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Abstract: A silver precursor (silver 2-ethylhexanoate) and silver nanoparticles were synthesized and
used to prepare a low sintering temperature nano-silver paste (PM03). We optimized the amount
of silver 2-ethylhexanoate added and the sintering temperature to obtain the best performance of
the nano-silver paste. The relationship between the microstructures and properties of the paste was
studied. The addition of silver 2-ethylhexanoate resulted in less porosity, leading to lower resistivity
and higher shear strength. Thermal compression of the paste PM03 at 250 ◦C with 10 MPa pressure
for 30 min was found to be the proper condition for copper-to-copper bonding. The resistivity was
(3.50 ± 0.02) × 10−7 Ω·m, and the shear strength was 57.48 MPa.

Keywords: silver nanoparticles; silver precursor; nano-silver pastes; copper-to-copper bonding; low
temperature sintering

1. Introduction

To improve operation speed, it is necessary to increase the density of transistors in a
device. At present, the line width of electronic devices is hitting a physical limitation. To
increase the density of transistors, a three-dimensional integrated circuit (3D IC) package
is developed [1–3]. For integrating different IC chips, the chips have to be connected.
Therefore, the junctions are extremely important [4–6].

Usually, the adhesive for the 3D IC junction can be conventional tin–lead solder, lead-
free solder, or a silver paste. The silver paste has higher bond strength, better conductivity,
and excellent high temperature service performance compared to the conventional sol-
ders [7–9]. Due to these reasons, silver paste is a good adhesive candidate for reducing
current consumption and lowering heat caused by resistance [10–12]. By choosing an
appropriate dispensing method, the silver paste can create a junction with a diameter
less than 10 microns [13]. Compared to a solder ball with a diameter of 100 microns, the
silver paste has greater potential for use in wide bandgap technologies and die attach
applications [14,15].

The surface-to-volume ratio of nanoparticles is so large that they can be sintered at
lower temperatures than bulk materials. Silver nanoparticles are used to prepare conductive
inks and pastes due to this property [16–18]. With a through-silicon via (TSV) connection,
nano-silver pastes can bond chips together via copper-to-copper bonding. These bonds are
created by sintering individual silver nanoparticles together onto copper surfaces at low
temperatures [19]. Therefore, nano-silver pastes can be used for 3D IC integration [20,21].

In our previous study, we used a silver precursor, silver 2-ethylhexanoate, added to
polyimide to form conductive polyimide nanocomposites [22]. The silver 2-ethylhexanoate
can be converted into silver via an in situ reduction at a high temperature. In this study, we
combined silver 2-ethylhexanoate with a nano-silver paste to improve the resistivity and
shear strength of the paste. The name of the paste was coded as PM03. The relationship
between the addition of different amounts of silver 2-ethylhexanoate and changes in
sintering temperature was studied to obtain the proper composition and process conditions.
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2. Experimental
2.1. Materials

Silver nitrate was obtained from UniRegion Bio-tech. The chemicals 1-propylamine,
2-ethylhexanoic acid, and heptanoic acid were purchased from Alfa Aesar, Sodium borohy-
dride was obtained from Acros. Sodium hydroxide was obtained from Showa. Dimethy-
lacetamide (DMAc) was purchased from Tedia.

2.2. Synthesis of Silver Nanoparticles

An amount of 500 mL of toluene and 14.78 g (0.25 mole) of 1-propylamine were put
into a beaker. After stirring with a glass rod, the solution was put into a three-necked flask
and stirred continuously with a mechanical stirrer. Precisely 21.23 g (0.125 mole) of silver
nitrate was added into the solution, and 94.12 g (0.723 mole) of heptanoic acid was added
after all of the silver nitrate was dissolved. The solution then changed from transparent to
white. After 15 min, 2.36 g (0.0625 mole) of sodium borohydride was added, and the color
of the solution changed from white to black. After reacting for 1 h, the sample was washed
with an acetone and methanol mixture and filtrated 3 times. After being dried in vacuum
for 12 h, the dark blue silver nanoparticles were thus obtained.

