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Abstract: Tuberculosis, caused by the pathogen Mycobacterium tuberculosis, is a serious infectious
disease worldwide. Multidrug-resistant TB (MDR-TB) remains a global problem, and the understand-
ing of this resistance is incomplete. Studies suggested that DNA methylation promotes bacterial
adaptability to antibiotic treatment, but the role of mycobacterial HsdM in drug susceptibility has not
been explored. Here, we constructed an inactivated Mycobacterium bovis (BCG) strain, ∆hsdM. ∆hsdM
shows growth advantages over wild-type BCG under isoniazid treatment and hypoxia-induced
stress. Using high-precision PacBio single-molecule real-time sequencing to compare the ∆hsdM and
BCG methylomes, we identified 219 methylated HsdM substrates. Bioinformatics analysis showed
that most HsdM-modified genes were enriched in respiration- and energy-related pathways. qPCR
showed that HsdM-modified genes directly affected their own transcription, indicating an altered
redox regulation. The use of the latent Wayne model revealed that ∆hsdM had growth advantages
over wild-type BCG and that HsdM regulated trcR mRNA levels, which may be crucial in regulating
transition from latency to reactivation. We found that HsdM regulated corresponding transcription
levels via gene methylation; thus, altering the mycobacterial redox status and decreasing the bacterial
susceptibility to isoniazid, which is closely correlated with the redox status. Our results provide
valuable insight into DNA methylation on drug susceptibility.
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1. Introduction

Tuberculosis (TB) is a chronic wasting infectious disease that causes infections of
various tissues and organs after Mycobacterium tuberculosis (Mtb) is inhaled, and then
spreads through the respiratory tract. According to the Global Tuberculosis Report issued
by the World Health Organization in 2019 [1], the number of TB-infected patients has
been relatively stable in recent years, with approximately 10 million new cases annually
worldwide. In 2018, TB caused approximately 1.5 million deaths and is among the top
ten causes of human deaths. TB causes most infection-related deaths primarily because
of antimicrobial resistance. Understanding how Mtb mutates and evolves in the host to
produce drug resistance will provide theoretical guidance for improving TB treatment and
control strategies. Mtb is genetically static, with a low mutation rate, and evolves via single
nucleotide polymorphisms [2,3]. However, under continued chemotherapy, a fraction of
Mtb eventually develops complete antibiotic resistance [4]. It remains unclear how this
genetically stable organism adapts so quickly to antibiotic treatments and infected host’s
immune pressures such as reactive oxygen species, which are products of the host’s innate
immune responses induced by infected Mtb [5].
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Recent studies have shown that bacterial epigenomics is an important and newly
rising field for genetic and phenotypic analysis of microbial diversity, gene regulation
and evolution. Modifying DNA to regulate gene expression facilitates physiological adap-
tation to new environments without needing to drastically alter the genome. Previous
studies of bacterial methylation have shown that DNA methylation promotes bacterial
adaptability in infected hosts [6,7] and to antibiotic treatments [8]. These studies suggested
that environmental changes (such as pathogens infecting the host) lead to selection of a
well-adjusted subgroup. That is, this phenotypic plasticity helps bacteria quickly adapt
to changing environmental pressures. Studies have shown that the different evolutionary
lineages of Mtb come from different geographical regions [9], and genetic variations in
these TB subgroups affect the evolution of drug resistance [10].

We speculate that DNA methylation is a feasible but poorly understood mechanism
of Mtb phenotypic variation. Mtb has three DNA methyltransferases (MTases), MamA,
MamB and HsdM, which target different DNA sequence motifs of N6-adenine methy-
lation [11–13]. The bacterial methylome has been linked to antibiotic stress survival [8],
indicating that DNA methylation may play important roles in antibiotic susceptibility.
Most methylation studies on Mtb have been conducted on strains collected from clinical
samples, and the MTases in these strains have complex backgrounds with varying numbers
of MTases and different degrees of mutated sites; thus, conclusions from these studies are
conflicting [13,14].

