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Identifying genomic regions that descended from a common ancestor is important for understanding the function and
evolution of genomes. In distantly related genomes, clusters of homologous gene pairs are evidence of candidate
homologous regions. Demonstrating the statistical significance of such “gene clusters” is an essential component of
comparative genomic analyses. However, currently there are no practical statistical tests for gene clusters that model the
influence of the number of homologs in each gene family on cluster significance. In this work, we demonstrate
empirically that failure to incorporate gene family size in gene cluster statistics results in overestimation of significance,
leading to incorrect conclusions. We further present novel analytical methods for estimating gene cluster significance that
take gene family size into account. Our methods do not require complete genome data and are suitable for testing
individual clusters found in local regions, such as contigs in an unfinished assembly. We consider pairs of regions drawn
from the same genome (paralogous clusters), as well as regions drawn from two different genomes (orthologous
clusters).

Determining cluster significance under general models of gene family size is computationally intractable. By
assuming that all gene families are of equal size, we obtain analytical expressions that allow fast approximation of cluster
probabilities. We evaluate the accuracy of this approximation by comparing the resulting gene cluster probabilities with
cluster probabilities obtained by simulating a realistic, power-law distributed model of gene family size, with parameters
inferred from genomic data. Surprisingly, despite the simplicity of the underlying assumption, our method accurately
approximates the true cluster probabilities. It slightly overestimates these probabilities, yielding a conservative test. We
present additional simulation results indicating the best choice of parameter values for data analysis in genomes of
various sizes and illustrate the utility of our methods by applying them to gene clusters recently reported in the literature.

Mathematica code to compute cluster probabilities using our methods is available as supplementary material.

Introduction

Identifying homologous genomic regions is an impor-
tant step for many comparative genomic analyses. Evidence
of spatial gene conservation is used in comparative map
construction, function prediction, operon detection, protein
interaction, phylogeny reconstruction based on breakpoint
or rearrangement distance, reconstruction of ancestral gene
order, and identification of horizontal gene transfer events
(Dandekar et al. 1998; Huynen and Bork 1998; Overbeek
et al. 1999; Tamames 2001; Tamames et al. 2001;
Zheng et al. 2002; Chen et al. 2004; Hurst et al. 2004;
Bourque et al. 2005; Murphy et al. 2005; Homma et al.
2007; von Mering et al. 2007). Identifying homologous
regions is straightforward when the two genomic regions
are so closely related that gene content and order are pre-
served (fig. 10). However, the task becomes more challeng-
ing when homologous regions have been scrambled by
genome rearrangement events. In more diverged genomes,
“gene clusters,” regions in which gene content is similar
but neither gene content nor order is completely preserved,
are signatures of shared ancestry (fig. 1¢). Before accepting
such clusters as evidence of regional homology, it is essen-
tial to rule out the possibility that the observed spatial
arrangement occurred by chance.
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Tests of gene cluster significance require estimation of
the probability of observing a given gene cluster under
a suitable null hypothesis. This probability depends on
the number of conserved genes in the cluster, the number
of unmatched genes between conserved genes in the cluster
(gap size), the number of genes in each genome, how the
gene cluster was found, gene order conservation, the num-
ber of genomes in which the cluster was observed, and the
distribution of gene family sizes in the genome.

Statistical models have been developed that consider
various subsets of these properties, although currently none
take all into account (Wolfe and Shields 1997; Vision et al.
2000; Trachtulec and Forejt 2001; Venter et al. 2001;
McLysaght et al. 2002; Vandepoele et al. 2002; Calabrese
et al. 2003; Durand and Sankoff 2003; Hoberman et al.
2005; Sankoff and Haque 2005; Raghupathy et al.
2008). Typically these approaches prove significance by
showing that a value of test statistic, for example, the num-
ber/density of homologous gene pairs in the cluster, as ex-
treme as the observed value is unlikely to occur under the
null hypothesis. Random gene order is the most widely used
null hypothesis for gene cluster statistics.

Most methods model a genome as an ordered list of
genes. Physical distances and chromosome breaks are ig-
nored. When two genomes, G; and G,, are compared,
the input is a mapping between homologous genes in G,
and G,. Genes that are homologous are considered to be
in the same gene family. If each gene in G; maps to at most
one gene in G, and vice versa, then the mapping is one-
to-one and represents orthology. Otherwise, the mapping
is one-to-many or many-to-many. In this case, the genes
in the same family may be either orthologous or paralogous.
In a genome self-comparison, the input is a single genome,
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Fic. 1.—Evolution of a hypothetical gene cluster: (a) Ancestral
genome. (b) Genomic regions immediately after a speciation or a whole
genome duplication. Gene content and order are preserved. (¢) Diverged
genomic regions with similar gene content but in which neither gene
content nor order is preserved. Black circles represent genes that do not
have homologs in the depicted regions.

G, and a mapping between homologous genes within G. In
this case, all genes in the same family are paralogs.

A gene cluster is a set of homologous gene pairs that
satisfy a set of mathematical constraints that enforce com-
pactness (Hoberman and Durand 2005). The most fre-
quently used gene cluster definitions fall into one of two
frameworks:

e The “r-window cluster”: Two genomic regions, each
containing r adjacent genes, that share “at least” m
homologous gene pairs.

e The “max-gap cluster”: Two genomic regions sharing at
least m homologous gene pairs such that the number of
unmatched, intervening genes between adjacent homo-
logs in the same region is never larger than a given
threshold, g.

