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Targeted plasma proteomics reveals
upregulation of distinct inflammatory
pathways in people living with HIV

Nadira Vadaq,1,2,6,* Lisa van de Wijer,1 Louise E. van Eekeren,1 Hans Koenen,3 Quirijn de Mast,1

Leo A.B. Joosten,1,4 Mihai G. Netea,1,5 Vasiliki Matzaraki,1 and André J.A.M. van der Ven1,*
1Department of Internal
Medicine, Radboudumc
Center for Infectious
Diseases, Radboud Institute
SUMMARY

Despite antiretroviral therapy (ART), people living with HIV (PLHIV) display
persistent inflammation leading to non-AIDS-related co-morbidities. To better
understand underlyingmechanisms, we compared targeted plasma inflammatory
protein concentration (n = 92) between a cohort of 192 virally suppressed PLHIV,
who were followed-up for five years, and 416 healthy controls (HC). Findings
were validated in an independent cohort of 649 virally suppressed PLHIV and
98 HC. Compared to HC, PLHIV exhibited distinctively upregulated inflammatory
proteins, including mucosal defense chemokines, CCR5 and CXCR3 ligands, and
growth factors. Unsupervised clustering of inflammatory proteins clearly differ-
entiated PLHIVwith low (n = 123) and high inflammation (n = 65), the latter having
a 3.4 relative risk (95% confidence interval 1.2–9.8) to develop malignancies and
trend for cardiovascular events during a 5-year follow-up. The best protein pre-
dictors discriminating the two inflammatory endotypes were PD-L1, VEGFA,
LAP TGF b-1, and TNFRSF9. Our data provide insights into co-morbidities associ-
ated inflammatory changes in PLHIV on long-term ART.
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INTRODUCTION

Combination antiretroviral therapy (cART) has dramatically increased the life expectancy of people living

with HIV (PLHIV). Still, PLHIV have a higher risk of developing non-AIDS-related comorbidities, such as car-

diovascular diseases (CVD) and malignancies than uninfected peers (Antiretroviral Therapy Cohort, 2017;

Marcus et al., 2020). Persistent inflammation, possibly induced by low-level viremia, cART toxicity, co-infec-

tions, microbial dysbiosis, and translocation (Brenchley et al., 2006; Dinh et al., 2015; Gianella and Letendre,

2016; Llibre et al., 2012; van der Heijden et al., 2021), have been reported to contribute to the development

of these long-term complications (Borges Á et al., 2013; Breen et al., 2011; Hunt et al., 2016). Increased con-

centrations of circulating inflammation markers, such as high-sensitivity C-reactive-protein (hsCRP),

interleukin-6 (IL-6), tumor necrosis factor (TNF-a), and immune activation markers, including soluble (s)

CD14 and sCD163 have been reported in virally suppressed PLHIV (Bastard et al., 2015; Hunt et al.,

2016; Neuhaus et al., 2010; Novelli et al., 2020; van der Heijden et al., 2021).

Assessment of the profile of plasma inflammatory proteins allows the study of complex biological pathways

that may lead to the identification of novel therapeutic targets and disease biomarkers. Previous studies

that assessed plasma protein profiles were limited by small sample size and/or lack of a proper validation

cohort (Babu et al., 2019a, 2019b; deFilippi et al., 2020; Lemma et al., 2020; Sperk et al., 2018; Vos et al.,

2021). In addition, other studies included only patients with central obesity and insulin resistance using sta-

tins (deFilippi et al., 2020) or children with HIV infection (Lemma et al., 2020).

In the present study, we identified signatures of 92 inflammation-related plasma proteins in virally sup-

pressed PLHIV (n = 841) and compared them to healthy controls (HC) (n = 514). Using a discovery

cohort and an independent validation cohort, we found mostly upregulation of plasma inflammatory

protein concentrations in PLHIV compared to HC. Furthermore, stratification of PLHIV based on the

inflammatory proteome revealed two distinct clusters, one with a high- and the other with a low-inflam-

mation profile.
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RESULTS

Characteristics of the study population

The discovery cohort consisted of 192 PLHIV and 416 HC that passed the quality control (QC) procedures

(Table 1). Most (178/192 [93%]) of PLHIV were males, with a median (IQR) age of 52.4(13.3) years. PLHIV had

median (IQR) CD4+ counts of 660 (330) cells/mL and were on ART for a median (IQR) 6.6 (7.2) years. Healthy

controls were more often female (214/416 [51%], pvalue<0.0001), younger (median [IQR] age 23 [5] years,

pvalue<0.0001), and leaner (median [IQR] BMI 22.3 [3.5] kg/m2, pvalue<0.0001) compared to PLHIV.

In the validation cohort, samples of 649 PLHIV and 98 HC passed the QC procedures (Table 2). PLHIV were

slightly older than controls (median [IQR] age of 53 [15] years in PLHIV versus 49.5 [20.7] years in HC,

pvalue = 0.001), and, although both groups predominantly consisted of males, the number of males was

higher in the PLHIV group compared to the HC group (592/649 [91%] of PLHIV versus 74/98 [76%] of HC,

pvalue<0.0001). All PLHIV in the validation cohort were on stable ART for a median (IQR) of 10 (9) years,

with median (IQR) CD4+ counts of 700 (400) cells/uL.
Age, sex, and BMI influence plasma inflammatory protein concentrations in PLHIV and HC

We first explore the relationship among plasma inflammatory proteins in PLHIV and HC from the discov-

ery cohort and found general strong positive correlations among plasma inflammatory proteins (Fig-

ure S3). The strongest associations were found among intracellular proteins (4E-BP1, STAMBP, AXIN1,

ST1A1, SIRT2, and CASP8), chemokines associated with neutrophil (CXCL1, CXCL5, and CXCL6) and

monocytes chemotaxis (MCP-2 and MCP4), natural killer cell surface receptor (CD244), and immune me-

diators related with T and B cells development and activation (IL7, CXCL11, CD40/TNRSF5 and

TNFSF14).

Next, we examined the influence of host factors on plasma inflammatory protein concentrations in PLHIV

and HC from the discovery cohort. Advancing age was associated with an overall higher concentration of

inflammatory proteins in both groups (Figure S4). Female sex was significantly associated with reduced in-

flammatory proteins in HC, but not in PLHIV. The latter may have resulted from insufficient statistical power

because of the small number of females in PLHIV (9%). BMI was positively associated with increased plasma

inflammatory proteins concentrations, but to a lesser extent than age (Figure S4).
Increased plasma inflammatory protein concentrations in PLHIV

To compare the inflammatory profile between virally suppressed PLHIV and HC, we first performed differ-

ential expression (DE) analysis using 78 circulating inflammatory proteins measurements from the discovery

cohort of PLHIV (n = 192) and HC (n = 416). Subsequently, we validated the significant results from the dis-

covery cohort using a second independent cohort of PLHIV (n = 649) and HC (n = 98). The analytical process

of DE plasma inflammatory protein analysis is depicted in Figure 1A.

First, we performed an unsupervised hierarchical clustering analysis using 78 circulating inflammatory

proteins measurements from the discovery cohort (Figure 1B). We observed a distinct separation be-

tween the majority of PLHIV and HC individuals, suggesting an overall difference in their inflammatory

profiles. This observation was confirmed through PCA showing separate clusters between PLHIV and

HC (Figure 1C). We next performed DE analysis to assess differences in individual plasma inflammatory

protein concentrations between PLHIV and HC from the discovery cohort. Given the effect of age and

sex on the inflammatory protein concentrations (Figure S4), DE analysis was performed using a linear

model with age and sex as covariates. The results of the DE analysis are presented in a volcano plot (Fig-

ure 1D). In total, 64 out of 78 proteins concentrations (82%) were differentially expressed (FDR<0.05) be-

tween PLHIV and HC, and most of the statistically significant proteins were upregulated in PLHIV. We

found similar results when DE analysis between PLHIV and HC was performed with age, sex, BMI, and

smoking status as covariates (Figure S5).