Here, we characterize the biological function of an orphan MTase, HsdM, in Mycobac-
terium bovis BCG Pasteur (BCG). Using specialized transduction, we constructed ∆hsdM
and showed that ∆hsdM decreased the bacterial susceptibility to isoniazid (INH) compared
with that of its parental strain, BCG. We used high-precision PacBio single-molecule real-
time (SMRT) sequencing technology to compare the ∆hsdM and BCG methylomes. We
identified 219 methylated HsdM substrates, of which, 192 were located in open reading
frames (ORFs), and 28 were located upstream of ORFs. Bioinformatics analysis showed that
most HsdM-modified genes were enriched in respiration- and energy-related pathways.
qPCR showed that HsdM modification regulated the transcription level of its modified
DNA, suggesting that HsdM-mediated changes in mRNA levels may be related to redox
regulation. Using the latent Wayne model, we show that ∆hsdM had a growth advantage
over wild-type BCG under hypoxic conditions and that HsdM regulated trcR mRNA levels,
which was predicted to be a key regulator of transition from latency to reactivation. Our
results showed that HsdM regulated the corresponding transcription levels via gene methy-
lation, leading to changes in the mycobacterial redox status, thereby affecting mycobacterial
susceptibility to INH, which was closely correlated with the mycobacterial redox status.

2. Results
2.1. DNA Methyltransferase HsdM Decreased INH Susceptibility in Mycobacteria

Previous studies have shown that MTases mediate various functions, including an-
tibiotic stress responses [8,15–17]. Mycobacterial DNA methylation is complex. Mtb has
three known MTases, MamA (Rv3263), HsdM (Rv2756c) and MamB (Rv2024c), which
modify distinct DNA sequence motifs [12,13]. Mycobacteria from different lineages con-
tain different numbers of DNA MTases from different sources with different mutation
sites [11–13]. These complexities make it difficult to identify the functions of these MTases.
The clinical isolates containing different numbers of MTases and different degrees of mu-
tated sites [13,14] are difficult to explore the biological functions of HsdM. Here, we used
M. bovis BCG Pasteur (BCG) to assess how HsdM functioned in antibiotic susceptibility.
HsdM in BCG is similar to HsdM in Mtb H37Rv. BCG_2772c from BCG is equivalent to
Rv2756c from M. tuberculosis strain H37Rv with 99.8% identity (Mycobrowser website
https://mycobrowser.epfl.ch/genes (accessed on 12 August 2021) and KEGG website
https://www.kegg.jp (accessed on 12 August 2021)). Additionally, BCG contains three
intact DNA MTases. We examined whether HsdM affected DNA methylation via MamA
and MamB.

https://mycobrowser.epfl.ch/genes
https://mycobrowser.epfl.ch/genes
https://www.kegg.jp
https://www.kegg.jp
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First, we constructed an hsdM knockout in BCG using specialized transduction [18].
We cloned approximately 1 kb fragments both upstream and downstream of hsdM via PCR
and constructed an allelic exchange vector on phAE159 [18,19]. Colonies carrying hyg to
replace hsdM were confirmed via PCR (Figure 1A,B). The corresponding complementary
strain pMV361-hsdM/∆hsdM was constructed. The in vitro growth kinetics of ∆hsdM in
Middlebrook 7H9 supplemented with albumin–dextrose–saline (ADS) were comparable
to those of wild-type BCG and the complementary strain for up to 14 days of incubation
(Figure 1C). No differences were observed throughout the entire growth process, indicating
that HsdM did not affect mycobacterial growth in vitro in ADS-supplemented Middlebrook
7H9.
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arrows represent coding genes in their orientation. Small arrows represent the primer pair used for corresponding PCR.
(B) PCR to confirm the knockout hsdM (∆hsdM) strains. The replacement gene, hygromycin-coding gene (hyg), is also shown.
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(PCR2). (C) Growth curves of BCG, ∆hsdM and pMV361-hsdM/∆hsdM strains in 7H9 medium. Data presented the means ±
standard deviations (SD) from three independent experiments.