A gene cluster is orthologous if each homologous gene
pair consists of one gene in G, and one gene in G, and
paralogous if the genes are drawn from nonoverlapping
regions of the same genome.

Durand and Sankoff (2003) showed that in addition to
the parameters that characterize the gene cluster, the signif-
icance of a gene cluster depends on how the cluster was
found. Typically, one of the following strategies is used
to find gene clusters:

e The “reference region” approach: A researcher is
interested in a set of genes, called the reference genes,
and searches the genome for regions containing either
all the reference genes or a subset of them.

e The “window sampling” approach: A researcher is
interested in studying the evolution of regions surround-
ing a pair of homologous genes of interest and searches
for more homologs in their immediate vicinity.
Typically, two windows, W; and W,, containing r
and r, genes, respectively, are compared.

e The “whole genome” approach: A researcher is in-
terested in studying spatial organization on a genomic

scale and finds the set of all gene clusters by scanning
both genomes.

Among these, the reference region and window sam-
pling approaches are natural models for local studies focus-
ing on specific regions or genes (Lundin 1993; Katsanis
et al. 1996; Coulier et al. 1997; Endo et al. 1997; Kasahara
1997; Ruvinsky and Silver 1997; Amores et al. 1998;
Hughes 1998; Pebusque et al. 1998; Smith et al. 1999;
Lipovich et al. 2001; Abi-Rached et al. 2002; Spring
2002; Danchin et al. 2003; Vienne et al. 2003). The whole
genome approach is appropriate for global questions, such
as the nature of duplication events that shaped the evolution
of the genome (e.g., McLysaght et al. 2002; Panopoulou
et al. 2003; Dehal and Boore 2005). The probability of find-
ing a cluster increases with the number of searches required
to find the cluster. In the reference region approach, the
number of searches is proportional to the number of genes
in the genome, n. In the window sampling approach, the
search space depends on the window size r = max(ry,
r,). Typically, r < n. In the whole genome approach,
the search space is proportional to n* because all combina-
tions of starting positions in both genomes must be consid-
ered. Note that a cluster found using window sampling
might be significant, whereas a cluster with identical prop-
erties found using a reference region approach might not be
significant.

Monte Carlo methods, where the distribution of test
statistic is estimated by randomization, are widely used
for assessing statistical significance of gene clusters (e.g.,
Wolfe and Shields 1997; Vision et al. 2000; McLysaght
et al. 2002; Vandepoele et al. 2002). Randomization has
the advantage that it preserves genomic properties (other
than gene order) including gene family sizes. However, ran-
domization methods are computationally expensive and are
suitable mainly for genome scale, rather than local, analyses
because a complete comparative map is needed in order to
carry out randomization.

The simplest analytical methods are based on the r-
window model using the reference region approach and
consider only the number of homologous pairs, the number
of genes in the window, and the total number of genes in the
genome (Trachtulec and Forejt 2001; Venter et al. 2001).
Durand and Sankoff (2003) generalized r-window gene
cluster statistics to window sampling and whole genome
approaches using a combinatorial framework. Hoberman
etal. (2005) presented the first statistical tests for determining
significance of max-gap gene clusters. They developed tests
for the reference region and whole genome comparison ap-
proaches, assuming that the mapping between the genes is
one-to-one. To our knowledge, there are no gene cluster sta-
tistics for the max-gap model with many-to-many mapping.

Cluster significance increases when gene order is con-
served. If the order of all m homologs in the cluster is pre-
served, then it is straightforward to incorporate gene order
into an existing test (Venter et al. 2001; Durand and Sankoff
2003). However, combining partial gene order with other
cluster properties in a single test is challenging (Sankoff
and Haque 2005). Although recently a new gene cluster
model has been proposed that is more sensitive to partial
order conservation (Zhu et al. 2008).



Most approaches to computing the significance of
clusters spanning three or more regions combine pairwise
tests in various ways (Durand and Sankoff 2003; Simillion
et al. 2004). However, combining pairwise comparisons
does not capture the additional significance of genes that
are conserved in more than two regions resulting in under-
estimation of cluster significance (Raghupathy and Durand
2008). In a departure from the current approaches Raghu-
pathy and Durand (2008) presented tests for r-window gene
clusters spanning exactly three regions that combine evi-
dence from genes shared among all three regions, as well
as genes shared between pairs of regions.

Realistic tests require a gene family model that captures
many-to-many homology. Although this assumption may be
appropriate when comparing two closely related genomes, in
general establishing one-to-one homology can be difficult
(Chen et al. 2007). Moreover, orthology is not always
a one-to-one relationship (Fitch 2000). In many cases, such
as when lineage-specific duplications have occurred, amany-
to-many mapping correctly represents the underlying biol-
ogy. Even when the true relationship is one-to-one homology,
computational methods cannot always unambiguously
identify unique homologous pairs (Chen et al. 2007).