We confirmed our findings in the independent validation cohort of 649 PLHIV and 98 HC (Figure S1). In the

validation cohort, PCA using relative concentrations of 62 proteins showed a different inflammatory profile

between PLHIV and HC (Figure 2A). DE analysis in the validation cohort identified 40/62 (64.5%) DEP be-

tween PLHIV and HC with pvalue<0.05 (Figure S6), of which 29/40 (72.5%) proteins were upregulated in

both the discovery and validation cohort (Figure 2B and Table S1).
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Table 1. General characteristics of the discovery cohort

Characteristic PLHIV (n = 192) HC (n = 416) P-value

Age, years 52.4 (13.3) 23 (5.0) <0.0001

Sex, female, n/N (%) 14/192 (7.3) 214/416 (51.4) <0.0001

BMI, kg/m2 24.1 (3.9) 22.3 (3.5) <0.0001

Time since HIV diagnosis, years 8.4 (8.5) – –

Time on ART, years 6.6 (7.2) – –

Nadir CD4+ cell count, cells/ml 250 (212.5) – –

Latest CD4+ count, cells/ml 660 (330) – –

Zenith HIV-RNA, copies/mL 100,000 (335,591) – –

Latest HIV-RNA, copies/mL 0 (40)

Ratio CD4/CD8 0.7 (0.5) – –

HIV RNA blips 1 yeara 5/192 (2.6) – –

HIV RNA blips 5 yearsa 33/192 (17.3) – –

ART classes, n/N (%)

NNRTI 57/192 (29.7) – –

PI 28/192 (14.6) – –

INSTI 128/192 (66.7) – –

Co-medication, n/N (%)

Cholesterol lowering drugs 51/192 (26.6) – –

Antihypertensive drugs 45/192 (23.4) – –

Antidiabetic drugs 9/192 (4.7) – –

Anti-inflammatory drugs 26/192 (13.5) – –

Anticoagulant 24/192 (12.5) – –

Vitamin D 44/192 (22.9) – –

Psychopharmaca 23/192 (12.0) – –

Co-morbidities, n/N (%)

Cardiovascular disease 18/192 (9.4) – –

Hypertension 52/192 (27.2)

Endocrine and metabolic disease 70/192 (36.5) – –

Respiratory disease 27/192 (14.1) – –

Gastrointestinal disease 23/192 (12.0) – –

Psychiatric conditions 47/192 (24.5) – –

Previously diagnosed malignancies 30/192 (15.7) – –

Fracture and bone disease 34/192 (17.8) – –

Lipodystrophy 30/192 (15.7) – –

Co-morbidities (5-year follow-up), n/N (%)

Cardiovascular disease 18/192 (9.4) – –

Hypertension 25/192 (13.1) – –

Malignancies 14/192 (7.3) – –

Fracture and bone disease 29/192 (15.2) – –

Active smoking, n/N (%) 55/192 (28.6) 57/416 (13.7) <0.0001

Data are depicted as median (IQR) unless stated otherwise. Data were analyzed using Mann-Whitney U or c2 (or Fisher’s

exact) where applicable.

PLHIV, people with HIV; HC, healthy controls; BMI, body mass index; ART, antiretroviral therapy; INSTI, integrase inhibitor;

NNRTI, non-nucleoside reverse transcriptase inhibitor; PI, protease inhibitor.
aViral blips defined as HIV-RNA >50 and <200 copies/mL preceded and followed by HIV-RNA %50 copies/mL in the 1 or 5

years before visit.
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Table 2. General characteristics of the validation cohort

Characteristic PLHIV (n = 649) HC (n = 98) P-value

Age, years 53 (15) 49.5 (20.8) 0.001

Sex, female, n/N (%) 57/649 (8.7) 24/98 (24.5) <0.0001

BMI, kg/m2 24.9 (4.8) 24.85 (3.6) 0.343

Time since HIV diagnosis, years 12 (12) – –

Time on ART, years 10 (9) – –

Latest CD4+ count, cells/ml, 700 (400) – –

Latest HIV-RNA, copies/mL 0 (2) – –

Data are depicted asmedian (IQR) unless stated otherwise. Data were analyzed usingMann-Whitney U or c2 (or Fisher’s exact

test) where applicable.

PLHIV, people with HIV; HC, healthy controls; BMI, body mass index; ART, antiretroviral therapy.
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Finally, we analyzed whether the relative concentration of the validated differentially abundant plasma in-

flammatory proteins (n = 29) measured by Olink was associated with the absolute concentration of plasma

markers measured by ELISA. In general, DEP were positively associated with acute-phase proteins (TNF-a

and hsCRP), adipokines (resistin), cytokines (IL-6, IL-1Ra, IL-18BP, IL-18, and IL-10), andmonocyte activation

markers (sCD14 and sCD163) (FDR<0.05) (Figure 2C). As expected, relative concentrations of IL-18 and

TNF-a from the DE analysis significantly correlated with the absolute concentrations of IL-18 and TNF-a

(FDR<0.005). In addition, hepatocyte growth factor (HGF) showed a significant positive correlation with

other adipokines, such as resistin and leptin, and a negative correlation with adiponectin (Figure 2C).

Network analysis reveals upregulation of specific inflammatory pathways in PLHIV

We further investigated the inter-relationship among the 29 significantly upregulated proteins in PLHIV

compared to HC identified in the discovery and validation cohort. For this, we performed network analysis

using relative concentrations of the 29 proteins from the PLHIV of the discovery cohort. Moderate to strong

correlations (Spearman’s Rho>0.3) are displayed in Figure 3A. Overall, significant positive correlations

were observed among DEP (FDR<0.05). Protein-protein interactions among DEP were further visualized

by dendrogram based on hierarchical clustering analysis (Figure 3B). Four different clusters of proteins

that shared similar functions were identified through the network and hierarchical clustering analysis

(Figures 3A and 3B).

The first cluster consisted of the growth regulator oncostatin M (OSM) and several growth factors, including

HGF, vascular endothelial growth factor A (VEGFA), transforming growth factor a (TGF-a). VEGFA and

TGF-a were the most central proteins in the network analysis, indicating that these proteins showed the

most pairwise correlations with other proteins (Figure 3A). OSM has been shown to stimulate the accumu-

lation of immature and mature T-cells in lymph nodes, restoring immune responsiveness in immune-defi-

cient mice (Clegg et al., 1996). Furthermore, OSM is known to play a role in the initiation and progression of

Kaposi sarcoma (Miles et al., 1992; Nair et al., 1992), a common Herpes virus 8 related opportunistic cancer

in PLHIV.

Furthermore, the second cluster consisted of the mucosal defense chemokines (chemokine (C–C motif)

ligand 11 (CCL11), monocyte chemotactic protein 4 (MCP-4/CCL13), CCL20, CCL25, and CCL28)) and

cystatin-D (CST5). Of interest, the concentrations of the three mucosal defense chemokines, CCL11,

CCL20, and CCL25, were significantly associated with the absolute concentrations of IFABP, a marker of

gut wall integrity (Figure 2C). In addition, CCL28 was associated with sCD14, a marker of monocyte activa-

tion (Figure 2C).

