping produces largely similar results (S7 Fig).

For each of the eQTLs, we then tested for significant differences in cis-eQTL effect between
the SE and NSE samples. Unlike tests comparing eQTL significance between groups—which
lead to false positives if low power in one group results in insignificant p-values—comparing
the effect sizes (hereafter referred to as the effect-size test; [49]) does not result in false
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positives, since low power in one group would only decrease the ability to detect a significant
difference in effect size. Applying this test to all 8739 eQTLs, we found 453 at a nominal
p< 0.05, with only one eQTL significant at Benjamini-Hochberg FDR< 0.05. The most signif-
icant result was for SIM2, which was strongly affected by an eQTL in the NSE samples, but not
in the SE samples (Fig 2B).

To validate these results, we analyzed allele specific expression (ASE) differences (differen-
tial ASE) between SE and NSE samples. ASE measures the effect of cis-regulation in individuals
heterozygous for the regulatory variant. Thus, significant differential ASE between groups

Fig 2. Differential cis-eQTL mapping and validation with ASE. (A) Outline of our approach to mapping differential cis-regulation.

(B) The expression of SIM2 for each exposure-type after segregation by genotype at the eQTL (rs2248813). P-values are from the

asymptotic approximation of the Spearman correlation (rho). (C) ASE validation of the SIM2 result for individuals heterozygous at the

eQTL. The allele on the y-axis indicates the allele at the eQTL (see x-axis of panel B), and the ASE directionalities were phased

based on these alleles. * indicates p-value < 0.05 by t-test. (D) QQ plot of each tested gene after combining the effect size test and

the differential ASE test. Red indicates the gene had a significant GxE expression interaction with a SNP (FDR < 0.05, Benjamini-

Hochberg).

doi:10.1371/journal.pgen.1006382.g002
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(comparing only the individuals who are heterozygous at the eQTL) indicates differential
effects of the eQTL. Note that although ASE is measured using the same dataset, it is an inde-
pendent source of validation because it examines the differences in expression within an indi-
vidual rather than across individuals [23,25] (see simulation results in S8 Fig and S2 Text). As a
control, we also confirmed that ASE identifies cis-regulatory effects in this dataset and is not
biased between the SE and NSE groups (S9 Fig).

To test for validation of the SIM2 sun-exposure-dependent eQTL (Fig 2B), we compared
the ASE in all individuals who were heterozygous at the eQTL. Because the eQTL effect was
present only in NSE samples, we predicted that the NSE heterozygotes would exhibit higher
absolute magnitude of ASE than SE heterozygotes. In addition, because the G allele is associ-
ated with higher expression in the NSE eQTL analysis (Fig 2B), we predicted that the ASE of
the NSE heterozygotes would be directed towards the G allele. We confirmed both predictions
(Fig 2C), validating SIM2 as the target of a GxE expression variant.

Extending this validation test to all genes, we found that results from differential ASE and
the effect-size test are significantly concordant in directionality (S9 Fig). Concordance in direc-
tionality requires: 1) the same sample group (SE or NSE) must exhibit the stronger effect in
both tests, and 2) the same allele must be the upregulating allele. The degree of concordance is
likely underestimated by our analysis because the ASE data face several systematic limitations
that reduce power, including imperfect phasing between the eQTL and SNPs inside the target
transcript, and the small number of reads overlapping many heterozygous SNPs.

Because differential ASE provides independent evidence for a differential cis-regulatory
effect, we combined both tests to identify additional genes with a significant effect. To combine
the tests, we intersected significant SNPs by testing for differential ASE among genes with a
nominally significant effect-size test (p< 0.05) and concordant ASE directionality (157 out of
289 genes concordant), resulting in seven significant differential eQTLs (Benjamini-Hochberg
FDR< 0.05, Fig 2D). Four out of these seven genes show a stronger effect in the NSE samples,
confirming that there is no evidence of bias due to differences in power between the groups (S3
Table). Only two of the seven genes exhibited significant differential expression at FDR< 0.05,
and these two genes exhibited a stronger cis-eQTL effect in the environment with lower expres-
sion (S3 Table). This indicates that the trivial scenario of environment-specific gene expression
silencing resulting in no evidence of cis-regulation for that particular environment is not occur-
ring in these associations.Many of the genes have known roles in skin and sun exposure; for
example LYPD5, the gene with the strongest effect, encodes the protein haldisin, which is asso-
ciated with the late (outer) stages of skin differentiation [50,51]. NLRC3, the second strongest
effect, is a gene that negatively regulates the STING-dependent innate immune pathway [52]
that is activated after UV exposure [53,54].