Most currently available tests assume that the mapping be-
tween homologous genes is one-to-one. The few methods that
consider a many-to-many model are not suitable for practical
data analysis. Durand and Sankoff (2003) presented r-window
cluster statistics that consider gene family size for both the ref-
erence region and window sampling approaches. They provide
upper bounds on cluster probabilities for the reference region
model under the fixed-size family assumption that are compu-
tationally tractable. However, their statistical tests for the win-
dow sampling approach do not admit a computationally
feasible implementation. Calabrese et al. (2003) presented
an approach that combines gene cluster identification and
significance testing. This method implicitly assumes a bino-
mial gene family distribution. However, empirical studies
have shown that gene family sizes follow a power-law
distribution (Qian et al. 2001; Rzhetsky and Gomez 2001;
Karev et al. 2002; Koonin et al. 2002; Kaplan et al. 2004).
Moreover, because the test is coupled with a cluster finding
algorithm, it cannot be used to test the significance of clusters
found by other methods. Danchin and Pontarotti (2004)
recognized the importance of accounting for multiple co-
orthologs when testing the significance of conserved geno-
mic regions and proposed a strategy for downweighting
homologs in gene families, in a reference region framework.
However, because the weights assigned are not based on
a formal model relating gene family size to the probability
of observing a cluster under the null hypothesis, their ap-
proach is not appropriate to general data analysis problems.

Accurate, computationally tractable analytical methods
for determining cluster significance in the presence of gene
families remain a major challenge. Considering gene families
is important because cluster significance is sensitive to gene
family size. Given a one-to-one mapping between homolo-
gous genes in G, and G,, each gene in G| matches at most
one gene in G,. As the gene family size increases, so does the
number of possible matches and, hence, the chance occur-
rence of gene clusters. Failure to account for gene families
can lead to overestimation of gene cluster significance.
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In this paper, we develop computationally tractable
statistical tests for r-window clusters obtained by window
sampling, assuming a many-to-many mapping between ho-
mologous genes. We focus on the case where the goal is to
establish the homology of a specific pair of genomic
regions. One of the key features of our model is that it does
not require a complete comparative map to calculate cluster
significance. Detailed information about gene content is only
required within the regions of interest. Outside of the gene
cluster, only global properties of genomes are needed.

In developing gene cluster probabilities that depend on
the distribution of gene family sizes, we show that allowing
arbitrary gene family size distributions leads to an expres-
sion of cluster significance that reduces to an NP-complete
problem (Garey and Johnson 1979). In order to obtain trac-
table analytic expressions of cluster significance, we im-
pose the assumption that all gene families are of a fixed
size, ¢p. We present easily computable expressions for de-
termining the significance of both orthologous and paralo-
gous gene clusters under this assumption.

The fixed-size gene family assumption is highly unre-
alistic. Gene families clearly vary in size and a number of
studies have presented evidence that gene family size follows
a power-law distribution (Qian et al. 2001; Rzhetsky and
Gomez 2001; Karev et al. 2002; Koonin et al. 2002; Kaplan
etal. 2004). In order to test the utility of the fixed-size approx-
imation, we used Monte Carlo simulation to estimate cluster
probabilities in genomes containing power-law distributed
gene families. Surprisingly, the probabilities of simulated
clusters based on this more realistic gene family model are
well approximated by the probabilities obtained using our an-
alytical expressions for the fixed-size gene families. Thus,
our approximations offer a satisfactory balance between
speed and accuracy and are suitable for practical analyses.

Methods

In our model, the genes in a genome are partitioned
into nonintersecting, fully connected families. In other
words, every gene in family f; is homologous to all the other
genes in f; and only to those genes. We define the gene fam-
ily size, ¢;;, as the number of genes in G, belonging to fam-
ily, f;. In the presence of gene families, we extend the
definition of an r-window gene cluster to be a pair of win-
dows, W and W,, of size r| and r,, respectively, sharing m
“gene families,” where m < min(ry, ;). Note that two win-
dows share a gene family if each window has at least one
member from the gene family. No additional weight is
given to multiple shared pairs from the same gene family.

Orthologous Clusters for Arbitrary Gene Families

Here, we derive analytical expressions for computing
the probability of observing a gene cluster under the null
hypothesis of random gene order, using the number of
shared gene families as our test statistic. We first consider
the orthologous gene cluster scenario, where a pair of win-
dows is sampled from two different genomes (Durand and
Sankoff 2003). We then extend this model to the paralogous
case, where both windows are sampled from a single ge-
nome. Let 7={F;} be the set of gene families represented
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in genomes G, and G, and let nj= 3", ¢;; be the number of
genes in Gj. Let .7-""={F } be the set of all subsets of F
containing “exactly” k gene families. The probability that
W, and W, share at least m gene families is

min(m ,I'z) k
con= SIS mey ¥ p;<E>]. 0
k=m Lrer! I=mEgeFt

EESF

The first term p(F) is the probability that a given set, F,, of k
gene families is seen in Wy, and the second term, p3 (E), is
the conditional probability that at least / of the families in F
also appear in W,. The superscript o in g5 (m) and p$ (E)
indicates that these terms refer to orthologous cluster prob-
abilities. The superscript p will be used for paralogous clus-
ters. Because the first term, p(F), is the same for both
orthologous and paralogous cluster probabilities, it does
not require a superscript.