The third cluster consisted of CCR5 ligands (CCL3 and CCL4), C-X-C Motif Chemokine Receptor 3 (CXCR3)

ligand chemokines (Chemokine (C-X-C motif) ligand 9 (CXCL9), CXCL10, CXCL11), MCP-2, cluster of differ-

entiation 8A (CD8A), and TNF-a. CCR5 is known as the main HIV co-receptor, and we found a significant

negative correlation between CCL4 concentrations with CCR5 expression of different CD4+ (total CD4+

cells, mTreg, and total pool effector memory cells) and CD8+ cell subsets (total CD8+ cells, total pool

effector memory cells, and effector memory cells) (Figure 3C).
4 iScience 25, 105089, October 21, 2022



Figure 1. Differences of plasma inflammatory protein concentration between PLHIV and HC

(A) Analytical process of DE plasma inflammatory protein analysis using a discovery and validation cohort, each consisting of PLHIV and HC. See also

Figures S1 and S2.

(B) Unsupervised k-means clustering of individuals from the discovery cohort of PLHIV (n = 188) and HC (n = 396) with complete demographic information

using the relative concentration of plasma inflammatory proteins (n = 78). Data are shown as scaled log2 NPX values. The color code indicates the relative

concentration of proteins across the samples of the two groups. Red and green colors indicate high and low protein concentrations respectively. Age, sex,

BMI, and cohort group are presented on a color-coded scale.

(C) PCA of plasma inflammatory proteins (n = 78) from the discovery cohort of PLHIV (n = 192) and HC (n = 411) using the first two principal components. The

ellipses were centered based on the median of PC1 and PC2 for each group (PLHIV and HC). Protein distributions across PC1 and PC2 for each group are

presented in marginal histogram plots. The median differences of the protein distribution across PC1 or PC2 between PLHIV and HC were calculated by the

Mann-Whitney-U test. ***p-value<0.0001.
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Figure 1. Continued

(D) Volcano plot of DE of proteins (n = 78) between PLHIV (n = 192) and HC (n = 404) from the discovery cohort. The analysis was performed using a linear

regression model with age and sex as covariates. Fold change in the xaxis refers to the difference in the mean of log2 NPX values between PLHIV and HC.

Only proteins that show FDR<0.05 (-log10 pvalue > 1.3) and log2 fold change >0.5 were annotated. Log2 fold change value of 1 means twice as high of

relative protein concentration. See also Figure S5.
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The last cluster consisted of an assortment of cytokine (IL-18), chemokine (CCL23), cluster of differentiation

proteins (CD5, CD6, CD244, and PD-L1/CD274), eukaryotic translation initiation factor 4E-binding protein 1

(4E-BP1), and adenosin deaminase (ADA). Most of these proteins are known to play an important role in

T cell activation, differentiation, and chemotaxis for T cell migration. Other members of this cluster were

tumor necrosis factor superfamily (tumor necrosis factor superfamily member 14 (TNFSF14), and

TWEAK/TNFSF12) and tumor necrosis factor receptor superfamily members (CD40). TNFSF14 is known

as herpes virus entry mediator ligand (Montgomery et al., 1996), also for cytomegalovirus, a common

co-pathogen in PLHIV.

To identify the cellular origin of our differentially expressed proteins (n = 29), we used single-cell transcrip-

tomic publicly available data from the Human Proteomic Atlas (HPA) project (Karlsson et al., 2021). HPA

used consensus transcriptomics data in 76 single cell types to classify genes according to their single-

cell type-specific category. We found innate (dendritic cells, macrophages, langerhans cells, natural killer

(NK) cells) and adaptive immune cells (T cells) among cells that producemost of our differentially expressed

proteins (Figure S7).

Lastly, given that many of the identified proteins are primarily released by immune cells modulating sub-

sequently their proliferation and migration, we investigated whether the DEP correlated with the propor-

tion of circulating immune cells. The strongest association was found for OSM, which was positively and

negatively associated with neutrophils and lymphocytes percentages respectively (Figure 3D). These find-

ings are consistent with a previous study showing that OSM is primarily expressed in neutrophils and stored

in neutrophils granules in the circulation (Uriarte et al., 2008). In addition, increased proportions of Th2, and

Th17 cells were associated with higher HGF, MCP-2, MCP-4, OSM, TNFSF14, and VEGFA. A significant and

positive correlation was also found between NK bright cells proportion with CXCL11, which is a chemo-

tactic factor for activated T-cells.

Unsupervised clustering of plasma inflammatory protein concentrations revealed two distinct clusters of

PLHIV with high and low inflammation profile.

To assess the heterogeneity of plasma inflammatory proteins concentrations (n = 74) among PLHIV, we per-

formed unsupervised hierarchical clustering analysis using the proteinmeasurements (n = 74) of PLHIV from

the discovery cohort. We identified two distinct clusters of PLHIV, one with low and one with a high inflam-

mation profile (Figure 4A). Seventy-one out of 74 plasma inflammatory proteins were significantly upregu-

lated in the high inflammation group (FDR<0.05) compared to the low inflammation group. In addition,

PCA using the first two principal components showed a limited overlap between the two clusters of

PLHIV and HC, with individuals from the low inflammation group showing an inflammatory profile between

HC and the high inflammation group (Figure 4B). Furthermore, the absolute concentrations of plasma in-

flammatory markers were significantly higher in the high inflammation group compared to the low inflam-

mation group, including acute phase proteins (TNF-a, hsCRP and AAT), adipokines (leptin and resistin), cy-

tokines (IL-6, IL-1Ra, IL-18BP, IL-18, and IL-10), and monocyte activation markers (sCD14 and sCD163)

(Figure 4C).

PLHIV of the high inflammation group were significantly older (median 55.4 years) compared to the low

inflammation group (median 50.6 years) (pvalue<0.05). Of note, the distinct inflammatory clusters found

within PLHIV was not explained by sex and BMI (Figure 4A), nor by HIV-related parameters, such as CD4

nadir and latest, CD4/CD8 ratio, HIV RNA zenith and latest value, viral blips, HIV and ART duration (Fig-

ure S8). Of importance, participants in the high inflammation group had more hypertension (pvalue<0.05)

and a trend for previously diagnosed malignancies than those in the low inflammation group (Figure 4D).

Compared to the low inflammation group, PLHIV in the high inflammation group used more anti-hyperten-

sion drugs (pvalue = 0.06) and less vitamin D at inclusion (Figure 4D). After inclusion, PLHIV from the dis-

covery cohort were followed-up and relevant medical events were noted. After a 5-year follow-up period,

we observed that PLHIV in high inflammation group developedmore malignancies (13.8 versus 4%; relative
6 iScience 25, 105089, October 21, 2022



Figure 2. Validation of differentially expressed proteins between PLHIV and HC

(A) PCA of plasma inflammatory proteins (n = 64) from the validation cohort of PLHIV (n = 98) and HC (n = 649) using the

first two principal components. The ellipses were centered based on the median of the PC1 and PC2 for each group

(PLHIV and HC). Protein distributions across PC1 and PC2 for each group are presented in marginal histogram plots. The

median differences of the protein distribution across PC1 or PC2 between PLHIV and HC were calculated by the Mann-

Whitney-U test. ***p-value<0.0001. See also Figure S6.