cis-reQTL mapping: Associating local SNPs with the effect of sun-

exposure

We then identified additional GxE expression variants by testing whether any local SNPs asso-
ciate with the differential expression due to the sun-exposure of each individual (Fig 3A). This
approach has been used in identifyingGxE expression variants responding to immunological
stimuli, referred to as cis-response eQTLs (cis-reQTLs) [23,26]. The advantage of this method
is that comparing the expression within the same individual will account for the inter-individ-
ual differences, such as environmental variation, that can confound typical eQTL analysis. To
map the cis-reQTLs, we first calculated the fold change difference in expression (SE / NSE) for
all genes in the 147 individuals with both SE and NSE data (seeMethods). We then tested the
fold change values for association with SNPs within one megabase from the transcription start
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site of the gene, in a similar manner to eQTLmapping. As expected, there is a significant con-
cordance between the cis-reQTL p-values and the eQTL effect-size test (S10 Fig). For the cis-
reQTL analysis however, we also tested all local SNPs as opposed to just the strongest eQTLs,
resulting in additional associations. The three most significant cis-reQTL genes were RASSF9,
NPIPL1, and SLC45A2 (Fig 3B; seeMethods, p<2x10-5, Benjamini-Hochberg FDR<0.18).
These cis-reQTLs were also nominally significant using the effect-size test (p = 5.0x10-6,
p = 2.1x10-5, p = 2.7x10-2, respectively).

SLC45A2 is a classic example of a skin-pigmentation gene under recent positive selection
[37,55,56]. The gene encodes the Membrane-Associated Transporter Protein (MATP),

Fig 3. cis-reQTL mapping and SLC45A2 reQTL. (A) Outline of the approach for mapping cis-reQTLs (B) QQ plot

of the cis-reQTL p-value for all genes tested. Red indicates the top 3 genes discussed in the text and used in

subsequent analyses. (C) Normalized fold change of SLC45A2 expression separated by genotype at the cis-reQTL

(rs12653176). p-value calculated from the Spearman correlation. (D) Normalized SLC45A2 expression of the NSE

and SE samples separated by genotype at the same locus. p-values calculated from the Spearman correlation. (E)

Manhattan plot of the fold change (FC), NSE sample expression, and SE sample expression associations with all

SNPs one megabase surrounding SLC45A2. p-values calculated from the Spearman correlation.

doi:10.1371/journal.pgen.1006382.g003
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containing a non-synonymous SNP (rs16891982) where the ancestral allele is nearly fixed in
African and Asian populations while the derived allele is at high frequencywith a north-south
cline in European populations [34]. The cis-reQTL found in this study (rs12653176) is not in
linkage disequilibriumwith the previously-identified non-synonymous SNP in any tested pop-
ulations (S11 Fig), and is located within the intron of the downstream geneADAMTS12. The
fold-change association in this cis-reQTL is more significant than either the SE or the NSE
expression associations (Fig 3C and 3D), and SLC45A2 had no significant cis-eQTL in skin
(Fig 3E), suggesting that the cis-reQTL specifically controls the SE-response rather than base-
line levels.

The strongest cis-reQTL in our analysis regulates RASSF9, a gene that is expressed highly in
mouse epidermal keratinocytes [57]. RASSF9 knockout mice were previously observed to have
higher epidermal proliferation and abnormal differentiation, suggesting that the gene is
involved in epidermal homeostasis.

Evidence for local adaptation in sun-exposure-dependent regulatory

SNPs

We then tested the differential cis-eQTLs and cis-reQTLs (hereafter referred to collectively as
sun-exposure dependent eQTLs—se-eQTLs) for evidence of recent adaptation (S3 Table). Our
hypothesis, based on previous findings [40,58], was that adaptation of human populations to
local climates would lead to a correlation between the se-eQTL allele frequencies and the levels
of solar radiation experiencedby each population. To test this hypothesis, we used Bayenv 2.0,
a Bayesian approach to test the significance of environmental associations while accounting for
the relatedness between populations and the confidence in allele frequency estimates [59,60].
In a previous genome-wide analysis of 61 human populations, Bayenv identified evidence of
local adaptation to solar radiation near several skin-related genes (e.g. SLC45A2,KRT77, and
OCA2) [58].