Next, we selected antibiotics used for the clinical treatment of TB, including isoniazid
(INH), rifampicin (RFP), streptomycin (STR), ethambutol (EMB), ciprofloxacin (CIP) and
ofloxacin (OFX), compared the susceptibility of ∆hsdM and wild-type BCG (Figure 2). Strik-
ingly, ∆hsdM showed a marked resistance to INH compared with that of BCG (Figure 2A).
The minimum inhibitory concentration (MIC) of ∆hsdM to INH was ~32-fold higher than
that of the wild-type BCG exposed to INH. No differences in antibiotic susceptibility be-
tween ∆hsdM and wild-type BCG were detected in any other antibiotics (Figure 2B–F). We,
at first, performed antibiotic susceptibility testing of three mycobacterial strains (BCG,
∆hsdM and pMV361-hsdM/∆hsdM) treated with INH at the indicated concentrations and
showed the growth advantage of ∆hsdM was partly reduced by complementation with
an integrated copy of hsdM, pMV361-hsdM/∆hsdM (Supplementary Material Figure S1).
To further confirm the effect of HsdM on INH susceptibility, we performed the drug
exposure experiments in the presence of 0.25 mg/L INH (8 × MIC of INH) to compare
the growth rates among strains BCG, ∆hsdM and pMV361-hsdM/∆hsdM. Consistent to
previous studies [20–22], we observed the typical biphasic killing curve of these three
mycobacterial strains (Figure 2G). All three of these strains showed typical INH-killing
growth curves after INH treatment; that is, the INH treatment arrested the mycobacterial
growth for up to 6 days. After reaching the lowest point, the mycobacterial tolerance to
INH began to increase (Figure 2G). On days 2–3 after INH treatment, ∆hsdM exhibited a
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significant growth advantage (Figure 2H), which was partly reduced by complementation
with an integrated copy of hsdM constitutively expressed and driven by the mycobacterial
promoter, pMV361-hsdM/∆hsdM. Thus, HsdM affected the mycobacterial susceptibility
to INH likely because HsdM methylation-modified DNA affected transcription, which in
turn affected INH susceptibility.
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2.2. Bioinformatic Analysis of the HsdM Substrate via Whole-Genome Sequencing

To verify our hypothesis that HsdM affected susceptibility to INH via its methylated
DNA, the three mycobacterial strains BCG, ∆hsdM and pMV361-hsdM/∆hsdM were se-
quenced via PacBio SMRT sequencing [23], which enables directly detecting methylated
DNA at the genomic level. A previous study showed that the GATC methylome was
stable, and drug treatment did not affect the adenine methylome [8]; thus, we did not
examine the mycobacterial methylome after drug treatment. Three strains were cultured
on 7H10 plates supplemented with ADS for 10 days, and all colonies growing on the
plates were collected. Genomic DNA was extracted and sequenced using PacBio SMRT
sequencing. The average sequencing coverages of BCG, ∆hsdM and pMV361-hsdM/∆hsdM
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were approximately 133.79×, 156.51× and 219.69×, respectively. Similar to a previous
study [12], the sequencing results provided general bioinformation, including the respec-
tive genomic sizes (~4.345–4.352 Mb), the number of ORFs (~4069–4102) and the GC%
(65.6%). Adenine MTases have been shown to target distinctive DNA sequence motifs, of
which, MamA, MamB and HsdM target the corresponding motifs CTCCAG, CACGCAG
and GATN4RTAC, respectively [11,12]. The percentage of GATN4RTAC sites methy-
lated by HsdM in BCG was 72.5%; no methylated GATN4RTAC sites were detected in
∆hsdM (Table 1). The percentage of the methylated GATN4RTAC sites was 58.7% in the
complementary pMV361-hsdM/∆hsdM strain, indicating that a single integrated copy of
hsdM expressed from a mycobacterial promoter could at least partially complement the
methylation function of HsdM. Most of the CTCCAG (99.3%) and CACGCAG (99.8%)
were methylated by the corresponding MamA and MamB in BCG. Additionally, the motifs
of both MamA and MamB were almost fully methylated (99.1% and 100%, respectively)
in ∆hsdM. Similar to the methylation profiles modified by MamA and MamB in BCG
and ∆hsdM, approximately 99–100% of the methylated motifs were modified in pMV361-
hsdM/∆hsdM. Hence, HsdM did not affect DNA methylation via MamA and MamB.

Table 1. N6-methyl-adenine base modifications in sequenced BCG strains.

Strain

Methylated Motif

CTCCAG CACGCAG GATN4RTAC

No. of Motifs
in Genome

% Motifs
Detected

No. of Motifs
in Genome

% Motifs
Detected

No. of Motifs
in Genome

% Motifs
Detected

BCG 3834 99.3 806 99.8 674 72.5
∆hsdM 3832 99.1 805 100 676 /

pMV361-hsdM/∆hsdM 3840 99.3 805 100 676 58.7

Note: “_” represented the methylated sites.