(B) Four-quadrant plot of the fold change of DEP (n = 29) in the discovery (xaxis) and validation cohort (yaxis). DE analysis

was performed using a linear regression model with age and sex as covariates. See also Table S1 and Figures S6 and S7.

(C) Heatmaps showing the correlations between the relative concentration of DEP (n = 29) and absolute concentration of

plasma inflammatory markers measured in PLHIV of the discovery cohort. The analysis was performed by linear regression

model using age and sex as covariates.
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risk (RR) 3.4; 95% confidence interval (CI) 1.2 to 9.8) and had a trend for more CVD events (12.3 versus 7.3%;

RR 1.7; 95% CI 0.6 to 4.2) compared to PLHIV in low inflammation group (Figure 4D). Being in the high

inflammation group was associated with an increased risk of malignancies even after controlling for age

and sex (pvalue<0.05; binomial logistic regression model using age and sex as covariates) (Figure 4D). De-

tails for the type of malignancy and CVD events seen during 5-year follow-up in high and low inflammation

group of PLHIV were described in Table S2.

Clear separation of the PLHIV into a low and high inflammation group was also observed in the validation

cohort, mirroring the heterogeneity of inflammatory protein concentrations in well-treated PLHIV
iScience 25, 105089, October 21, 2022 7



Figure 3. Dysregulation of distinct inflammatory pathways in PLHIV

(A) Results from the network analysis using the DEP (n = 29) between PLHIV and HC. Network analysis was performed by calculating the spearman’s rank

correlation between pairs of proteins measured in PLHIV of the discovery cohort (n = 192), and only those pairs with rhoR0.3 are presented. Proteins are

represented as nodes, line colors connecting the nodes represent the degree of correlation for protein linkage; the darker the color, the stronger the

correlation. Nodes color represents the centrality (importance) of protein based on nodes closeness.

(B) Dendrogram of the DEP (n = 29) between PLHIV and HC.
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Figure 3. Continued

(C) Heatmap showing the correlations between the two CCR5 ligands (CCL3 and CCL4) and CCR5 expression measured in a different subset of immune cells

in PLHIV of the discovery cohort. The correlations were calculated using a linear regression model with age and sex as covariates.

(D) Heatmap showing the correlations between DEP (n = 29) and immunophenotyping data measured in PLHIV of the discovery cohort. The color-coding key

depicts the beta estimate calculated by a linear regression model with age and sex as covariates. Significance level (FDR corrected) was defined as

follows: <0.05(*), <0.005(**), and <0.0001(***).
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(Figure S9). Sixty-nine proteins were upregulated in the high inflammation group compared to the low

inflammation group from the validation cohort, of which 67 proteins overlapped with those found in the

discovery cohort (Table S3 and Figure 4E). The range of fold change of these 67 DEP identified in the

high versus low inflammation group of PLHIV was comparable to the range of fold change of 29 DEP iden-

tified in PLHIV versus HC (Figure 4E). Next, to identify the best protein predictors discriminating the high

and low inflammation groups, we applied a random forest classification model in PLHIV from the discovery

and validation cohort. The model was built using DEP and host demographic factors (age, sex, and BMI) as

the input predictors. The predictors were ordered according to the mean decrease accuracy values, rep-

resenting the importance of variables on distinguishing PLHIV of the high and low inflammation clusters.

Out of the ten top-ranked predictors, three proteins were overlapped between the discovery and valida-

tion cohort (Figure 4F). These proteins include PD-L1, VEGFA, and latency-associated peptide transform-

ing growth factor beta-1 (Lap TGF b-1). The classification model performance was tested by calculating the

area under the curve (AUC) of the receiver operating characteristic (ROC) curve, yielding an AUC value of

about 99% in train and test sets of the discovery and validation cohorts, respectively (Figure 4G).
Association of plasma inflammatory proteins with HIV-related parameters and smoking

Many factors may influence inflammation, such as HIV-related clinical parameters, comorbidities, co-medi-

cation, and smoking. We, therefore, correlated the plasma inflammatory proteins (n = 74) from PLHIV of the

discovery cohort with HIV-related parameters (CD4 nadir and latest, CD4/CD8 ratio, HIV RNA zenith and

latest, viral blips, HIV and ART duration, and HIVmedication), HIV reservoirs, comorbidities, co-medication,

and history of smoking in PLHIV from the discovery cohort.

First of all, we found strong positive associations between fibroblast growth factor 23 (FGF-23) and IL-6 con-

centrations with HIV duration (pvalue<0.005) (Figure S10A). Moreover, apart from higher FGF-23, CCL19,

and OSM (FDR<0.05), PLHIV with a history of CVD also had higher signaling lymphocytic activation mole-

cule family member 1 (SLAMF1) and HGF (pvalue<0.05) compared to those that were not having a history of

CVD. Circulating concentrations of CST5, an early biomarker for traumatic brain injury (Hill et al., 2017),

were significantly increased in PLHIV with psychiatric conditions (pvalue<0.005) (Figure S10B). Regarding

co-medication, participants using antihypertensive and anticoagulant drugs had increased concentrations

of FGF-23, CCL19, OSM, and HGF (pvalue<0.05) (Figure S10C). Of importance, increased concentrations of

several inflammatory proteins, including OSM and SLAMF1 (pvalue<0.005), as well as FGF-23, HGF, and

CCL19 (pvalue<0.05), were significantly associated with a higher incidence of CVD during a 5-year

follow-up period. In addition, tumor necrosis factor receptor superfamily member 9 (TNFRSF9) was signif-

icantly associated with the development of malignancies during a 5-year follow-up period (pvalue<0.005)

(Figure S10D). Furthermore, we observed comparable plasma inflammatory profiles between different ART

groups (INSTI, NNRTI, and PI), as shown by PCA using the protein measurements of 74 inflammatory pro-

teins (Figure S10E). This observation is in agreement with a previous study in well-controlled PLHIV with

dyslipidemia (deFilippi et al., 2020).

Finally, we investigated the influence of smoking on plasma inflammatory proteins in PLHIV using our discovery

cohort (Figures 5A and 5B). PLHIV were grouped based on smoking history (non-smokers, currently active

smokers, passive smokers, and smoked in the past) and duration of smoking (those that do not smoke/with

<1, 11–20, 6–10, and >20 years of active smoking). Non-smokers had a significantly higher stem cell factor

(SCF) (FDR<0.005) and IL-12B (FDR<0.05) compared to a currently active smoker. CXCL6 and IL-12B concentra-

tions were significantly higher in those who smoked in the past compared to the currently active smokers

(FDR<0.05). In addition, matrix metallopeptidase 1 (MMP-1) and OSM concentrations were significantly

increased in participants with 11–20 years of smoking or those who smoked for more than 20 years compared

to those who never smoked or smoked for less than one year, respectively (FDR<0.05) (Figure 5A). Consistent

with previous results, SCF concentrations were lower in participants with 6–10 years andmore than 20 years his-

tory of smoking compared to those who never smoked or smoked for less than one year (FDR<0.05) (Figure 5A).
iScience 25, 105089, October 21, 2022 9



Figure 4. Clustering analysis of plasma inflammatory profiles and the relation with clinical events during 5-year follow-up in PLHIV

(A) Unsupervised k-means clustering of PLHIV using the plasma inflammatory proteins (n = 74) measured in PLHIV of the discovery cohort (n = 188). Data are

shown as scaled log2 NPX values. The color code indicates the relative concentration of proteins across the samples of the two clusters. Red and green colors

indicate high and low protein concentrations, respectively. Age, sex, BMI are presented on a color-coded scale. See also Figure S9.