Note that both probability terms in equation (1) depend
on the probability that a window of a given size contains
a certain number of gene families. Let w be the window size
and A be the number of gene families. This probability de-
pends on the number of ways of selecting w genes from ge-
nome Gj, such that 4 gene families are represented. Let x; be
the number of genes from ith gene family, f;. We seek the
number of possible ensembles {xi, x, ..., x;}, such that

}:M:m (2)

and 1 < x; < ¢y, Vi

In preliminary work, we derived a general solution us-
ing generating functions (Raghupathy and Durand 2005).
This solution makes no restriction on the gene family size
distribution. However, there is little hope of finding an effi-
cient, exact solution, as the problem of enumerating all en-
sembles that satisfy equation (2) can be stated as a variant of
the subset sum problem, which is NP-complete (Cormen
et al. 1990). In the subset sum problem, given a finite set
Sy and a target t € N, we ask whether there exists a subset
S’ & S whose elements sum to ¢. In the problem considered
here, the set S corresponds to the cardinalities of the possible
contributions of the gene families to the window, and the tar-
get corresponds to the window size, w. In addition to the so-
Iution to equation (2), other aspects of computing the
probability for general gene families are computationally de-
manding. In particular, enumeration of the set of all subsets
of F containing exactly k gene families is prohibitively slow.

In this section, we address this problem by deriving
computationally tractable, approximate methods to estimate
cluster significance, assuming that the gene family size is
fixed. In Results, we demonstrate, using simulation that, de-
spite the extreme nature of the assumption, our expressions
yield a good approximation of cluster probabilities under
a more realistic gene family model.

Orthologous Clusters, Fixed-Size Families

The complexity of calculating ¢°(m) can be substan-
tially reduced under the assumption that all gene families

are of equal size, ¢. Under this assumption, it is not nec-
essary to enumerate F*, because all subsets of k gene fam-
ilies are indistinguishable. We can instead replace the first
term, >_,p1(F), in equation (1) with the product of two
quantities. The first quantity is the number of sets of k gene
Zf ), where 1y =|F|. The second is the probabil-
ity that exactly k gene families of size ¢ are represented in
the window, p,(k). Invoking a similar transformation of the
second term in equation (1), the probability that W and W,
share at least m gene families simplifies to

pm= 3 [( > (4 )p‘;(zv«)] e

I=m

mmm&(

Under the fixed-size assumption, p;(k) and p§ (1) corre-
spond to the probability that exactly k families appear in
W, and exactly / families appear in W,, respectively. Be-
cause, in both cases, the probability of observing a certain
number of families in a window of a particular size is re-
quired, we first derive a general expression for the proba-
bility that a window of size w contains exactly A gene
families. Let 7 be a set of A gene families of fixed size,
¢. Given the sample space of all sets of w genes sampled
from G, we wish to determine the number of sets that con-
tain at least one gene from each family in 7. Because our
cluster definition does not take into account the order of
genes in a window, this enumeration is equivalent to
N(w, 1, T), the number of ensembles satisfying equation
(2), when all families are of fixed size, ¢.

To determine the number of such ensembles, we note
that the contribution of the ith family in 7 to the window is
represented by the generating function

ot,-(t)=<(1p>t+ <(2ﬁ>t2+-~-+ (i)td’. (4)

The coefficient of ¢ in o,(¢), denoted by [r']o(f), represents
the number of ways of choosing x genes from ith family.
The contributions of all A families to the window can then
be derived from the product of their generating functions,
oc(t)= IL oci(t). Because the generating functions for all
o,;(f) are identical, this product is

(B (2o (0] o

The coefficient ["]o(f) gives the number of ways of select-
ing w genes such that at least one gene from each of the 1
families is represented in the sample:

2.

{mmmxz)<i>'“<i>7 (6)

where the sum is over the set of all A-tuples (xy, ..., x;)
satisfying equation (2), under the constraint that 0 < x;
< ¢, Vi. Note that the right-hand side of equation (6) is
the number of ensembles containing x; genes from the first
family, x, genes from the second family, and so forth, where
(ff) corresponds to the number of ways of choosing x; genes

["]u(r) =



from the ith gene family. This is exactly the quantity
N(w, 4, T).

We can avoid enumerating the set of all A-tuples using
the following simplification: Because a binomial series is of
the form

[ ¢ AW . b\ 0

(141 1+<1)l+<2>t+ +<¢>z,
()
the right-hand side of equation (5) is equivalent to a bino-

mial series of the form [(1 + f? — 1]%. Applying two
binomial expansions yields

:<—1>ii:0[< (e

Therefore, we obtain

N(w, 2, T) = ["]a(r)

()

Because no gene family can contribute more than ¢ genestothe
window, at least[ % | gene families are required to fill the win-
dow. Using the above expression for A/ (w, 4, ¢) and restrict-
ing the lowerbound on the dummy variable u to %‘ 1, we obtain

o o))
(k) = : o -
pl ()

We now derive a similar simplification for p$ (l |k) , the
probability that W, contains exactly / of the k gene families
in W5. In this case, we seek ensembles of 7, = y + z genes,
where y genes are selected from the subset of / gene fam-
ilies. The remaining z genes are selected from families not
included in W;. We must ensure that no genes from the
remaining k — [ gene families appear in W5, in order to guar-
antee that “exactly” / families are represented in W,. The
probability of this event is

