
Research Article
Dysregulated Expression and Methylation Analysis Identified
TLX1NB as a Novel Recurrence Marker in Low-Grade Gliomas

Hongzhou Duan ,1 Zuozhen Yang,2 Chen Li,3 Jiayong Zhang,1 Shengli Shen,1

Changwei Yuan,1 and Yingjin Wang1

1Department of Neurosurgery, Peking University First Hospital, Beijing 100034, China
2MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou,
Zhejiang 310058, China
3Department of Pediatric Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China

Correspondence should be addressed to Hongzhou Duan; duanhongzhoubj@126.com

Received 17 July 2020; Accepted 22 September 2020; Published 12 October 2020

Academic Editor: Xingshun Xu

Copyright © 2020 Hongzhou Duan et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Low-grade gliomas (LGGs) are the most common CNS tumors, and the main therapy for LGGs is complete surgical resection, due
to its curative effect. However, LGG recurrence occurs frequently. Biomarkers play a crucial role in evaluating the recurrence and
prognosis of LGGs. Numerous studies have focused on LGG prognosis. However, the multiomics research investigating the roles
played by gene methylation and expression in LGG recurrence remains limited. In this study, we integrated the TCGA and GEO
datasets, analyzing RNA and methylation data for recurrence (R) and nonrecurrence (NR) groups. We found a low expression
of TLX1NB and high methylation in recurrence patients. Low expression of TLX1NB is associated with poor survival (OS: p =
0:04). The expression of TLX1NB is likely to play a role in the prognosis of LGG. Therefore, TLX1NB may represent an
alternative early biomarker for the recurrence of low-grade gliomas.

1. Introduction

Low-grade glioma (LGG) is an uncommon type of the pri-
mary central nervous system tumor classified by the WHO
as Class I and II [1, 2]. Usually, LGG is inactive, and the
main therapy strategy is complete surgical resection
because this treatment can be curative. However, even if
the tumor is resected, the tumor cells resistant to irradia-
tion and chemotherapy may grow gradually; thus, the neo-
plasm can still relapse at some time point during the
clinical course [3–6]. Due to recurrence and metastasis,
the prognosis of LGG remains controversial [7, 8]. Because
these tumors have a long asymptomatic natural history,
whether patients with limited lesions and few symptoms
are given active or delayed treatment and the timing of
postoperative radiotherapy and chemotherapy have not
been determined [9]. Thus, it is of great importance to
understand the underlying molecular mechanisms govern-

ing LGG recurrence and to identify novel recurrence-
associated biomarkers [5, 10].

Comprehensive multiomics provides a deeper and more
comprehensive understanding of specific genes and enables
us to identify functional genes for biomarker mining [11].
The Cancer Genome Atlas (TCGA) offers multidimensional
maps of the key genomic changes in cancer, including alter-
ations in DNA, RNA, copy number, and methylation [12].

Previous studies have revealed several biomarkers for
LGG prognosis. For example, high methylation level of
HIST1H2BK [13], the MGMT promoter [14], 1p/19q [15],
the TERT promoter [16], IDH [16], and mTORC1/2 [17]
are associated with prognosis in LGG. However, the dysregu-
lation of the expression of genes associated with LGG recur-
rence has not been fully characterized.

The objective of the present study was to explore possible
clinical biomarkers of recurrence in LGG through multiface-
ted analysis of recurrence patterns in intracranial LGG.
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2. Materials and Methods

2.1. Data Sources. RNA read count data, expression matrix
data, copy number variation data, and DNA methylation data
(Illumina Human Methylation 450k Array) of LGG were
obtained from The Cancer Genome Atlas (TCGA, https://
cancergenome.nih.gov). Clinical information on LGG, includ-
ing survival and recurrence data, was downloaded from the
GDC Data Portal (https://portal.gdc.cancer.gov/) [12]. The
gene expression matrix of GSE35158 was downloaded from
the Gene Expression Omnibus (GEO) database.