(B) PCA of plasma inflammatory proteins (n = 74) measured in the discovery cohort using the first two principal components. Each dot represent participant

from the HC (n = 415), and two clusters of PLHIV (low (n = 123) and high inflammation group (n = 65)). The ellipses were centered based on the median of the

PC1 and PC2 for each group (HC, low, and high inflammation group). Protein distributions across PC1 and PC2 for each group are presented in marginal

histogram plots. The median differences of the protein distribution across PC1 or PC2 between PLHIV and HC were calculated by Mann-Whitney-U test.

***p-value<0.0001.

(C) Heatmap presenting FDR corrected pvalues of the comparison between the absolute concentration of plasma inflammatory markers in high inflammation

group versus low inflammation group. The analysis was performed by linear regression model using age and sex as covariates.

(D) Barplot showing the frequency (yaxis) of comorbidities and co-medication at the baseline, and a 5-year follow-up clinical events in two clusters of PLHIV of

the discovery cohort. The analysis was performed using the binomial logistic regression model using age and sex as covariates. *p-value<0.05. See also

Figure S8 and Table S2.
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Figure 4. Continued

(E) Four-quadrant plot showing the fold change of DEP (n = 67) between high versus low inflammation group in PLHIV of the discovery (xaxis) and validation

cohort (yaxis). Comparison of relative concentration of proteins between high and low inflammation group was performed using a linear regression model

with age and sex as covariates. See also Table S3 and Figure S9.

(F) Mean decrease accuracy of predictors for the high and low inflammatory endotypes in PLHIV of the discovery and validation cohort. Prediction model was

performed using random forests classification model using demographic factors (age, sex, and BMI) and concentration of DEP between the high and low

inflammation group (discovery [n = 71] or validation cohort [n = 69]) as predictors. Only the top 10 predictors based on their respective mean decrease

accuracy values were visualized.

(G) Receiver operating characteristic (ROC) analysis of the model’s performance in the train and validation sets of the discovery and validation cohort.
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PD-L1 was positively associated with the number of cigarettes smoked per day (FDR<0.05) (Figure 5B). Alto-

gether, these findings corroborate the pro-inflammatory effect of cigarette smoking on the concentrations of

a limited number of proteins (n = 6) in PLHIV. Given the limited influence of smoking on plasma inflammatory

proteins, the DE analysis between PLHIV and HC showed comparable results before and after adjustment for

smoking status in the discovery cohort (Figure S5).
DISCUSSION

We profiled 92 circulating inflammatory proteins in the plasma of 192 virally suppressed PLHIV and 416 HC

of European ancestry and further validated our findings in a second independent cohort. This is the first

study that comprehensively assessed the inflammatory profile in PLHIV using a broad-scale proteomic

approach. Previous studies identified only a limited number of inflammatory biomarkers in PLHIV. For

example, nine inflammationmarkers were found to be differentially expressed in a study of 185 well-treated

PLHIV and 104 HC of South African ancestry, with only three proteins (CCL25, PD-L1, and CXCL10) being in

agreement with our findings (FDR<0.05, same direction) (Vos et al., 2021). Furthermore, two studies by

Babu et al. in 53 PLHIV and 41 HC and 22 PLHIV and matched HC reported changes in 11 (pvalue<0.01)

and 3 (FDR <0.1) proteins in well-treated PLHIV compared to HC respectively. Only five (ADA, CD8A,

4E-BP1, CCL23, and CST5) and one (CD8A) protein were similar to our findings respectively (Babu et al.,

2019a, 2019b). Another study using a cohort of PLHIV with dyslipidemia (n = 89) and HC (n = 46) also showed

little overlap with our results, with only four inflammatory proteins (4E-BP1, ADA, TNFSF14, and CD40)

overlapping with our results (FDR<0.05, same direction) (deFilippi et al., 2020). Of note, a study using 43

children with HIV infection and matched controls showed 15 proteins being downregulated in children

with HIV infection compared to HC (FDR<0.01), with none of the proteins being identified in a similar di-

rection compared to our study (Lemma et al., 2020). These differences between studies can be attributed

to different cohort characteristics, especially the ethnicities, number of participants, proteins tested, and

analysis strategies. Notably, one major disadvantage of the earlier studies is the small number of PLHIV

and healthy controls studied, leading to a limited statistical power to identify true changes. In our study,

we included a large number of subjects, confirmed the pro-inflammatory status of the PLHIV in the discov-

ery cohort (van der Heijden et al., 2021), and found that the upregulated DEP in PLHIV strongly associated

with the absolute concentration of plasma inflammatory markers, such as TNF-a, IL-6, and monocyte acti-

vation markers (sCD14 and sCD163), which have been previously described as predictors of CVD and mor-

tality in PLHIV (McKibben et al., 2015; Sandler et al., 2011).

Most of our DEP were derived from innate immune cells (Figure S7), corroborating the functional role of circu-

lating innate immune cells on the persistent inflammation in PLHIV on ART (Altfeld et al., 2011; Altfeld and

Gale, 2015; Rustagi and Gale, 2014). We previously reported increased monocyte-derived cytokine respon-

siveness in the same cohort of PLHIV (van der Heijden et al., 2021). Among DEP identified in this study are

mucosal defense chemokines (CCL11, MCP-4, CCL20, CCL25, and CCL28) which are upregulated in PLHIV.

Changes in mucosal defense chemokines, which are pivotal to maintain intestinal barrier function (Kulkarni

et al., 2017; Sokol and Luster, 2015)may be a consequenceor a result of thedisruption of the intestinal immune

system. The association of the intestinal immune system and HIV infection has great interest, and the assess-

ment of the intestinal mucosal immune system has provided novel directions for therapeutic interventions

that modify the consequences of acute HIV infection (Brenchley and Douek, 2008). Also, chronic microbial

translocation in well-treated PLHIV because of intestinal damage has been linked with persistent immune

activation (Brenchley et al., 2006; Dinh et al., 2015; van der Heijden et al., 2021). Given the importance of

the intestinal mucosal immune system in HIV infection, we found a strong association between an inflamma-

torymarker for the intestinal lymphocytes recruitment, CCL25, and amarker for intestinal barrier function, that

is, IFABP, indicating a role of the intestinal barrier in the inflammatory status of PLHIV.
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Figure 5. Association between plasma inflammatory proteins and smoking history in PLHIV

(A) (Upper) Violin boxplot showing the comparison CXCL6, IL-12B, and SCF in different smoking history categories in PLHIV of the discovery cohort. (Lower)

Violin boxplot showing the comparison MMP-1, OSM, and SCF in different smoking duration categories in PLHIV of the discovery cohort. The analysis was

performed by linear regression model using age and sex as covariates. In all boxplots, the in-box line defines the median value, hinges depict 25th and 75th

percentiles and whiskers extend to G1.5 interquartile ranges; each dot indicates an individual participant. Significance level was set by FDR<0.05(*),

<0.005(**), and <0.0001(***).