2.3. Synthesis of Silver 2-Ethylhexanoate (CH3(CH2)3CH(C2H5)CO2Ag)

Precisely 2.32 g (0.058 mole) of sodium hydroxide and 8.36 g (0.058 mole) of 2-
ethylhexanoic acid were dissolved in 50 mL of DI water and 50 mL of methanol, respectively.
The two solutions were mixed. The resulting solution was labeled as solution A. An amount
of 9.85 g (0.058 mole) of silver nitrate was dissolved in 50 mL of DI water, and this solution
was labeled as solution B. Solution B was then added into solution A dropwise. The sample
was washed with methanol and filtrated 2 times in order to obtain the white precipitate.
The precipitate was collected by filtration, washed with distilled water and methanol, and
then dried in vacuum. The silver 2-ethylhexanoate was then obtained.

2.4. Preparation of Paste PM03

The silver nanoparticles, silver 2-ethylhexanoate, and DMAc were mixed and stirred
with a glass rod in a beaker according to the compositions depicted in Table 1. The mixture
was uniformly mixed with a three-roller mixing grinder to form a nano-silver paste (PM03).

Table 1. Composition of paste PM03.

Silver Nanoparticles Silver 2-Ethylhexanoate DMAc

Paste PM03-0 70 wt% 0 wt% 30 wt%
Paste PM03-10 60 wt% 10 wt% 30 wt%
Paste PM03-17.5 52.5 wt% 17.5 wt% 30 wt%
Paste PM03-25 45 wt% 25 wt% 30 wt%

2.5. Characterization

1. The X-ray diffraction (XRD) analysis of silver nanoparticles and silver precursor was
conducted on a Rigaku D/MAX-IIIV X-ray Diffractometer using Ni-filtered Cu-Kα

radiation with a scanning rate of 4◦/min−1 at 30 kV and 20 mA.
2. The textures of the pastes were investigated by a Hitachi Stereoscan 260 scanning

electron microscope (SEM) at a 10 kV operating voltage.
3. Fourier transform infrared spectroscopy (FTIR) analysis of silver 2-ethylhexanoate

was performed on a JASCO FT/IR 4600 spectrometer with a KBr pellet.
4. The weight losses of the silver nanoparticles and silver 2-ethylhexanoate were ana-

lyzed using a TA Instrument Thermogravimetric Analyzer (TGA) 2050 at a heating
rate of 10 ◦C/min under air.

5. The resistivity measurement was conducted as follows: A glass substrate was cleaned
with ethanol. The two sides of the glass substrate were taped with two layers of
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3M Scotch 810 tape. The paste PM03 was transferred to the glass substrate, and
the thickness of the paste was fixed with blade coating. The 3M Scotch 810 tape
was removed, and the sample was heated. The sheet resistance and thickness were
measured with 4-point probes and a thickness gauge, respectively, in order to calculate
the resistivity of the paste.

6. The shear strength measurement was conducted as follows: The surfaces of the
polished copper blocks were cleaned with acetone, 25 wt% citric acid solution, DI
water, and ethanol. The two sides of the copper blocks were taped with two layers of
3M Scotch 810 tape. Paste PM03 was transferred to the copper blocks and the thickness
of the paste was fixed with blade coating. The 3M Scotch 810 tape was removed. Two
copper blocks were put together and bonded using thermal compression. Then, the
shear strength was measured using a shear strength testing machine. The thermal
compression and shear strength test of the sintering Ag paste are shown in Figure 1.
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Figure 1. Thermal compression and shear strength test of sintering Ag paste.

3. Results and Discussion
3.1. Synthesis of Silver Nanoparticles

In our previous study, silver nanoparticles had been prepared through the reduction
reaction of AgNO3 by formaldehyde with a catalyst [23]. In that study, poly(N-vinyl-2-
pyrrolidone) (PVP) had been chosen as the protecting agent. Due to the high decomposition
temperature of PVP, the sintering temperature of the silver nanoparticles was high. In
this study, a low molecular weight organic compound, heptanoic acid, was used as the
protecting agent to prepare the nanoparticles in order to reduce the sintering temperature.
When we used sodium borohydride as the reductant and heptanoic acid as the protecting
agent, the silver nanoparticles were successfully prepared from the AgNO3 precursor. The
XRD pattern is shown in Figure 2a. The reflection peaks are indexed as the fcc (111), (200),
(220), and (310) planes, of which the nanoparticles are silver [24]. The particle sizes were
around 15–40 nm as shown in the TEM micrograph (Figure 2b). The TGA thermograph of
silver nanoparticles is shown in Figure 3. As we can see from the graph, the decomposition
of the protecting agent (heptanoic acid) starts from 180 ◦C and can be fully removed after
250 ◦C. It shows that heptanoic acid occupies 6.4% of the whole composition’s weight. If
the sintering temperature is equal to or higher than 250 ◦C, the silver nanoparticles will
lose protecting groups and be sintered by the driving energy of the temperature. Thus, a
bulk material with excellent strength and conductivity is obtained.
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3.2. Synthesis of Silver 2-Ethylhexanoate