. EO'Sh [ () ) |

()

(10)

(11)
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The first term in the inner summation represents the number
of ways of selecting y = r, — z genes such that equation (2)
is satisfied when 4 = [ and w = y. The second term repre-
sents the number of ways of selecting the remaining z
genes. The value of z in the outer summation ranges from
max {0, r», — k¢} tor, — I

Paralogous Clusters, Fixed-Size Gene Families

We can extend these results to obtain a measure of sig-
nificance for paralogous gene clusters. Recall that in the pa-
ralogous case, two windows, W; and W,, are
nonoverlapping windows sampled from the same genome
G. The probability that they share at least m gene families is

2’: Kzf)m(k) i(f)pg(lk)], (12)

I=m

where p (k) is given in equation (10). The probability for
the second window differs from equation (11), however,
because the fact that both windows are sampled from the
same genome further constrains the set of possible ensem-
bles for the second window.

Tocalculate p5 (/| k), we need an expression for the num-
berofensembles of y genes containing exactly / gene families.
Let x;; denote the number of genes from the ith family that
appear in W;. (Unlike the orthologous case, x;; and x;, are
drawn from the same genome but different windows.) Be-
cause W, is in the same genome as W, only ¢'; = ¢ — x;
genes from the ith family are available to fill the second win-
dow. Thus, in the paralogous case, equation (6) becomes

tw [OC([)] = NP (w7 la T)

SO0
(13)

where S is the set of all /-tuples (xy,, . . ., Xp) such that

i

and 0 < Xip < d) — Xi1.

In the case of orthologous clusters, the assumption of
fixed-size gene families simplified the enumeration of en-
sembles for both W, and W,. However, for paralogous clus-
ters, the fixed-size assumption does not hold when
calculating the probability for W,, as we do not know
how many genes from a given gene family are represented
in W,. Because the number of genes available from each
family to fill W, is no longer fixed, we cannot simplify
the enumeration of S in the same way. In order to obtain
a tractable expression, we make the further assumption that
the number of genes from each gene family available to fill
W, is fixed as well. We define, ¢ =¢ — X, where X is an
estimate of the mean number of genes contributed by each
gene family in W;.
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Applying the same argument used to derive equation (9)
from equation (6), we obtain the following approximation:
where z ranges from max{0, r, — k¢} to r, — [.

The fixed-size approximation and the use of generat-
ing functions to determine the number of ensembles satis-
fying equation (2) result in expressions that require only
simple summations (egs. 10, 11, and 14). These expressions
constitute an efficient approximation to the probability that
two arbitrarily chosen windows share at least m gene fam-
ilies under the null hypothesis of random gene order. The
results provide statistical tests for orthologous and paralo-
gous gene clusters that depend only on the size of the con-
served regions, the number of shared homologous genes,
and the total number of genes in the genome. They do
not require information about the spatial organization of
the genome outside the regions of interest. The equations
required to estimate cluster probabilities are summarized
intable 1. In the following section, we compare these general
fixed-size probabilities with cluster probabilities obtained
using a more realistic power-law model and show that
our approximations are not only tractable but also accurate.

Results
Effect of Simplifying Assumptions on Cluster
Significance

Wefirstinvestigated the effect of the simplifying assump-
tions used toderive our significance tests. In order to determine
the accuracy of our tests as an estimate for statistical signifi-
cance, we compared the probabilities obtained under our
fixed-size model (table 1) with probabilities of clusters in sim-
ulated genomes with a power-law gene family distribution.

The key step in performing the simulation is to con-
struct random genomes with gene family sizes that approx-
imate the observed distribution in real genomes. A number
of studies have shown that the gene family size distribution
follows a power-law of the form

o) =ax?, (15)

where f(x) is the number of gene families of size x, and a and
b are constants (Qian et al. 2001; Rzhetsky and Gomez
2001; Karev et al. 2002; Koonin et al. 2002; Kaplan
et al. 2004). We modeled our simulated genomes on three
eukaryotic genomes, yeast, fly, and human. These genomes
represent a wide range of genomes sizes and include a single

cell organism, an invertebrate, and a vertebrate. We focused
on eukaryotes over prokaryotes because of the greater size
and complexity of gene families in eukaryotes.

To determine the gene family distribution, we ob-
tained nonredundant, full length amino acid sequences from
the yeast, fly, and human genomes from the Swiss-Prot da-
tabase Version 50.9 (Gasteiger et al. 2003). For each ge-
nome, all-against-all Blast was performed to find a set of
significantly similar sequence pairs (Altschul et al.
1997). E-values obtained from the Blast results were used
to cluster the sequences into families using both the single
and complete linkage clustering methods implemented in
the hierarchical clustering package in R (R Development
Core Team 2005). In both cases, we used an E-value thresh-
old of 10~*#, which is suitable for identifying both orthologs
and paralogs. Consistent with previous studies (Qian et al.
2001; Rzhetsky and Gomez 2001; Karev et al. 2002;
Koonin et al. 2002; Kaplan et al. 2004), the resulting gene
family size distributions approximated a power-law. Be-
cause distributions obtained using single and complete link-
age clustering were similar, we only present results
obtained by single linkage here. Power-law distribution pa-
rameters were obtained by fitting the observed gene family
size distributions to equation (15) and are given in table 2.