(B) Scatterplot showing an association between PDL-1 and number of cigarettes smoked per day in PLHIV; each dot indicates an individual participant.
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Furthermore, CCL3 and CCL4 chemokines that were upregulated in PLHIV are known to be ligands for

CCR5, the main HIV co-receptor. We observed that CCL4 was negatively correlated with CCR5 expression

in several subsets of CD4+ and CD8+ cells, suggesting protective effects against cell-to-cell HIV transmis-

sion (Figure 3C). It has been shown that the dose-dependent administration of the recombinant CCL3 and

CCL4 inhibit different strains of HIV-1, and HIV-2 as well as simian immunodeficiency virus (SIV) in vitro (Coc-

chi et al., 1995). Given that CCR5 is predominantly found in CXCR3 expressing cells, we assumed that the

upregulation of CXCR3 ligands in PLHIV (CXCL9, CXCL10, and CXCL11) might facilitate the recruitment of

T cells and enhance virus propagation or development on CVDs (Li and Ley, 2015). Of interest, CXCL9,

CXCL10, and CXCL11 have been reported to predict the progression of HIV disease in the primary HIV

infection (Yin et al., 2019). Moreover, we identified growth factors and regulator proteins (HGF, VEGFA,

TGF-a, and OSM) to be upregulated in PLHIV compared to HC. Higher concentrations of these proteins

seem to reflect alteration in the regulation of many important cellular processes in PLHIV.

To identify whether there are subgroups within the PLHIV based on their plasma inflammatory profile, we

performed unsupervised clustering using the discovery (nPLHIV = 188) and validation cohort (nPLHIV = 649).

PLHIV were clustered into two groups: those with a low and high inflammatory profile (Figure 4A). The high

inflammation group showed upregulation of 67 out of 74 proteins and increased absolute concentrations of

circulating inflammatory markers compared to the low inflammation group. The upregulation of almost all

inflammatory proteins may reflect a broad dysregulation of immune responses in the high inflammation

group as these proteins are involved in various inflammatory pathways. Upregulation of intracellular pro-

teins (4E-BP1, STAMBP, AXIN1, ST1A1, SIRT2, and CASP8) in the high inflammation group may suggest

a higher intracellular protein leakage and/or cell death in this group, given strong interrelations between

intracellular proteins with proteins involved in innate and adaptive immune response (Figure S3). Further-

more, the range of fold change of DEP in the high versus low inflammation group of PLHIV (Figure 4E) was

similar to the fold change in PLHIV versus HC (Figure 2B), suggesting a comparable level of dysregulation of

inflammation between these groups.

Compared to the low inflammation group, PLHIV in the high inflammation group had more hypertension at

baseline and a higher number of people developing various types of malignancies (Table S2) (RR 3.4; 95%

CI 1.2 to 9.8) and a trend of CVD (RR 1.7; 95% CI 0.6 to 4.2) during a 5-year follow-up period (Figure 4D). This

association appears to be independent of age, HIV-clinical parameters (CD4 nadir and latest, CD4/CD8

ratio, HIV RNA zenith and latest, viral blips, HIV and ART duration, and HIV medication), and other
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recognized pro-inflammatory risk factors (obesity and smoking status). Of note, although the high inflam-

mation group were older than those in the low inflammation group, age has not been observed as one of

the top ten predictors that separated the two inflammatory endotypes in both cohorts (discovery and vali-

dation), indicating that the differences in the inflammation levels may not be primarily attributed to the age

differences. Three proteins (PD-L1, VEGFA, and Lap TGFb-1) appeared to be the best predictors discrim-

inating the two inflammatory endotypes in the discovery and validation cohort (Figure 4F). PD-1 and PD-L1

inhibitors are well-known checkpoint anti-cancer drugs (Chen et al., 2016). TGF-b and VEGFA can induce

the expression of PD-L1 and its receptors (PD-1), respectively (Du et al., 2021; Song et al., 2014; Voron

et al., 2015), promoting immunosuppression duringmalignant transformation. Anti-cancer immunotherapy

targeting either one or a combination of PD-L1, TGFb or VEGF has demonstrated a synergistic anti-tumor

effect and is subjected to ongoing research (Ciardiello et al., 2020; Courau et al., 2016; Gulley et al., 2021;

Hack et al., 2020). The safety and efficacy of anti-PD1 or VEGF inhibitor therapy have been reported in

studies of HIV patients with different types of malignancies (Bari et al., 2019; Bender Ignacio et al., 2016;

Lavolé et al., 2018; Ostios-Garcia et al., 2018). In addition, TNFRSF9 showed the strongest association

with the development of malignancy during a 5-year follow-up period (Figure S10D) and was among the

top predictors discriminating the two inflammatory endotypes in PLHIV (Figure 4F). TNFRSF9 is an immune

costimulatory receptor expressed on activated T- and natural killer (NK) cells and has been proposed as a

new target for cancer immunotherapy. Prior studies have shown that utomilumab and urelumab, which are

TNFRSF9 agonistic antibodies, can deliver costimulatory signals, enhancing T-cell–mediated anti-tumor

activity in vitro and in vivo (reviewed in (Chester et al., 2018)).

Furthermore, FGF-23, OSM, CCL19, SLAMF1, and HGF consistently showed positive associations with CVD

events in PLHIV, both at baseline and during a 5-year follow-up (Figure S10), confirming the well-estab-

lished link of sustained inflammation in PLHIV under suppressive ART with an increased CVD risk (Freiberg

et al., 2013; Nordell et al., 2014). Previous studies have highlighted the relation of these proteins with the

pathophysiology (Cai et al., 2014; Kubin et al., 2011) and the incidence of CVD (Bell et al., 2016, 2018; Bie-

linski et al., 2017; Ferreira et al., 2019; Gruson et al., 2017; Ikeda et al., 2021; Ix Joachim et al., 2012; Paul

et al., 2021; Vázquez-Sánchez et al., 2021) in the general population and PLHIV (Atta et al., 2016; Domingo

et al., 2015; Garcı́a-Broncano et al., 2014). In addition, OSM receptor has been reported to be associated

with the presence of coronary calcium, independent from traditional atherosclerotic CVD risk, in PLHIV on

ART (Kolossváry et al., 2022). Collectively, these findings support previous reports that increased inflamma-

tion may follow or induce non-AIDS comorbidities, and further pinpoint PD-L1, VEGFA, LAP TGFb-1, and

TNFRSF9 as possible targets to decrease the risk for malignancies in well-treated PLHIV.

In conclusion, our study underscores the importance of targeting specific inflammatory pathways that are

upregulated in virally suppressed PLHIV compared to HC. Although upregulation of mucosal defense che-

mokines that represent disruption of intestinal immunity is well known in HIV infection, other inflammatory

pathways, such as CCR5 ligands, CXCR3 ligands, and growth factors proteins, were less known and can

pave the way toward new therapeutic options. Last but not least, clinicians should be aware that PLHIV

with a high inflammation endotype are at increased risk to develop malignancies and CVDs. Therefore, pa-

tient stratification based on inflammatory profile warrants further research in order to develop better ther-

apeutic and preventive strategies against malignancies and CVDs in virally suppressed PLHIV.
Limitations of the study

There were several limitations to our study. First, the findings are mainly correlative that hinders causation

inference as correlation does not imply causation. Second, demographic differences between groups

across cohorts may introduce bias in the results of our study. However, all analyses were performed with

adjustment for age and sex to account for the demographic differences. Next, a low percentage of partic-

ipants with comorbidities may limit the power to find statistically significant associations with plasma

inflammatory markers in PLHIV after accounting for multiple testing burden. However, we identified signif-

icant associations between DEP and different comorbidities before multiple testing correction (pvalue<

0.05), which is in agreement with previous studies.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