Here we use Bayenv to test for association between solar radiation and the allele frequencies
of the 10 se-eQTLs across the HGDP populations [60,61]. In the same manner as [58], we ana-
lyzed the winter and summer solar radiation separately. To estimate significance of the result-
ing Bayes factors, we calculated an empirical p-value using all skin eQTLs discovered in our
study as background (seeMethods). Among our 10 se-eQTLs,RASSF9 had the strongest asso-
ciation with winter solar radiation (Fig 4A; empirical p = 6.1x10-3, S3 Table). Hancock et al
[58] also found the strongest associations in skin pigmentation genes using the winter solar
radiation as the environment, as opposed to summer solar radiation.We then validated the evi-
dence for selection in RASSF9 in another set of 92 populations while excluding HGDP individ-
uals (empirical p = 0.040, Fig 4B, S3 Table, populations from [62]). The associations in both
population sets were concordant across multiple continental regions (Spearman’s rho< -0.36,
Fig 4), suggesting that this se-eQTL has been adaptive in multiple independent human
lineages.

Commonly used haplotype-based tests for selection, such as EHH, did not show a signifi-
cant increase for any particular se-eQTL, which may be an indication that the se-eQTLs are
under very recent selection. As selective sweeps for large-effect skin-pigmentation genes have
occurredwithin the last tens of thousands of years [37,63], we expect these small-effect events
to also be recent as well. We tested this further using the singleton-density-score (SDS), a hap-
lotype-based test of very recent selection performed on the UK10K Project data (Y. Field, N.
Telis, and J. Pritchard, pers. comm., [64]). The se-eQTL for RASSF9 showed the strongest evi-
dence of selection (Bonferroni corrected p = 0.018), lending further support to the hypothesis
of recent selection acting on this locus.
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Discussion

Our study of sun-exposure dependent regulation of gene expression identified several examples
of GxE interactions where genetic variants affect the gene expression response to sun exposure.
In contrast to our differential expression analysis that identified over 12,000 transcripts—an
unwieldy number that makes it challenging to uncover the causal or independent effects—
focusing on GxE interactions allowed us to identify 10 independent loci directly associated
with the sun-exposure response, with the strongest hits having known skin or sun-exposure
related functions. This small number of significant GxE expression variants is consistent with
previous observations that the number of GxE effects detected is smaller than additive effects
[25].

We identifiedGxE expression variants using two methods, differential cis-eQTL analysis
and cis-reQTLs. Although bothmethods uncover GxE expression variants, we found that each
provided unique results in their top associations. The two methods have distinct advantages:
differential cis-eQTL analysis utilized information from a larger number of samples because
there was no requirement for individuals to have both the SE and NSE data, while the cis-
reQTL analysis controlled for possible individual-level confounding factors (such as genetic
background or environmental variation) because it compared the SE and NSE samples within
the same individuals. In addition, our differential cis-eQTL analysis was based on eQTLs

Fig 4. Testing se-eQTLs for signs of local adaptation. Environmental correlations with allele frequency in (A) HGDP populations and (B) Lazaridis

et al [62] populations. Left panels: Heatmap of the environmental variables used in the study. Units are Watts per meter squared. Populations are

marked with blue circles. Note that three of the American populations from Lazaridis et al. (Mixe, Mixtec, and Zapotec) [62] are marked in the same

geographic location. Right panels: Radiation level vs allele frequency of the population for the RASSF9 se-eQTL (rs11117173) with the color indicating

the regional subgroup. For each regional subgroup, the Spearman correlation (Rho), the number of individuals (Ind), and the number of populations

(Pop) are provided in the table.

doi:10.1371/journal.pgen.1006382.g004
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identified via joint-sample mapping in order to reduce the effect of the winner's curse. As a
result, the differential cis-eQTL analysis preferentially analyzed SNPs with eQTL effects in
both tissues, while the cis-reQTL approach agnostically considered all local SNPs. Despite
these differences, overall the methods were generally concordant (S10 Fig).

Building on previous studies, we also found that allele-specific expression is an effective,
orthogonal approach to identify GxE expression variants [25]. Combining the differential ASE
test with the effect-size test strengthened the significance of our findings; therefore we recom-
mend investigating both allele-specific and non-allele-specific expression whenever possible.