The SMRT sequencing results for BCG, ∆hsdM and pMV361-hsdM/∆hsdM revealed 489
methylated sites, of which 430 were located in the 192 ORFs, and 59 were located in noncod-
ing gene regions, including 28 downstream genes (Supplementary Material Tables S1 and S2).
One substrate, Rv1522c, had modification sites both in and upstream of the gene.

We, then, investigated the Clusters of Orthologous Groups (COG) functional category
of those substrates. The methylated substrates of HsdM included 219 genes (Tables S1 and S2),
of which, 158 were successfully annotated by COG and fell into 19 classification cate-
gories, including replication, recombination and repair, transcription, translation, riboso-
mal structure and biogenesis, lipid transport and metabolism and carbohydrate transport
metabolism (Figure 3). Manually searching the biofunctions of these substrates revealed
that 56 methylated substrates of HsdM (~25%) were involved in the respiration pathway
(Table S3), and the bioinformatic analysis implied that HsdM-mediated modification was
linked to cellular redox regulation or energy metabolism. Previous studies have shown that
bacterial antibiotic susceptibility is associated with the redox status [24,25]. Therefore, after
combining the experimental results and bioinformatics analysis of the HsdM substrates, we
speculated that methylation by HsdM affects the transcription level of the corresponding
substrates; thus, affecting the redox state of the cell and affecting its susceptibility to INH,
a prodrug with redox-mediated activation [26,27].

2.3. HsdM Regulated Gene Expression of Its Substrates

To verify whether HsdM methylation affected the transcriptional level of its substrates,
resulting in different mycobacterial redox statuses and affecting the susceptibility to INH,
we designed qPCR primers to compare the mRNA levels of all identified HsdM substrates
between BCG and ∆hsdM. Under the detection conditions of all HsdM substrates, 17 ORFs
were significantly downregulated, and 41 were significantly upregulated in ∆hsdM com-
pared with those in BCG (Table S1). The qPCR examination of the cis-regulation of DNA
methylation revealed that nine methylation sites upstream caused statistically different
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BCG and ∆hsdM expressions in the corresponding genes (Table S2). Consistent with a
previous study [14], hsdS.1 (equivalent to rv2755c in Mtb) expression was significantly
upregulated in the knockout strain (Figure 4A), suggesting that its regulation was asso-
ciated with hsdM (equivalent to rv2756c in Mtb). Conversely, hsdS (equivalent to rv2761c
in Mtb) was unchanged (Figure 4A). Additionally, the two-component system response
regulator, TrcR (equivalent to Rv1033c in Mtb), which is thought to help bacteria adapt
to the infection environment in the host and switch from latency to reactivation [28], was
upregulated in ∆hsdM compared with that in the wild-type. This switch process is closely
linked to redox regulation [25]. Moreover, a study showed that TrcR represses BCG_1115
(equivalent to Rv1057 in Mtb), a putative surface antigen [29]. The qPCR analysis showed
that BCG_1115 expression levels were downregulated in ∆hsdM compared with those in
the wild-type, which was consistent with the previously reported negative regulation of
BCG_1115 (equivalent to rv1057 in Mtb) by TrcR (Figure 4B).
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To rule out that the reduced susceptibility of ∆hsdM to INH compared with that of
BCG was due to differential katG expression, we examined the expression levels of katG in
∆hsdM and BCG via qPCR. The qPCR analysis showed that katG mRNA levels in ∆hsdM
were not significantly reduced (~0.84 ± 0.08-fold) compared with those of the parental
strain, BCG (Figure 4B). These results suggested that HsdM methylation affected gene
expression in the reduced INH susceptibility of ∆hsdM compared with that of BCG.

2.4. HsdM Deletion Increases Survival of BCG during Hypoxia

To further confirm the role of HsdM in oxidative stress responses, we constructed
a latent Wayne model [30] and examined the growth kinetics and expression levels of
related genes of BCG, ∆hsdM and pMV361-hsdM/∆hsdM. At 10 days postinoculation, all
strains were collected and plated on 7H10 media supplemented with ADS. When the
methylene blue, an oxygen concentration indicator, became colorless, it indicated that
the O2 concentration dropped to 0. ∆hsdM exhibited a significant growth advantage over
BCG (Figure 5A). Growth kinetics of the complemented strains pMV361-hsdM/∆hsdM and
BCG did not differ, indicating that ∆hsdM had a clear growth advantage relative to that
of wild-type BCG under hypoxic conditions. Under these conditions, the relative hsdM
mRNA levels decreased by 0.49 ± 0.06-fold, and compared with those under standard
culture conditions in BCG, the relative trcR mRNA levels increased by 1.75 ± 0.11-fold.
Additionally, BCG_1115 was decreased by 0.50 ± 0.05-fold (Figure 5B). Hence, HsdM-
mediated modification was linked to redox regulation.
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3. Discussion