2.2. Preprocessing and Analysis of RNA Data. We defined
patients with recurrence as the case group and patients with-
out recurrence as the control group. The RNA read count
data were preprocessed via DESeq2 1.26.0 (R package) [18];
log2 fold change > 1 and adjusted p value < 0.05 were selected
as the threshold. All differentially expressed genes were
obtained. Bar plots of different genes were generated by
ggplot2 3.3.0 (R package) [19]. Gene Ontology (GO), Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment
analysis, and data visualization were performed by cluster-
Profiler 3.14.3 (R package) [20].

2.3. Preprocessing and Analysis of DNA Methylation Data.
The DNA methylation data were preprocessed and normal-

ized using minfi 1.32.0 (R package) [21]. Differentially meth-
ylated regions with a change value >0.1 or <-0.1 and a p value
< 0.05 were selected as the methylation change threshold. All
different methylated regions were obtained. Annotation was
performed via the online tool wANNOVAR [22] (http://
wannovar.wglab.org).

2.4. Overlap Statistics between RNA and Methylation and
Copy Number Variation (CNV) Analysis. Upregulated RNA
and hypomethylated genes or downregulated RNA and
hypermethylated genes were extracted. Copy number varia-
tion analysis of target genes was performed by ggpubr 0.2.5
(R package) (https://github.com/kassambara/ggpubr).

2.5. Survival Analysis and Statistics. Survival plots of selected
genes were generated by survival 3.1-12 (R package) and
survminer 0.4.6 (R package) [23], and a p value < 0.05 was
selected as the significance level.
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Figure 1: Differentially expressed genes between recurrence and nonrecurrence samples, number statics, and functional enrichment. (a)
Upregulated (red point (N = 329)) and downregulated (blue point (N = 125)) genes between recurrence and nonrecurrence samples,
adjusted p value < 0.05, fold change > 2 were selected as thresholds. (b) Differentially expressed gene-enriched GO terms; a q value < 0.05
was selected as the threshold. (c) Differentially expressed gene-enriched pathways; a q value < 0.05 was selected as the threshold.

Table 1: Differential expressed genes between the recurrence and
nonrecurrence groups.

Numbers of genes Log2 fold change cutofff Adjusted p value

329 >1 <0.05
125 <-1 <0.05
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2.6. GSEA Analysis. We calculated the correlation score
between the target gene and all other genes and then ranked
the correlation score from high to low. Finally, we obtained
the gene list. We selected oncogenic gene sets (C6) as the
input dataset, performed GSEA analysis by clusterProfiler
3.14.3 (R package) [20], and visualized pathways of interest
by enrichplot 1.6.1 (R package) [20].

3. Results

3.1. Differentially Expressed Genes between Recurrence and
Nonrecurrence Samples. We selected the samples with recur-
rence information and RNA sequencing data and eventually
obtained 65 recurrence and 188 nonrecurrence data for fur-

ther RNA expression analysis. We set log2 fold change > 1
and adjusted p value < 0.05 as a significant change threshold,
and finally, we obtained 329 upregulated and 125 downregu-
lated genes at the RNA level (Figure 1(a) and Table 1).

Through GO and KEGG functional analyses, the differ-
entially expressed genes were determined to be primarily
involved in neuroactive ligand−receptor interaction path-
ways (Figure 1(b)) and DNA-binding transcription activator
activity (Figure 1(c)).

3.2. Identification of Methylation Regions between Recurrence
and Nonrecurrence Samples. A total of 485,577 loci of DNA
methylation were obtained from the TGCA database. After
NA values were removed, 467,971 loci were retained for

Table 2: Differential methylated regions between the recurrence and nonrecurrence groups.