The silver 2-ethylhexanoate was synthesized from the reaction of 2-ethylhexanoic
acid and silver nitrate. 2-Ethylhexanoic acid solution in methanol was mixed with an
aqueous solution of sodium hydroxide to form a mixed solution. Then, a solution of
silver nitrate was added to the mixed solution to form a silver precursor. The product was
characterized by FTIR as shown in Figure 4a. The absorption peak of the carboxylate anion
in the silver 2-ethylhexanoate appeared between 1610–1550 cm−1. The absorption peak
of the alkyl group was observed at around 2920 cm−1. Compared to the FTIR spectrum
of 2-ethylhexanoic acid (Figure 4b), we can see that the absorption peak of the carbonyl
group (1705 cm−1) in 2-ethylhexanoic acid shifted to 1550 cm−1 when it was converted to
silver 2-ethylhexanoate. That proves the formation of the silver salt. From TGA analysis
(Figure 5), the decomposition temperature of silver 2-ethylhexanoate started at 150 ◦C,
and the maximum decomposition rate was at 183 ◦C. After decomposing completely, a
56.7% thermogravimetric loss is formed, which is in full compliance with the ratio of the
2-ethylhexyl acid group and silver in 2-ethylhexanoate. After heating at 250 ◦C for 30 min,
the silver 2-ethylhexanoate was converted to silver as shown in the XRD pattern (Figure 6).
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3.3. Effect of Silver 2-Ethylhexanoate Added to the Paste

The novelty of this study is the addition of silver 2-ethylhexanoate to the silver
nanoparticle paste. When an appropriate amount of silver 2-ethylhexanoate is added to the
silver nanoparticle paste, the in situ reduction at a high temperature helps to connect the
sintered silver. This fills the voids in the sintered silver to reduce resistance and increase
density and intensification. That makes the paste with low resistivity and high bonding
strength at low temperature sintering.

The results of the resistivity measurements are shown in Table 2. The resistivity of the
pastes sintered at 250 ◦C for 30 min decreased as the amount of silver 2-ethylhexanoate
increased up to a 17.5 wt%. The resistivity of paste PM03-25 was higher than the resistivity
of paste PM03-17.5. PM03-17.5 showed a low resistivity of (3.50 ± 0.02) × 10−7 Ω·m. When
the resistivity is reduced, we can decrease the heat generated by the electric current to
save energy and solve the heat dissipation problem. Moreover, the resistivity is a factor of
resistance–capacitance time delay [25]. The signal delay decreases as the resistance reduces,
allowing the components to achieve further efficient performance. Therefore, the resistivity
of the material, which is used as a junction adhesive, is extremely important [26].

Table 2. Resistivities of the pastes with different amounts of silver 2-ethylhexanoate.

Pastes Heating Temperature/Time Resistivity (Ω·m)

Paste PM03-0 250 ◦C/30 min (5.86 ± 1.65) × 10−6

Paste PM03-10 250 ◦C/30 min (1.67 ± 0.10) × 10−6

Paste PM03-17.5 250 ◦C/30 min (3.50 ± 0.02) × 10−7

Paste PM03-25 250 ◦C/30 min (4.97 ± 0.47) × 10−7

The results of the shear strength test showed a similar behavior. As shown in Table 3,
the shear strength increased as the amount of silver 2-ethylhexanoate was raised up to
17.5 wt%. The SEM images of the fracture surfaces with different amounts of silver 2-
ethylhexanoate are shown in Figure 7. For PM03-0, the original boundary of the silver
nanoparticles does not exist anymore due to the sintering. What is seen is a continuous
sintered body, but with voids. The sintering between particles became denser as more silver
2-ethylhexanoate was added. From the data, we can see that, by adding the silver precursor,
the strength of the junction of the nano-silver paste is significantly improved to obtain a
high strength nano-silver paste. However, in the case of 25 wt% addition, large particles
were formed due to the aggregation of silver 2-ethylhexanoate. The sintering between
these large particles was worse than fine particles. The change in the microstructure of the
paste affects the properties.
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Table 3. Shear strengths of the pastes with different amounts of silver 2-ethylhexanoate.