For orthologous cluster probabilities, for each genome
size, an artificial genome with n genes was constructed such
that the gene family size distribution follows the power-law
parameters given in table 2. We used genome sizes of n =
5,000, 14,000, and 22,000, which correspond roughly to the
number of genes in yeast, fly, and human genomes, respec-
tively (http://www.ensembl.org). We next generated a pool
of N = 35,000 random permutations for each of these ge-
nomes. In each simulation, two genomes were selected ran-
domly from the pool of random permutations. A window of
size r was then chosen at random from each of these two
genomes, and the number of gene family matches () be-
tween the windows was tabulated. The probability of ob-
serving exactly m matches was estimated by sampling
25,000 window pairs. The probability of observing at least
m matches was calculated from the resulting distribution.

The probabilities obtained using simulation were com-
pared with the results of our analytical approximation for
r =50, r =100, and r = 150, typical window sizes in em-
pirical studies (Lundin 1993; Katsanis et al. 1996; Coulier
etal. 1997; Endo et al. 1997; Kasahara 1997; Ruvinsky and
Silver 1997; Amores et al. 1998; Hughes 1998; Pebusque
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Table 1
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Expressions for Computing Cluster Significance with Constant Gene Family Size

(a) Orthologous gene clusters

q°(m) Equation (3)
Py(k) Equation (10)
Py°(1]k) Equation (11)

(b) Paralogous gene clusters

q*(m) Equation (12)
Py(k) Equation (10)
pPa(]k) Equation (14)

= | (8 ) w5
() st ()(52)]
(2) measen[r ()] )

min(r 1) [(Zr ) (k) XL, (’l‘ ) o (1\;()}
() st C)C)
() st () ()0 )

et al. 1998; Smith et al. 1999; Lipovich et al. 2001; Spring
2002). For each value of n, the orthologous gene cluster
probabilities under the fixed-gene family size assumption
were computed using the equations in tablela, with ¢ =
2 and ¢ = 3.

The results, given in figure 2, supplementary figures
S1, S2, and S3, Supplementary Material online, show that
the probabilities obtained using our simplifying assump-
tions closely approximate the simulated cluster probabili-
ties obtained with the power-law size distribution. When
n = 5,000 and n = 14,000, the probabilities obtained with
¢ = 2 slightly overestimate the simulated cluster probabil-
ities, for all window sizes considered. Similarly, when both
genomes have 22,000 genes, the estimated probabilities ob-
tained with ¢ = 3 slightly overestimate the power-law
based probabilities. Moreover, the estimated probabilities
obtained with ¢ = 2 and with ¢ = 3 give lower and upper
bounds on the true probability, making it possible to esti-
mate the magnitude of the error that can result from using
this approximation. These guidelines hold for genomes of
different sizes (supplementary fig. S3, Supplementary Ma-
terial online). It is only necessary to use ¢ = 3 when both
genomes have more than 25,000 genes. If one or both of the
genomes is smaller, ¢ = 2 suffices.

These results suggest that an accurate, conservative
approximation can be obtained using the equations in table
la with ¢ = 2 for small to medium-sized genomes and with
¢ = 3 for larger genomes. These approximations slightly
underestimate the significance, guarding against false pos-
itives. Moreover, for the parameter values we considered,

Table 2

Power-Law Parameters of Gene Family Size Distributions of
the Three Genomes Species Obtained Using Single-Linkage
Clustering under E Value Threshold 10~*

Genome a b

Yeast 2,435 2.73
Fly 803 2.76
Human 2,300 2.28

the set of clusters deemed significant is frequently unaf-
fected by the use of approximation. Even though the prob-
abilities obtained with the power-law and fixed-size models
differ, for many values of m and significance thresholds o,
the same clusters will be rejected by both models. For ex-
ample, when n = 22,000 and r = 50, both models will reject
the null hypothesis for clusters of size 4, but not size 3, at
the o = 0.001 significance level. In the remaining cases, the
number of matches required to make a cluster significant for
a given window size is overestimated by at most one. For
example, when n = 22,000, r = 100, and o« = 0.001, the
fixed-size approximation would rule out a cluster of size 6,
although the power-law model indicates it is significant.
However, the fixed-size approximation will accept clusters
of size 7 and greater.

We also evaluated the accuracy of the approximations
for paralogous clusters given in table 1b. The paralogous
case required a second simplifying assumption, namely, re-
placing ¢ — x;; with ¢ =¢ — X in equation (14). As de-
scribed in the supplementary text, Supplementary
Material online, we confirmed by simulation that using
¢’ = ¢ —1 has little effect on the estimated cluster prob-
ability for the parameter values investigated. The use of
x=1 reflects the assumption that in a random genome,
the appearance of more than one gene from a given family
in a window of size r is a rare event when r < n and
¢ < n. We next investigated the impact of the fixed-size
approximation on paralogous cluster probabilities, by com-
paring the approximation in table 15 with the simulated
power-law model. The simulation procedure for estimating
paralogous cluster probabilities was identical to that for or-
thologous clusters, with the exception that in each simula-
tion two random nonoverlapping windows were sampled
from a single random genome chosen from a pool of N
random genomes.