Chr Gene.refGene Value Area p value fwer p.valueArea fwerArea

chr10 GFRA1 0.15761094 0.15761094 0.00147087 0.064 0.08985099 0.824

chr10 GFRA1 0.13806832 0.13806832 0.01701094 0.396 0.10360044 0.852

chr10 TLX1NB 0.11990024 0.23980049 0.01982478 0.444 0.03325446 0.568

chr3 LINC02010; ZIC4 0.13091445 0.13091445 0.04080067 0.656 0.12406472 0.892
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Figure 2: Gene overlap for RNA and methylation and copy number variation for TLX1NB. (a) Overlap for low expression at the RNA level
(threshold: adjusted p value < 0.05, fold change > 2) and high methylation at the DNA level (threshold: methylation level change forDMRs
ðdifferentially methylated regionsÞÞ>0:1). (b) Copy number variation analysis for TLX1NB between recurrence and nonrecurrence. A p
-value < 0.05 was selected as the threshold. (c) Methylation level of TLX1NB between recurrence and nonrecurrence. A p value < 0.05 was
selected as the significance threshold. (d) RNA expression level of TLX1NB between recurrence and nonrecurrence. A p value < 0.05 was
selected as the significance threshold.
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further analysis. Fifty-nine candidate DMRs were obtained
from the analysis results. After annotation, removing unan-
notated DMRs, four hypermethylated regions were obtained
for further cross-overlap analysis (Table 2).

3.3. Integrated Analysis for RNA Expression, DNA
Methylation, and Copy Number Variation. Genes were
selected following the criterions: high methylation at DNA
level and low expression at RNA level or low methylation at
DNA level and high expression at RNA level. TLX1NB was
identified by this approach (Figure 2(a)). The copy number
variation of TLX1NB was investigated, and no difference
between nonrecurrence and recurrence was found
(Figure 2(b), p > 0:05). These results indicated that the down-
regulation of TLX1NBmay not be associated with copy num-
ber alterations. To evaluate the methylation effect on
TLX1NB, we compared methylation and RNA expression
levels between recurrence and nonrecurrence groups. We

found methylation of TLX1NB upregulated at 24% in the
recurrence group compared with the control (Figure 2(c)),
meanwhile at RNA expression level, the expression of
TLX1NB downregulated at 80% (Figure 2(d)).

3.4. Gene Set Enrichment Analysis of TLX1NB. To further
investigate the potential functions of TLX1NB, GSEA was
performed based on the LGG expression data. TLX1NB was
negatively correlated with typical tumor driver genes, such
as P53, EGFR, TBK1, and STK33 (Figure 3). These results
implied that TLX1NB is involved in typical cancer pathways
and tumor proliferation processes.

To understand the expression of TLX1NB in LGG
patients in different subtypes, we employed dataset
GSE35158 to analyze 80 patients’ expression profiles. We
observed that there was no difference in the TLX1NB expres-
sion between grade II and grade III patients (Figure 4(a), p
= 0:25, Wilcoxon’s test); however, there was a significantly
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Figure 3: GSEA analysis of TLX1NB in the TCGA LGG dataset. Oncogenic gene sets (C6) were used as the input dataset, and a p value < 0.05
was selected as the significance threshold. P53 (a), EGFR (b), STK33 (c), and TBK1 (d) gene sets were enriched.
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increased TLX1NB expression level in the neuroblastic sub-
type, which was associated with Hu immunopositivity and
a mature neuronal gene set in GSE35158 (Figure 4(b), p =
0:0041, Kruskal–Wallis test). We also found decreased
expression of TLX1NB in the PTEN deletion group
(Figure 4(c), p = 0:038, Kruskal–Wallis test). To explore the
relationship between TLX1NB, PTEN promoter methylation,
and IDH deletion, we analyzed TLX1NB expression and
PTEN promoter in GSE35158 and TLX1NB expression and
IDH mutation in TCGA and GSE35158. No significant
change of TLX1NB expression was observed between PTEN
methylation group and nonmethylation group in GSE35158

(Figure 4(d)). TLX1NB was significantly upregulated in the
IDH mutation group in the TCGA dataset (Figure 4(e));
however, no difference was observed in the GSE35158 dataset
(Figure 4(f)). The result for IDHmutation was controversial.
So, we resume that TLX1NB has the potential to be a new bio-
marker in LGG associated with recurrence and prognosis.