CD16-FITC, 3G8 Beckman Coulter Cat#IM0841U

HLA-DR PE, Immu-357 Beckman Coulter Cat#IM1639U; RRID: AB_2876782

CD14 ECD, UCHT1 Beckman Coulter Cat#A07748

CD4 PE-Cy5.5, 13B8.2 Beckman Coulter Cat#B16491

CD25 PC7, M-A251 BD Cat#557741; RRID: AB_396847

CD56 APC, N901 Beckman Coulter Cat#IM2474; RRID: AB_130791

CD8 APC-AF700, B9.11 Beckman Coulter Cat#A66332; RRID: AB_2750854

CD19 APC-AF750, J3-119 Beckman Coulter Cat#A94681; RRID: AB_2833030

CD3 PB, UCHT1 Beckman Coulter Cat#A93687; RRID: AB_2728095

CD45 KO, J33 Beckman Coulter Cat#A96416; RRID: AB_2888654

CD45RA FITC, ALB11 Beckman Coulter Cat#A07786

CD3 PE, UCHT1 Beckman Coulter Cat#A07747

CD45RO ECD, UCHL1 Beckman Coulter Cat#IM2712U; RRID: AB_10639537

CD27 PE-Cy5.5, 1A4CD27 Beckman Coulter Cat#B21444

CD127 APC-AF700, R34.34 Beckman Coulter Cat#A71116; RRID: AB_2889979

CD8 APC-AF750, B9.11 Beckman Coulter Cat#A94683

CD4 PB, 13B8.2 Beckman Coulter Cat#A82789; RRID: AB_2892549

CD19 APC-AF750, J3-119 Beckman Coulter Cat#A94681; RRID: AB_2833030

CD3 ECD, UCHT1 Beckman Coulter Cat#A07748; RRID: AB_1575956

KI67 (ic) FITC, B56 BD Cat#561165; RRID: AB_10611866

CD45RA ECD, 2H4LDH11LD89 Beckman Coulter Cat#IM2711U; RRID: AB_10640553

CD196 PE, 11A9 BD Cat#559562; RRID: AB_397273

CD8 ECD, SFCI21Thy Beckman Coulter Cat#737659; RRID: AB_2751015

CD183 PerCp5.5, G025H7 Biolegend Cat#353714; RRID: AB_10962908

CD194 PC7,1G1 BD Cat#557864; RRID: AB_396907

CD25 APC, 2A3 BD Cat#340907; RRID: AB_2819021

CD4 AF700, RPA-T4 eBioscience Cat#56-0049-42; RRID: AB_11219085

CD197-BV421, G043H7 Biolegend Cat#353208; RRID: AB_11203894

Critical commercial assays

Olink� Target 96 Olink Proteomics Olink� Target 96 Inflammation Panels

Olink� Explore panels Olink Proteomics Olink� Explore 1536

Human alpha-1 anti trypsin/Serpin A1 DuoSet ELISA kit R&D Systems Cat#DY1268

Human Adiponectin/Acrp30 DuoSet ELISA kit R&D Systems Cat#DY1065

Human C-Reactive Protein/CRP Quantikine ELISA Kit R&D Systems Cat#DCRP00

Human Total IL-18 DuoSet ELISA kit R&D Systems Cat#DY318

Human IL-18 BPa DuoSet ELISA kit R&D Systems Cat#DY119

Human Leptin DuoSet ELISA kit R&D Systems Cat#DY398

Human Resistin DuoSet ELISA kit R&D Systems Cat#DY1359

Human FABP2/I-FABP DuoSet ELISA kit R&D Systems Cat#DY3078

Human CD163 Quantikine ELISA kit R&D Systems Cat#DC1630

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Human CD14 Quantikine ELISA kit R&D Systems Cat#DC140

IL-6, IL-1b, TNF-a, IL-10, and IL-1Ra Simple Plex cartridges

using the Ella apparatus

Protein Simple

Human D-Dimer ELISA kit Abcam Cat#ab260076

Deposited data

RNA single cell type data The Human Protein Atlas http://www.proteinatlas.org/; RRID:SCR_006710

Software and algorithms

R version 4.0.2 R Core Team https://cran.r-project.org

Other

Proteomics (OLINK) data from the Human Functional

Genomics Project (HFGP)

HFGP www.humanfunctionalgenomics.org

The 2000HIV project cohort data The 2000HIV project https://clinicaltrials.gov/ct2/show/NCT03994835)
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Nadira Vadaq (N.Nadira@radboudumc.nl).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d All data reported in this article will be shared by the lead contact on request.

d This study does not report original code.

d Any additional information required to reanalyze the data reported in this article is available from the

lead contact on request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cohort of study participants

This study included discovery and an independent validation cohort of virally suppressed PLHIV and HC

and is part of the Human Functional Genomics Project (HFGP) (www.humanfunctionalgenomics.org) (Ne-

tea et al., 2016). A schematic representation of the cohorts is shown in Figure S1.

Discovery cohort

The discovery cohort consisted of PLHIV recruited between December 2015 and February 2017 at Radbou-

dumc, Nijmegen, the Netherlands. Participants were 18 years and older, received ART for more than six

months, and had HIV-RNA levels <200 copies/ml. Detailed patient characteristics have been reported else-

where (Van deWijer et al., 2021; van der Heijden et al., 2021). Relevant comorbidities and co-medication

data with a prevalence of about 10% of total study participants were presented. PLHIV were followed for

the development of clinical events during a period of five years (2016–2021). The control group consisted

of a historical cohort of healthy Dutch individuals (500 Functional Genomic [500FG] cohort) recruited be-

tween August 2013 and December 2014 at Radboudumc, the Netherlands. Details about the 500FG cohort

have been previously described (Li et al., 2016; ter Horst et al., 2016). In total, protein measurements were

available for 198/211 of the PLHIV and 423/534 of the healthy controls.

Validation cohort

The HIV validation cohort consisted of the first consecutive 661 participants of the 2000HIV study (Clinical-

Trials.gov: NCT03994835) enrolled between February 2019 and October 2021 in four different Dutch HIV

treatment centers in Nijmegen, Amsterdam, Tilburg, and Rotterdam. Similar inclusion and exclusion
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criteria were applied for the discovery cohort. Healthy control samples were obtained from the 200 Func-

tional Genomic (200FG) cohort, as described elsewhere (Li et al., 2016). Samples were collected between

2019 and 2020. In total, protein measurements were available for 661 of the PLHIV and 100 sex- and age-

matched healthy controls.
Study approval

The studies involving human participants were reviewed and approved by the Ethical Committee of the

Radboud University Medical Center Nijmegen, the Netherlands (NL42561.091.12 (200HIV and 500FG),

NL68056.091.81 (2000HIV), and 2018-399 EC (200FG)). The patients/participants provided their written

informed consent to participate in this study.
METHOD DETAILS

Sample processing

Sample collection and processing in the cohorts of the HFGP are performed using similar study procedures

(Netea et al., 2016). Blood samples of the discovery cohort were collected at Radboudumc and were pro-

cessed immediately. For the validation cohort, blood samples from different centers were sent overnight to

Radboudumc or left on the bench at room temperature to be processed the next day. The second and first

freeze-thaw cycles of plasma fractions were used for proteomic analysis in the discovery and validation

cohort, respectively. Samples were centrifuged using similar settings and stored at �80�C.
Proteomic profiling of circulating inflammatory proteins

For the discovery cohort, 92 unique protein biomarkers were measured using the Olink inflammation panel

(Olink Proteomics, Uppsala, Sweden) (Assarsson et al., 2014). For the validation cohort, the Olink Explore

panel (Filbin et al., 2021) (n = 92/1472 proteins) was used. PLHIV and healthy controls were measured simul-

taneously. Proximity extension assay (PEA) technology was applied to measure relative concentration of

the proteins, which were presented as log2 normalized protein expression level (NPX) values.
Plasma inflammatory markers