Pastes Heating Temperature/Time/Applied
Pressure

Shear Strength
(MPa)

Paste PM03-0 250 ◦C/30 min/10 MPa 22.54
Paste PM03-10 250 ◦C/30 min/10 MPa 30.00
Paste PM03-17.5 250 ◦C/30 min/10 MPa 57.48
Paste PM03-25 250 ◦C/30 min/10 MPa 39.52

The Paste PM03-17.5 has shear strength as high as 57.48 MPa, which is suitable for
use in 3D IC junctions. The junction needs to have high strength to avoid the breakdown
of the copper blocks and render the failure of the junction. Therefore, the strength of the
junction could influence the life of the product. Higher strength and better reliability give
the product a longer life [27].

3.4. Effect of Sintering Temperature to the Paste

Sintering temperature is always an important parameter of the sintering process. The
high sintering temperature will provide more energy to obtain a dense structure [28]. How-
ever, the silver paste developed in this research is for the junction of IC chips. The sintering
temperature must not be too high to avoid damaging the IC chips [29,30]. Therefore, it
is critical to find the lowest sintering temperature that can still achieve good sintering
properties.
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The results of the resistivity of different sintering temperatures are shown in Table 4.
As the sintering temperature increased, the resistivity decreased. In Table 5, it can be seen
that the shear strength increased as the sintering temperature increased. The SEM images
of the sintered paste in Figure 8 showed that higher sintering temperatures led to better
sintering and denser microstructures, thus resulting in better properties. At 200 ◦C, the
silver nanoparticles did not have good sintering. They formed several clusters, but not a
continuous film structure. There was little difference in terms of improvement found in the
properties of paste PM03-17.5 sintered at 300 ◦C compared to 250 ◦C. Therefore, sintering
at 250 ◦C was determined to be high enough for paste PM03-17.5. The comparison of
PM03-17.5 with other the state-of-the-art silver pastes is shown in Table 6.
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Figure 8. SEM images of paste PM03-17.5 sintering at different temperatures: (a) 200 ◦C; (b) 250 ◦C; (c) 300 ◦C.

Table 4. Resistivities of the pastes at different sintering temperatures.

Pastes Heating Temperature/Time Resistivity (Ω·m)

Paste PM03-17.5 200 ◦C/30 min (9.65 ± 1.13) × 10−6

Paste PM03-17.5 250 ◦C/30 min (3.50 ± 0.02) × 10−7

Paste PM03-17.5 300 ◦C/30 min (3.39 ± 0.24) × 10−7
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Table 5. Shear strengths of the pastes at different sintering temperatures.

Pastes
Heating
Temperature/Time/Applied
Pressure

Shear Strength (MPa)

Paste PM03-17.5 200 ◦C/30 min/10 MPa 7.01
Paste PM03-17.5 250 ◦C/30 min/10 MPa 57.48
Paste PM03-17.5 300 ◦C/30 min/10 MPa 60.40

Table 6. The comparison of PM03-17.5 with other the state-of-the-art silver pastes.

Pastes
[Reference Number]

Sintering
Temperature
(◦C)

Shear Strength
(MPa) Resistivity (Ω·m)

1 [31] 265 53 -
2 [32] 250 21 9.85 × 10–8

3 [33] 250 30 -
4 [34] 225 46.4 -
5 [35] 280 25 -
6 [36] 220 43.6 -
7 [37] 275 32.7 1.04 × 10−7

PM03-17.5
(This study) 250 57.48 3.50 × 10−7

4. Conclusions

Silver nanoparticles and silver 2-ethylhexanoate were successfully synthesized, and
these two components were combined to produce a nano-silver paste: paste PM03. Adding
silver 2-ethylhexanoate resulted in better sintering for the paste, but too much silver 2-
ethylhexanoate led to larger particles and worse sintering. Higher heating temperature led
to lower resistivity and higher shear strength due to better sintering. However, sintering
at temperatures of 250 ◦C and 300 ◦C resulted in little difference. Thermal compression
at 250 ◦C for 30 min with 10 MPa pressure with paste PM03-17.5 was found to be the
optimal parameter. The resistivity was (3.50 ± 0.02) × 10−7 Ω·m, and the shear strength
was 57.48 MPa.
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