3.5. TLX1NB Predicts Survival Level in LGG. From the previ-
ous results, we could assume that low expression of TLX1NB
is associated with adverse consequences of LGG. Thus, we
analyzed the prognosis of LGG patients in TCGA. Five hun-
dred twenty-eight patients were divided into two groups: the
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Figure 4: TLX1NB distribution in different subsets. (a) TLX1NB distribution between grade II and III LGG. A p value < 0.05 was selected as
the significance threshold. (b) High expression of TLX1NB in the NB group compared with PG and EPL. A p value < 0.05 was selected as the
significance threshold. NB: neuroblastic; PG: preglioblastoma; EPL: early progenitor-like. (c) Low expression of TLX1NB in the PTEN deletion
group. A p value < 0.05 was selected as the significance threshold. (d) No difference for TLX1NB between PTEN methylation and
unmethylation group. A p value < 0.05 was selected as the significance threshold. (e) High expression of TLX1NB in the IDH1 mutation
group in the TCGA dataset. A p value < 0.05 was selected as the significance threshold. (f) No difference for TLX1NB between IDH1
mutation and wildtype group in GSE35158. A p value < 0.05 was selected as the significance threshold.
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high TLX1NB expression group and the low TLX1NB expres-
sion group. We observed that patients in the low TLX1NB
expression group had shorter overall survival (OS)
(Figure 5, p < 0:05, log-rank test).

4. Discussion

According to CBTRUS (Central Brain Tumor Registry of the
United States), glioma is the most common CNS tumor,
accounting for ~27% of CNS tumors [1] and leading to severe
disability andmortality. According to theWHO central nervous
tumor histological grading standards, such tumors such as
grade I to II astrocytomas, papillary glioneuronal tumors, and
vascular central gliomas are collectively referred to as low-
grade gliomas [2]. LGGs account for 15% to 30% of all gliomas.
LGGs are more common in children and young people with an
average age of onset of 30 to 45 [4]. Although surgical resection
is the main method of treatment, the tumor cannot be
completely removed in the true sense due to the invasive growth
of gliomas, the principle of tumor location, and the maximum
protection of nerve function, which affects the survival of the
patient [5]. Therefore, research that affects the risk of glioma
recurrence may provide evidence to guide clinical treatment
and facilitate the development of personalized strategies.

Regarding recurrence, previous studies revealed that for
instance, high-level methylation of theMGMT promoter leads
to hypermutation at recurrence, 1p/19q codeletion or IDH

mutation is associated with longer overall survival and better
treatment response, and TP53 mutation is associated with a
worse prognosis [5, 10, 14, 16, 24, 25]. However, the number
of recurrence studies focusing on gene expression remains
notably limited. In this study, we comprehensively analyzed
TCGA and GEO data and observed that TLX1NB may be a
potential recurrence biomarker. Previous studies have demon-
strated that TLX1NB can be a prognostic lncRNA biomarker
in lung adenocarcinoma [26]; however, there are no other
studies revealing the role of TLX1NB in CNS cancer.

DNA copy number variations (CNVs) are an important
component of genetic variation, affecting a greater fraction
of the genome than single-nucleotide polymorphisms (SNPs)
[27]. Therefore, we investigated the CNVs of TLX1NB and
found no difference between the recurrence and nonrecur-
rence groups.

TLX1NB is adjacent to the TLX1 gene, and we hypothe-
size that its role could be associated with TLX1 function as
a cis-regulatory factor [28]. Therefore, we correlated
TLX1NB and TLX1 and found that TLX1NB was positively
coexpressed with TLX1NB (Supplementary Figure 1). TLX1,
a member of the NK-linked or NK-like (NKL) subfamily, is
involved in the specification of neuronal cell fates. Thus, we
hypothesize that TLX1NB and TLX1 together drive
function. Our gene set enrichment analysis showed that
TLX1NB was associated with typical cancer driver genes,
such as P53, EGFR, STK33, and TBK1. These results
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Figure 5: Overall survival plot for TLX1NB between the high and low groups in LGG. A p value < 0.05 was selected as the significance
threshold.
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demonstrate the role played by TLX1NB in cancer pathways.
We also found that TLX1NB was negatively correlated with
the transcription activating gene set (Supplementary
Figure 2a) and the IL2 gene set (Supplementary Figure 2b).

5. Conclusion

We investigated the relationship between TLX1NB in LGG.
TLX1NB is a predictor of LGG survival; reduced expression
of TLX1NB worsens the prognosis and survival of LGG
patients. TLX1NB probably affects LGG through the tumor
activating pathway and could be a meaningful biomarker
for LGG.
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