In all PLHIV from the discovery cohort, absolute concentration of interleukins (IL-18 and IL-18BP), acute

phase proteins (hsCRP, D-dimer, and a-1 anti-trypsin (AAT)), adipokines (leptin, adiponectin, and resistin),

intestinal barrier dysfunctionmarker (intestinal fatty acid-binding protein (IFABP)), andmonocyte activation

markers (sCD14 and sCD163) were measured using ELISA (Duoset or Quantikine, R&D Systems; Abcam,

Cambridge, MA, USA) according to the manufacturer’s protocols. Concentrations of IL-6, IL-1b, TNF-a,

IL-10, and IL-1Ra were measured using SimplePlex Cartridges (Protein Simple).
Immunophenotyping and gating strategies

Immunophenotyping data were available for PLHIV from the discovery cohort. The complete protocol of

immunophenotyping and gating strategies has been described before (Van deWijer et al., 2021). Samples

were measured on a 10-color Navios flow cytometer (Beckman Coulter, Fullerton, CA, USA) equipped with

488, 638, and 405 nm solid-state lasers. Stained blood samples were analyzed using five supplemental

10-color antibody panels. Flow cytometry data were analyzed using Kaluza software version 1.3 and version

2.1. Gating was conducted and verified by two independent specialists. The absolute number of white

blood cells (WBC) per mL of blood (by Beckman Coulter AcT Diff Hematology Analyzer) were used to calcu-

late absolute numbers of leukocyte (CD45+) cell subsets as measured by flow cytometry. A subset (n = 33) of

themost relevantWBC population representing innate and adaptive cell compartments was selected. Data

were presented as WBC percentages based on the cell count of each subpopulation by its respective pop-

ulation (one level up).

In addition, CCR5 surface expression on monocytes and T lymphocyte subsets were quantified, including

naive T cells (CD45RA + CCR7+), central memory T cells (CM, CD45RA-CCR7+), effector memory T cells

(EM, CD45RA-CCR7-), effector memory T cells expressing CD45RA (TEMRA, CD45+CCR7-), and the total

pool effector T memory cells (TEM, CD45RA�/+CCR7-). Furthermore, within the CD4+T cells, CD4+ naive

regulatory (nTreg, CD45RA+CD25+) and CD4+ memory regulatory (mTreg, CD45RA-CD25++) cell subsets

were identified. The level of CCR5 expression on the cell populations was expressed as the geometric

mean of fluorescence intensity (MFI). The level of CCR5 expression in granulocytes was used as an internal
20 iScience 25, 105089, October 21, 2022
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negative control. The flow cytometry protocol for identifying CCR5-positive cell subsets was confirmed in

three fluorescence minus one (FMO) controls.

QUANTIFICATION AND STATISTICAL ANALYSIS

Quality control of proteomic data

The proteomic data from the discovery cohort were normalized using inter-plate controls for batch varia-

tion correction and were reported in the log2 scale. Data values below the limit of detection (<LOD) were

handled using the actual measured values to increase the statistical power and give a complete data dis-

tribution. Outlier detection was done using principal component analysis (PCA), in which data points falling

R3 standard deviations (SD) from the mean of principal component one (PC1) and two (PC2) were

excluded. Proteins with (1) <LOD values >25% of the samples in both groups (PLHIV and HC) and (2) a dif-

ference in the <LOD values between PLHIV and HC <20% were excluded. For analysis within the PLHIV,

proteins with <LOD values >25% of the samples were excluded for the follow-up data analysis. Details

of pre-analytical steps for both discovery and validation cohort were described in Figure S1. Percentages

of <LOD values per protein were visualized in Figure S2.

Differential expression protein analysis

For protein analyses in the discovery cohort, we compared the relative concentration of plasma inflamma-

tory proteins between PLHIV and HC. During QC per sample, 12 outliers and one sample with no measure-

ments were excluded from the analysis. In total, 78 proteins in 192 PLHIV and 416 HC participants from the

discovery cohort were available for differential expression (DE) analysis (Figure S1).

In the validation cohort, we selected the significantly differentially expressed proteins (DEP) (n = 64) iden-

tified in the discovery cohort. Similar pre-analytical approaches were implemented in the data analysis as in

the discovery stage. Sixty-two proteins were used for DE analysis after quality control per protein, as

described above. After excluding participants that were not using ART (elite controllers; n = 4) and the out-

liers (n = 10) as described above, we used 649 PLHIV and 98 HC for DE analysis (Figure S1).

We used a linear regression model with age and sex as covariates in the discovery and validation cohort.

Adjustment for multiple testing comparisons was done using false discovery rate (FDR) method. Proteins

with FDR <0.05 were considered statistically significant in the discovery cohort, and pvalue<0.05 were

considered statistically significant in the validation cohort.

Clustering analysis

To assess any similarities and dissimilarities within groups, we performed unsupervised hierarchical clus-

tering using k-nearest neighbors with 100 repetitions. Before analysis, NPX values for each protein were

scaled to have a mean of 0 and a SD of 1. Results were visualized as a heatmap by calculating the matrix

of Euclidean distances from the scaled NPX value. Scaled data exceeding color break value (�2 or 2)

were assigned with corresponding maximum or minimum colors.

Network analysis of DEP

Network analysis was performed using Spearman’s rank correlation, and association with moderate to high

correlation coefficient (rho>3) was visualized. Each protein was visualized as a node and colored based on

node’s importance according to node’s closeness. For the dendrogram of DEP between PLHIV and HC, the

distances between proteins measured in PLHIV of the discovery cohort were calculated using Ward’s

agglomeration method, and hierarchical clustering of the proteins was calculated based on the pairwise

distances of proteins using Spearman’s rank correlation.

Random forest

Random forest classification model was performed to predict the high and low inflammation groups of

PLHIV in the discovery and validation cohort. In addition to demographic factors (age, sex, and BMI), con-

centration of DEP between the high and low inflammation groups of the discovery (n = 71) and validation

cohort (n = 69) were used as input. Before the random forest-based modeling, PLHIV in the discovery and

validation cohorts were randomly split into a training (70%) and a validation set (30%). The model was built

with 1000 trees and 4 (the discovery cohort) or 2 (the validation cohort) random variables that were consid-

ered at each tree. This model was chosen based on the best prediction accuracy on the training set. The
iScience 25, 105089, October 21, 2022 21
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importance of each variable in the prediction model was expressed as a mean decrease in accuracy values.

The performance of the prediction model of the discovery and validation cohort was visualized using the

receiver operating characteristic curve (ROC).
Data analysis and visualization

All statistical analyses were performed using R version 4.0.2. The following R packages were used for results

visualization: ‘ggbiplot’ for PCA plot, ‘ComplexHeatmap’ for unsupervised hierarchical clustering analysis,

‘randomForest’ for random forest analysis, ‘tidygraph’ and ‘ggraph’ for network analysis, and ‘ggplot2’ for

the rest of plots. ‘Limma’ was used for DE analysis which uses an empirical Bayes method to moderate the

standard errors of the estimated log-fold changes (Ritchie et al., 2015). ‘randomForest’ and ‘ROCR’ were

used for random forest and ROC analyses, respectively. Complementary approach to identify the cellular

origin of DEP was performed using single-cell transcriptomic publicly available data from the Human Pro-

teomic Atlas (HPA) project (proteinatlas.org) (Karlsson et al., 2021).
22 iScience 25, 105089, October 21, 2022
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