An important control in our analysis was confirming that the differences in gene expression
of the SE and NSE samples reflected differences in sun-exposure. Because the samples were
obtained from the post-mortem lower-leg and suprapubic skin, respectively, it is important to
justify that the downstream analyses reflect differences caused by sun-exposure as opposed to
differences unrelated to sun exposure. The relevance of sun-exposure was validated by signifi-
cant concordance of the differentially expressed genes with two independent experimental
approaches, one with whole skin UV-B treatment and another with skin fibroblast UV expo-
sure. In addition, the significance of SLC45A2, a gene previously determined to be under selec-
tion due to solar radiation, also suggests that sun-exposure is likely driving this effect. Lastly,
SLC45A2 and RASSF9 have both been found to be differentially expressed in response to UV-B
treatment [43], thus indicating that sun-exposure is likely affecting these genes' expression.

In addition to sample sizes, statistical power can also affect GxE interaction studies via a
large multiple-hypothesis testing burden. This limitation was a key factor in our choice of test-
ing only local GxE expression variants and refraining from testing for distant trans-associa-
tions. Local eQTLs tend to be highly replicable with strong effect sizes and finding them
requires testing only a small number of SNPs per gene. In contrast, trans-eQTLs are challeng-
ing to map if every SNP is tested for each gene, though it is possible to identify trans-acting
GxE expression variants in well-controlled studies [18,20,29]. Larger sample sizes or testing
only SNPs with a high prior probability of participating in trans-GxE effects can also boost
power to map them.

Overall, the GxE expression variants did not exhibit the strong population-specific fixation
patterns observed in classical examples of positive selection. This however does not necessarily
indicate that GxE expression variants are in general weakly selected.Mapping GxE interactions
requires variation not only in environment but also in genotype. Because strong selectionwill
remove genetic variation, our GxE mapping approach may not detect associations with the
most strongly selected SNPs. Because the GxE mapping process focuses on polymorphic vari-
ants, we may detect signs of selection that are perhaps more recent or complex.

Although the evidence for human evolution in response to sun-exposure changes is strong,
hypotheses for how adaptations in skin-pigmentation genes have led to increased fitness are
debated [32,33]. To our knowledge, the se-eQTL genes, aside from SLC45A2, were not previ-
ously associated with human adaptation to sun-exposure.We found evidence that the se-eQTL
of RASSF9 has been subject to local adaptation using two independent population cohorts as
well as from a test for very recent adaptation in Europeans. Our finding of adaptation involving
RASSF9, a gene involved in epidermal homeostasis and differentiation, supports the idea that
skin pigmentation is not the only trait shaped by adaptation to sun-exposure [65,66].

The approaches we employed could be applied to investigate GxE interactions involving
any pair of tissues; although environment is typically considered to be extrinsic to an organism,
cell type can be considered a major determinant of each gene’s intracellular environment. As
more GxE interactions are discovered, we can then study their relationships with diseases or
other traits to better understand their role in phenotypic variation and adaptation.
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Methods

Data

Expression and genotype data for sun-exposed (SE) and non-sun-exposed (NSE) skin samples
were obtained from GTEx v6 [17]. Genotype data are from the HumanOmni5-4v1_B and the
HumanOmni2.5-8v1-1_B platform with variants imputed using IMPUTE2 and the 1000
Genome Project Phase 1 version 3 reference panel (genotyping and imputation performed by
GTEx consortium). To account for platform bias, we included genotyping platform as covari-
ates in downstream analyses as describedbelow. Sun-exposed skin samples were taken from
the lower leg, and the non-sun-exposed skin samples were taken from the suprapubic area. As
described in the GTEx resources, the skin samples were obtained as slices with the subcutane-
ous fat trimmed off, avoiding pubic hair in the suprapubic region, and subsequently fixed and
stored in PaxGene tissue container. For the genotype data, we used all SNPs that passed the fil-
ters in the phased/imputed dataset (INFO> 0.4, Hardy Weinberg p-value> 10−6, call-
rate> 95%). For the expression data, we used the samples selected by GTEx as adequate for
eQTL analysis (which were selected based on quality). Gene models for all expression analyses
were also obtained from GTEx, which combined the transcripts annotated by GENCODE v19
for each gene. Principal components in the all-sample analysis were calculated from the RPKM
expression of 1000 randomly-sampled genes with a mean RPKM> 1. Random sampling was
performed to reduce computation time—repeating the sampling produced similar results.
Hierarchical clustering was performedwith the Euclidean distance between tissues using the
tissue-specificmean expression across all genes. Principal components of the skin-only analysis
were obtained using all genes with mean RPKM> 1 across the skin samples.