Here, we showed that mycobacterial HsdM, an adenine methyltransferase, altered
the transcription levels of the corresponding substrates by methylating its own substrates,
thereby reducing the mycobacterial susceptibility to INH. Furthermore, HsdM deletion in-
creased mycobacterial survival under hypoxia. Our results indicated that HsdM-mediated
DNA methylation alters mycobacterial sensitivity to INH.

To explore the biological role of HsdM, we took advantage of antibiotics as chemical
probes to screen the difference between the wild-type strain BCG and the mutant strain
∆hsdM (Figure 2A–F). Both previous studies and our studies linked isoniazid action with
redox homeostatic [21,31,32]. We observed that the hsdM knockout in BCG showed that
∆hsdM had remarkable resistance to INH compared with that of BCG (Figure 2A), and
complementary HsdM partially abrogated INH resistance in ∆hsdM (Figure 2G,H). We
hypothesized that HsdM affects the transcriptional levels of its substrates, which in turn
affects the oxidation reduction in the bacteria. To prove our hypothesis, we compared
the methylomes of those three strains (BCG, ∆hsdM and pMV361-hsdM/∆hsdM) using
high-precision PacBio single-molecule real-time (SMRT) sequencing technology.
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SMRT technology has been used to identify methylated DNA sequences in bacte-
ria, including Mycobacterium [8,12–14,33]. In mycobacteria, HsdM is predicted to be an
orphan that lacks cognate restriction enzymes [34]. This means that unmethylated HsdM-
modified DNA sequences cannot be degraded; that is, the HsdM-modified motifs are
stable regardless of whether they are methylated or unmethylated. Consistent with a
previous study [12–14], the percentage/ratio of methylated modification by HsdM was
lower (67–69%), indicating that methylation by HsdM is limited to specific biological func-
tions. As predicted, HsdM substrates were enriched in the respiration pathway (Table S3),
whereas the MamA and MamB substrates were not enriched in specific pathways. The
bioinformatic analysis of 25% of HsdM substrates presenting in the respiration pathway
supported our hypothesis that biological function of HsdM links to redox homeostatic
regulation.

Recent studies on the bacterial GATC methylome suggested that MTases regulate
transcription [12–14,35,36]. In Mtb, more HsdM motifs than MamA and SigA motifs are
located in ORFs [14], suggesting that the biological functions of HsdM modification differ
from those of MamA and SigA. Here, we showed that HsdM methylated 88% of sites
in ORFs. Further assays showed that the expression levels of most motifs tended to be
upregulated in ∆hsdM (Table S1). Thus, HsdM-methylated encoding genes could directly
affect their own transcription.

Through a comparison of different methylomes in BCG and ∆hsdM, we identified 219
HsdM substrates and confirmed via qPCR (Table S1). In particular, trcR, a two-component
system member, was identified as a HsdM substrate (Table S1). The trcR mRNA levels
were upregulated in ∆hsdM compared with those in BCG (Figure 4). Because TrcR is
important in reactivation from latency [28], a process being linked to the redox status
change. Using a Wayne model of hypoxia, we also showed increased trcR mRNA levels
under hypoxic conditions, compared with standard growth (growth in 7H9 medium)
(Figure 5B). Additionally, ∆hsdM exhibited a significant growth advantage over BCG
(Figure 5A). Thus, HsdM is important for fitness during hypoxia. Similar to a previous
study [31], we found a relationship between the latent gene, trcR, and drug resistance,
which, thus, requires further study. MamA has also been associated with hypoxia [11].
Further studies are needed to determine how the synergistic effect of MamA and HsdM on
genome methylation affects mycobacterial antibiotic susceptibility.