Figure 3 and supplementary figures S4 and S5, Sup-
plementary Material online, show the paralogous gene clus-
ter significance obtained by the simulation compared with
that obtained using the equations in table 15 with ¢ = 2 and
¢ = 3. The results are similar to those observed with
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Fig. 2.—Comparison of orthologous cluster probabilities for
power-law distributed and fixed-gene family sizes. The probabilities
of observing at least one cluster of size m in a window of size r =
100 when genome size (@) n = 5,000, (b) n = 14,000, and (¢) n =
22,000.

orthologous clusters. The probabilities obtained using ¢ =
2 provide an accurate, conservative approximation when
n = 5,000 and n = 14,000. For larger genomes, an accurate,
conservative approximation can be obtained with ¢p = 3.

Importance of a Many-to-Many Homology Model

Most previously published tests for gene clustering do
not model gene families, instead assuming that each gene is
homologous to exactly one other gene. We investigated the
importance of many-to-many homology model in estimat-
ing cluster significance by comparing probabilities obtained
with the one-to-one and power-law distributed homology
models. Cluster probabilities for one-to-one homology
were calculated using the test based on the hypergeometric
function proposed by Durand and Sankoff (2003) (eq. 22 in
that paper). These were compared with the cluster probabil-
ities obtained using simulation with power-law distributed
gene family sizes, described above.

Figure 4 and supplementary S6, Supplementary Mate-
rial online, show that the one-to-one mapping assumption
underestimates cluster probabilities and, hence, overesti-
mates cluster significance. This problem is particularly se-
vere for larger genome and window sizes. For example,
compare the number of matches required to reject the null
hypothesis at a significance level of 0.001, when n =
22,000 and r = 150 (fig. 4b). Under the one-to-one assump-
tion, an experimenter observing six homologous pairs
would erroneously conclude that the cluster was significant.
In contrast, at least nine homologous pairs are required in
order to reject the null hypothesis under the more realistic
power-law model. Therefore, unless the experimenter is
able to unambiguously identify a unique homolog for each
match, the use of the one-to-one homology model will
lead to false positives. This effect also occurs for smaller
genome and/or window sizes, but is less pronounced.

The Influence of Window Size on Significance

In addition to data analysis, our equations can be used
to analyze trends in cluster significance, evaluate the impact
of parameter choices on cluster probabilities, and to design
data analysis protocols. For example, how should the win-
dow size, r, be selected in a window sampling analysis? We
studied the effect of window size, r, on orthologous gene
cluster significance by computing the probability of observ-
ing a gene cluster for various values of 7 using the equations
in table la. Because paralogous gene cluster probabilities
follow similar trends, only results for orthologous clusters
are given.

Figure 5 shows that for given values of n, m, and ¢, the
cluster significance decreases as the size of windows in-
creases. When the number of conserved homologous pairs
in a cluster is small, the cluster is significant only for a small
range of window sizes. For example, when n = 5,000, ¢ =
2, and m = 5, at a significance threshold of « = 0.0001,
clusters are significant only when r < 36 (fig. 5a). As
the number of conserved homologous pairs grows, the clus-
ters are significant for a wider range of window sizes.

When the cluster contains 10 homologous pairs, it is
significant when r < 79. Similar trends were found for the
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Fic. 3.—Comparison of paralogous cluster probabilities for power-
law distributed and fixed-size gene families. The probabilities of
observing at least one cluster of size m in a window of size r = 100
when genome size (a) n = 5,000, (b) n = 14,000, and (c) n = 22,000.

larger genome sizes as shown in figure 5b. In addition,
when the genome size is large, fewer homologous pairs
are required to make a cluster significant for a given win-
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dow size. For example, when n = 22,000, a cluster of five
genes is significant when r < 60, approximately.

In the last 15 years, many reports of both paralogous
and orthologous conserved gene clusters have appeared
(surveyed in Abi-Rached et al. 2002; Danchin et al.
2003; Durand and Sankoff 2003). These clusters typically
include 5 to 15 homologous pairs, with window sizes rang-
ing from 15 to 300. The results in figure 5b suggest that for
the larger window sizes even 15 homologous pairs may not
be sufficient to reject the null hypothesis.

Application to a Real Example

Geddy and Brown (2007) used spatial genomic analysis
inarecent study of the evolution and functional diversification
of genes encoding pentatricopeptide repeat proteins (PPR) in
plant genomes. PPR proteins are associated with various RNA
processing functions, including processing of RNA tran-
scripts, RNA editing, and initiation of translation. Some are
also implicated in plant-specific functions, such as restoration
of fertility. Loss of fertility is due to mitochondrially encoded
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¢ =2,andm =5,m=8,and m = 10; (b) n = 22,000, ¢ = 3, and m =
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cytoplasmic male sterility genes observed in a number of plant
species, including radish and petunia.

The spatial organization of PPR genes is highly vari-
able compared with the relatively stable syntenic organiza-
tion of other genes in the genomic regions in which they are
found (Geddy and Brown 2007). In their investigation of
the genomic processes driving the distribution of these
genes, Geddy and Brown (2007) present partially con-
served gene clusters containing PPR genes. The hypothesis
that these regions are descended from the same region in an
ancestral genome could have been further supported by sta-
tistical validation using tests such as those presented here.