Differential Expression Analyses

We investigated differential expression between the sun-exposed and non-sun-exposed skin
samples using the raw read counts obtained from the GTEx consortium (which used RNA-
SeQCv1.1.8 to estimate values). Genes with zero counts across all samples were removed. Dif-
ferential expression was calculated using the DESeq function in the DESeq2 package [41] using
default parameters. Gene Ontology enrichment was assessed using the Ensemble Gene IDs
with DAVID [42]. All genes that were tested for differential expression were used as the gene
background and the Gene Ontology BP, CC, and MF collections were tested. For the ancestry-
specific differential expression analysis, genotyped individuals were separated into European
ancestry (377 individuals) and African ancestry (68 individuals) as determined by principal
component analyses. Europeans ancestry was designated as individuals with PC1<-0.01 and
PC2> -0.04) and African ancestry population was designated as individuals with PC1> 0.1.
This classification was concordant with the individuals' reported race (S12 Fig). We then tested
each gene for evidence of ancestry-specific sun-exposure differential expression by assessing
the significance of the ethnicity-environment interaction term in a linear model. The likelihood
ratio test was performedwithin DESeq2, comparing the models (Expression ~ ancestry + expo-
sure, and Expression ~ ancestry + exposure + ancestry:exposure).

Joint sample eQTL mapping

Joint sample eQTL mapping was performed using eQTL-BMAwith both SE and NSE samples
[46]. To maximize the number of samples and to maintain consistency with the GTEx eQTL
associationmapping, we used all individuals (including individuals of varying ancestry) in the
analysis. To control for effects of ancestry and other confounding factors, we used all covariates
used by GTEx in their eQTL associationmapping, which includes the first three genotype
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principal components, PEER factors, genotyping array platform, and gender. For input of the
expression data, we used the residuals after regressing out covariates from the normalized
expression matrix provided by GTEx (normalization used by the GTEx: RPKM data, low-
expression filtered, quantile normalized, fitted to standard normal). eQTLs were mapped to
SNPs within 106 bp of the TSS, with the parameters "—bfs all—error hybrid—maf 0.05—
qnorm—analys join" and using the large and small grid provided by the package. This window
size of 106 bp was selected to be consistent with the GTEx Consortium analysis [17]. The con-
figuration weights were determined using the hierarchical model and pi0 was calculated using
the EBF procedure as specifiedby the package.

Allele-specific expression calculation

For the allele-specific expression analysis, reads provided by GTEx were mapped using STAR
(—outFilterMultimapNmax 1,—clip 5pNbases 6) [67] to the GRCh37.p13 human genome
masked with all SNPs in dbSNP142. Duplicate reads were removed using a combination of in-
house scripts and Samtools Rmdup to remove duplicate reads randomly (instead of selecting
the read with the highest quality score) as suggested previously [68,69]. Allele-specific expres-
sion was calculated at each exonic SNP, with a random SNP chosen when a read overlapped
multiple sites. Mono-allelic sites were removed as recommended [69] to reduce bias and the
gene-level exon counts were summed using the GTEx phased SNP calls. Using these counts,
the value of ASE for each gene-individual pair was calculated as allele1 / (allele1 + allele2),
requiring at least 3 reads. For comparison betweenASE results and differential eQTL analysis,
we required at least 5 ASE measurements for SE homozygotes, SE heterozygotes, NSE homozy-
gotes, and NSE heterozygotes.

Differential cis-eQTL analysis by effect-size test

The effect-size test was performed as described in Fraser et al. [49]. Pearson correlation for SE
and NSE samples were calculated using the normalized expression matrices used by GTEx
eQTL analysis. Each correlation coefficientwas converted to a z-score by 0.5�log((1+r)/(1-r)).
The difference in effect size was then tested by calculating the value t = (zSE—zNSE) / sqrt (1/
(nSE -3) + 1/ (nNSE-3)), which is normally distributed. zSE and zNSE denote the z-scores for the
SE and NSE samples. nSE and nNSE denote the number of samples used in the correlation coeffi-
cient calculation.