4. Materials and Methods
4.1. Bacterial Strains and Culture Conditions

In this study, Mycobacterium bovis BCG Pasteur (BCG) was used to assess HsdM
functions in antibiotic susceptibility. Mycobacterial strains were grown in 7H9 medium
comprising Middlebrook 7H9 medium (Becton Dickinson, Sparks, MD, USA) supple-
mented with 10% ADS (5% w/v bovine serum albumin fraction V, 2% w/v D-dextrose,
8.1% w/v NaCl), 0.5% v/v glycerol and 0.05% v/v TWEEN 80. The ∆hsdM mutant strain was
maintained in media supplemented with 50 mg/L hygromycin B (Roche, Indianapolis, IN,
USA). BCG was used to explore the biological function of the methyltransferase, HsdM.

4.2. Generation of the hsdM Knockout Mutant Strain

Mycobacteriophage-based specialized transduction was used to replace hsdM as
previously described [18,19]. The upstream and downstream sequences were amplified
from BCG genomic DNA, using primer pairs hsdM-LL/hsdM-LR and hsdM-RL/hsdM-RR.
Table S4 lists the corresponding primers for the ∆hsdM mutant strain, and Figure 1A shows
their corresponding positions. The resulting cloned upstream and downstream regions
of hdsM were ligated with plasmid p0004s (Hsu and Jacobs, unpublished data) digested
with Van91I. The constructed plasmid p0004-hsdM was then linearized with PacI and
inserted into the PacI-digested phAE159 (Hsu and Jacobs, unpublished data). A MaxPlax
packaging extract (Epicentre Biotechnologies, Madison, WI, USA) was used for phage
packaging and the resulting shuttle plasmids were transformed and amplified into E. coli



Antibiotics 2021, 10, 1323 9 of 12

HB101 cells. The selected plasmids were electroporated into M. smegmatis mc2155 for
phage propagation. Transduction into individual BCG cells was performed and hsdM
was replaced with hygromycin-coding gene (hyg) (Figure 1), and correct transformants
were characterized by PCR using the primer pair, hsdM-InL/hsdM-InR (Table S4). The
corresponding complementary strain was constructed as described previously. Briefly, the
full-length sequence of hsdM was amplified from BCG genomic DNA using primer pair
361-hsdM-F/361-hsdM-R (Table S4), and the PCR product was cloned into the integrating
vector, pMV361 [37,38]. The constructed plasmid was then electroporated into the knockout
strain, ∆hsdM, yielding pMV361-hsdM/∆hsdM.

4.3. Antibiotic Susceptibility Testing

Growth rates of the hsdM mutant strain ∆hsdM and its parent strain were compared
in 7H9 medium by monitoring the OD600 at different time points. Early phase cultures
(OD600~0.1) were treated with drugs at the indicated concentrations. The OD600 values
and the number of CFUs were measured at the indicated point times. Experiments were
performed in triplicate.

Isoniazid (INH), rifampicin (RFP), streptomycin (STR), ethambutol (EMB), ciprofloxacin (CIP)
and ofloxacin (OFX) were obtained from Sigma-Aldrich (Saint Louis, MO, USA). Suscepti-
bility of the mycobacterial strains to these antibiotic drugs was determined on microplates.
A modified microplate Alamar Blue assay was performed to examine the mycobacterial
susceptibility as previously described [39]. Briefly, approximately 105 cells/well were incu-
bated for 7 days with different drug concentrations at 37◦C. The indicator, 0.02% resazurin,
was then added to individual samples, and color changes (from blue to pink) were recorded
after 48 h. Blue indicated no growth; pink indicated growth. The MIC was defined as the
lowest antibiotic drug concentration that prevented the color change from blue to pink. A
difference of 4-fold or more indicated a significant difference in the antibiotic susceptibility
of bacterial strains.

4.4. SMRT Sequencing and Bioinformatics Analysis

Genomic DNA was extracted from M. bovis BCG strains using a previously described
method. Briefly, pellets were scraped from plates containing each strain into 4 mL DNA
buffer (0.3 M Tris, pH 8.0; 0.1 M NaCl; 6 mM EDTA) and vortexed vigorously with
3 mm glass beads. The supernatant was treated with lysozyme solution, extracted in
phenol/chloroform/isoamyl alcohol and precipitated to obtain the genomic DNA. Whole-
genome sequencing was used, combining the Illumina HiSeq2000 (Illumina Inc., San Diego,
CA, USA) and Pacific Biosciences Sequel II (Pacific Biosciences, Menlo Park, CA, USA)
sequencing platforms, and the sequence data from the Illumina platform were used to
proofread the PacBio assembly sequence. An Illumina paired-end sequencing library was
prepared using TruSeq DNA sample prep kits (Illumina Inc.) as per the manufacturer’s
instructions. A 20-kb SMRT bell library was prepared from sheared genomic DNA using
a 20 kb template library preparation workflow. SMRT sequencing was conducted on a
PacBio Sequel II sequencing platform.