To demonstrate the relevance of our methods to cur-
rent genomic studies, we applied our statistics to two of the
clusters containing PPR genes identified by Geddy and
Brown (2007). The first is an orthologous cluster (fig. 3
in Geddy and Brown 2007) comprised of regions from
the Arabidopsis and Ogura radish genomes. The cluster
spans 15 genes in the Arabidopsis genome and 6 genes
in Ogura radish. Of these genes, four are homologous pairs

appearing in both regions. We computed the probability of
observing such an orthologous cluster using equation (3)
with ¢ = 3, assuming n = 28,000 (http://www.arabidop-
sis.org, RadishDB: http://radish.plantbiology.msu.edu/).
The resulting probability is 6.45 x 10~"', showing that
the cluster is statistically significant.

The second cluster is a paralogous cluster (fig. 4 in
Geddy and Brown 2007) of two genomic regions contain-
ing PPR genes in the Arabidopsis genome. These regions
contain 19 and 18 genes, respectively, and share 8 homol-
ogous pairs. The probability of observing such a paralogous
cluster under the null hypothesis is 8.96 x 10~2°, computed
using equation (12) with ¢ = 3. This suggests that the clus-
ter is highly significant. Thus, our statistical analysis pro-
vides further evidence of the shared ancestry of the gene
clusters reported by Geddy and Brown (2007).

This example underscores the importance of two key
features of our tests: They can be applied when one-to-one
homology cannot be determined and when whole genome
data are not available. A many-to-many homology model is
particularly important for the PPR genes because of the dif-
ficulty of determining exact homology relationships in this
gene family. Evidence that these genes are under diversify-
ing selection contradicts the usual expectation that genes
that are most closely related will also be most similar. More-
over, the ability to obtain accurate sequence alignments is
challenged by the presence of repeated sequence motifs
within these genes. Our methods are also particularly well
suited to analysis of these data because the radish genome is
not completely sequenced. Thus, statistical tests based on
randomization of gene order could not have been applied.

Discussion

Identification of homologous genomic regions is a fun-
damental component of genome evolution studies, as well as
predictive methods that exploit spatial conservation for func-
tional inference. In distantly related genomes, putative ho-
mologous regions are found through similarities in local
gene content. When spatial organization has been disrupted
by genome rearrangements, statistical tests are essential to
exclude the possibility that such similarities arose by chance.
Although there is a growing statistical methodology for val-
idating gene clusters, practical significance tests that are ap-
plicable to noisy and incomplete data have not been realized.

Here, we present accurate, efficient statistical tests that
meet these needs in two ways: First, our results are appro-
priate for studies that focus on a single pair of regions con-
taining specific genes of interest. Because they do not
require detailed genomic information outside the region
of interest, our methods can be used to analyze homologous
regions in species for which a genomic map is not available,
either because genome sequencing and assembly has not
been completed or because the organism under study has
not been targeted for genome sequencing. Such data sets
are not amenable to statistical tests based on randomization.

Second, our tests support a many-to-many homology
model, applicable to genome self-comparison and data sets
with large gene families. The challenge is to model the dis-
tribution of gene family sizes to obtain a test that is both ef-
ficient and accurate. Exact calculation of the cluster
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probabilities assuming an arbitrary distribution is computa-
tionally intractable. By assuming that all gene families are of
equal size, we obtain an efficient test that can be easily cal-
culated in Mathematica. To evaluate the impact of this sim-
plifying assumption, we used simulation to estimate gene
cluster probabilities under the null hypothesis using a realistic
model of gene family size distributions. These were obtained
by fitting a power law to clustered sequences from the yeast,
fly, and human genomes. Remarkably, the results show that
our tests closely approximate the null hypothesis, despite the
highly unrealistic assumption on which they are based. Com-
paring the simulated probabilities with our analytical model
shows that our tests slightly overestimate cluster probabili-
ties, yielding a test that is accurate and conservative. We also
compared previously published tests (Durand and Sankoff
2003) that assume one-to-one homology with our simulation
results. The probabilities obtained by assuming one-to-one
homology substantially underestimate the cluster probabili-
ties in the simulated genomes leading to erroneous rejection
of the null hypothesis. This confirms the need for statistical
tests that include a model of gene families.

Our results represent a practical balance between accu-
racy and efficiency that is well suited to analysis of real bi-
ological data sets. We demonstrate the utility of our results
empirically by applying them to gene clusters in the Arabi-
dopsis and radish genomes from a recent report on the evo-
lution of the pentatricopeptide repeat (PPR) gene family in
plants. This data set exemplifies the two practical advantages
of our tests. A many-to-many homology model is required
for the PPR genes because determining phylogenetic rela-
tionships is difficult in this family due to repeated motifs
and diversifying selection. In addition, a method suitable
for local regions is required because a complete assembly
of the radish genome sequence is not yet available.

Supplementary Material

Supplementary figures S1-S6 and supplementary text
are available at Molecular Biology and Evolution online
(http://www.mbe.oxfordjournals.org/).
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