cis-reQTL analysis

cis-reQTL analysis was performed using the subset of individuals analyzed in the differential
eQTL analysis who had both SE and NSE data. To calculate fold change, the RPKM values for
each sample were first quantile normalized across samples. Fold change (SE / NSE) was then
calculated for each gene-individual pair, with values of 0 set to the minimum non-zero value of
that gene. The log fold change values for each gene were then fit to a standard normal. Hidden
covariates were then discovered using PEER (k = 15) [70]. In order to correct for hidden covar-
iates most relevant to these log-ratios, PEER covariates were assessed for these directly (as
opposed to using RPKM values). The first 15 PEER covariates, gender, sequencing platform,
and the first 3 genotype principal components were used as covariates for mapping (Results
remained consistent after also correcting for age). Mapping was performedwith the linear
model of Matrix eQTL using SNPs with MAF> 0.05 found within 106 bp from the transcrip-
tion start site [71]. The window size of 106 bp was selected to remain consistent with the GTEx
Consortiumanalysis for cis-eQTLmapping [17]. Significance of the SNP with the strongest
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association for each gene was assessed by comparing the nominal p-value with the p-values of
the best-associating-SNPs from at least 103 permutations of the individual labels.

Testing for selection using Bayenv

Local adaptation was tested using Bayenv2.0 using the Human GenomeDiversity Panel
(HGDP) and HapMap samples [60,61] and an independent set of 92 populations [62]. The
Lazaridis et al. data [62] were filtered to remove African American individuals, HGDP individ-
uals, and populations with fewer than five individuals. The population covariance matrix was
estimated with 10,000 random SNPs selected from the genotyped SNPs with linked SNPs
removed by PLINK v1.9 (—indep-pairwise1000kb 1 0.2) and k = 1000. Many of the se-eQTLs
were not genotyped by HGDP or Lazaridis et al., and thus the allele frequencies were estimated
by first imputing the genotypes for each individual with IMPUTE 2 [72] using the 1000
Genomes Phase 3 reference panel and default parameters. Bayenv results have previously been
observed to be unstable with a small number of iterations [73], so we took the median of 10
runs with k = 500,000. To estimate the significance of the Bayes factors, we performed the
same analyses on all eQTLs discovered in our analysis to use as the background.

Climate data were obtained from the NCEP/NCAR Reanalysis [74] using the monthly long-
termmean of the downward short-wave radiation flux to match the environmental variables
used by Hancock et al. [58]. The summer radiation was calculated by averaging the months of
June, July, August for positive latitudes and December, January, February for negative latitudes.
The winter radiation was calculated by averaging the opposite months. Values were then stan-
dardized for Bayenv analysis.
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S8 Fig. (A) 1000 simulations of an exposure-specific eQTL indicate that the differential ASE
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same simulation. This indicates that the differential ASE analysis and the effect-size test are
independent tests. See S2 Text for details on simulations.
(PDF)

S9 Fig. (A) Absolute ASE of all cis-eQTLs, separated by measurements when the individual
was homozygous (Hom) at the eQTL or heterozygous at the eQTL (Het). Significancewas
assessed by Wilcoxon rank-sum test. ��� marks p< 10−15. Note that the magnitude of the effect
size is similar to other ASE analyses [69] (B) Absolute ASE of all cis-eQTLs separated by geno-
type at the eQTL and exposure-type. Significancewas assessed by Wilcoxon rank-sum test. NS
marks the p>0.05. ��� marks p< 10−15. (C) Significance of concordant directionality between
the effect-size test and the differential ASE analysis as a function of the p-value cutoff in the dif-
ferential ASE analysis. Directionality p-value is calculated by the two-sided binomial test,
where the expected fraction of concordance is set at the concordance of all genes (0.36).
(PDF)
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study (rs12653176) is located at the bottom and the known selected non-synonymous SNP
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S12 Fig. (A) Principal components of genotype (calculated by GTEx) separate individuals into
ancestry groups. Red is used to mark the reported race “White”. Blue marks the reported race
of “Black or African American”. Empty circles represent other reported race. Red shaded
region demarcate the designated principal component boundaries in this study for the Euro-
pean ancestry population resulting in 377 genotyped individuals. Blue shaded region demar-
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change, log (SE / NSE), of all genes in the European ancestry individuals and the African ances-
try individuals. P-value was calculated based on the asymptotic approximation of the Spear-
man correlation (rho).
(PDF)

S13 Fig. Expression of TCN1 separatedby the SE and NSE samples with European and Afri-
can ancestry. Even with the substantially lower power in the African ancestry individuals, we
see a significant difference in differential expression in this gene at a Benjamini-Hochberg
FDR< 0.01 (p = 5.6x10-7, likelihood ratio test).
(PDF)
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