The Hierarchical Genome Assembly Process (HGAP.4) algorithm in the SMRT Link
(version 9.0.0) was used to assemble the genome. Errors in assembly of the raw sequence
reads were corrected with the Quiver algorithm included in the SMRT software pack-
age [40]. Standard settings (QV > 30) in the “Base Modification Analysis” protocol included
in SMRT Link, version 9.0.0, were used to detect base modifications and sequence motifs.
The genomic sequence was uploaded into Rapid Annotation using Subsystem Technology
for genome annotation. Functions of the predicted protein-coding genes were then anno-
tated via comparisons with the NCBI-NR and COG databases. Functional gene categories
were obtained by searching the Mycobrowser website (https://mycobrowser.epfl.ch/genes,
accessed on 12 August 2021).

https://mycobrowser.epfl.ch/genes


Antibiotics 2021, 10, 1323 10 of 12

4.5. Hypoxia Survival Experiments

BCG strains were cultured in 7H9 media to OD600~0.5. Cultures were inoculated
at 1 × 106 CFU/mL in anaerobic bottles and tightly sealed. The headspace ratio of the
samples was 0.5, as defined by the latent Wayne model [30], and methylene blue (1.5 mg/L)
was used as an indicator of reduced oxygen tension. All samples were prepared in triplicate.
The cultures were collected when the indicator turned from blue to colorless. Because the
OD600 reached 0.2 when the indicator became colorless, we used samples grown aerobically
to an OD600 of 0.2 as controls.

4.6. RNA Isolation and Quantitative Real-Time PCR

Mycobacterial cells were collected by centrifugation at 12,000× g, and bacterial pellets
were resuspended in TRIzol reagent (Invitrogen, Carlsbad, CA, USA). RNA was then
purified following the manufacturer’s instructions. cDNA was synthesized using 5× All-In
One RT MasterMix (ABM, Richmond, BC, Canada). The EvaGreen 2× qPCR Master Mix
(ABM) was used for quantitative real-time PCR in a Bio-Rad CFX Connect Real-Time
System. The amplification conditions were set as follows: initial denaturation at 95 ◦C for
3 min; then, 40 cycles of 95 ◦C for 20 s, 60 ◦C for 20 s, 72 ◦C for 20 s, ending with a melting
curve step of 65 ◦C to 95 ◦C. The BCG RNA polymerase sigma factor, sigA, was used as a
control to normalize gene expression. The 2–∆∆CT method [41] was used to calculate the
relative mycobacterial gene expression. Table S4 lists the qRT-PCR primers.

4.7. Statistical Analysis

The results were those of three biological replicates. Statistical analyses were per-
formed using unpaired two-tailed t-tests in GraphPad Prism 6 or Microsoft Excel. ** p < 0.01
and * p < 0.05.

5. Conclusions

In summary, we explored the biological functions of the MTase, HsdM, in BCG and
showed that deleting hsdM decreased mycobacterial susceptibility to INH and increased
mycobacterial survival under hypoxia in BCG. Using SMRT sequencing, we identified
219 HsdM-methylated genes, including trcR, a regulator in mycobacterial latency and
reactivation. Our study indicated that HsdM methylase genes alter the corresponding
gene transcription and, thereby, alter the cellular redox status, resulting in mycobacterial
susceptibility to INH. Our work provides insights into the relationship between DNA
methylation and antibiotic susceptibility. Further studies are necessary to confirm whether
the observed phenotypes related to HsdM are not just restricted to the used BCG model
organism, but also to other M. bovis BCG and to virulent M. tuberculosis strains.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/antibiotics10111323/s1, Figure S1: The MIC of INH on microplates in BCG, ∆hsdM and
pMV361-hsdM/∆hsdM, Table S1: Methylated HsdM substrates: modification sites located in the gene,
Table S2: Methylated HsdM substrates: modification sites located upstream of the gene, Table S3:
HsdM-methylated substrates involved in intermediary metabolism and the respiration pathway,
Table S4: Primers used in this study.
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