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Neutralization of Osteopontin Inhibits Obesity-Induced
Inflammation and Insulin Resistance
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OBJECTIVE—ODbesity is associated with a state of chronic
low-grade inflammation mediated by immune cells that are
primarily located to adipose tissue and liver. The chronic inflam-
matory response appears to underlie obesity-induced metabolic
deterioration including insulin resistance and type 2 diabetes.
Osteopontin (OPN) is an inflammatory cytokine, the expression
of which is strongly upregulated in adipose tissue and liver upon
obesity. Here, we studied OPN effects in obesity-induced inflam-
mation and insulin resistance by targeting OPN action in vivo.

RESEARCH DESIGN AND METHODS—C57BL/6J mice were
fed a high-fat diet to induce obesity and were then intravenously
treated with an OPN-neutralizing or control antibody. Insulin
sensitivity and inflammatory alterations in adipose tissue and
liver were assessed.

RESULTS—Interference with OPN action by a neutralizing
antibody for 5 days significantly improved insulin sensitivity in
diet-induced obese mice. Anti-OPN treatment attenuated liver
and adipose tissue macrophage infiltration and inflammatory
gene expression by increasing macrophage apoptosis and signif-
icantly reducing c-Jun NH,-terminal kinase activation. Moreover,
we report OPN as a novel negative regulator for the activation of
hepatic signal transducer and activator of transcription 3
(STATS3), which is essential for glucose homeostasis and insulin
sensitivity. Consequently, OPN neutralization decreased expres-
sion of hepatic gluconeogenic markers, which are targets of
STAT3-mediated downregulation.

CONCLUSIONS—These findings demonstrate that antibody-
mediated neutralization of OPN action significantly reduces
insulin resistance in obesity. OPN neutralization partially de-
creases obesity-associated inflammation in adipose tissue and
liver and reverses signal transduction related to insulin resis-
tance and glucose homeostasis. Hence, targeting OPN could
provide a novel approach for the treatment of obesity-related
metabolic disorders. Diabetes 59:935-946, 2010
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besity is a major risk factor for the development

of insulin resistance, which is a fundamental step

toward type 2 diabetes and cardiovascular dis-

ease (1). The chronic low-grade inflammation
associated with obesity as determined by increased systemic
concentrations of inflammatory markers and cytokines in
patients and animal models of obesity (2) probably repre-
sents a crucial link between obesity and insulin resistance
(3). This systemic inflammatory response primarily origi-
nates from adipose tissue and liver (4). Both tissues produce
a variety of inflammatory proteins such as interleukin (IL)-
1B, IL-6, tumor necrosis factor (TNF)-«, monocyte chemoat-
tractant protein (MCP)-1, and C-reactive protein (CRP). The
serum concentrations of all of these mediators are elevated
in obesity (2,5). Within the adipose tissue, inflammatory
adipokines are predominantly derived from nonfat cells such
as macrophages (6,7). The abundance of adipose tissue
macrophages is markedly increased in obese patients and
rodent models of obesity (6,8,9). Both, adipose tissue and the
liver have an architectural organization in which metabolic
cells (adipocytes and hepatocytes, respectively) are in close
proximity to immune cells (adipose tissue macrophages and
Kupffer cells, respectively), while both have immediate
access to the vasculature. This tissue architecture allows
continuous interactions between immune and metabolic
responses (4).

Osteopontin (OPN; gene Sppl), also named secreted
phosphoprotein-1 and sialoprotein-1, is a multifunctional
protein expressed in activated macrophages and T-cells,
osteoclasts, hepatocytes, smooth muscle, endothelial, and
epithelial cells (10,11). OPN was originally classified as a T
helper type 1 (Thl) cytokine that is involved in physiolog-
ical and pathological mineralization in bone and kidney,
cell survival, inflammation, and tumor biology (10,12).
OPN induces the expression of a variety of proinflamma-
tory cytokines and chemokines in peripheral blood mono-
nuclear cells (13). Moreover, it functions in cell migration,
particularly of monocytes/macrophages (11), and stimu-
lates expression of matrix metalloproteases to induce
matrix degradation and facilitate cell motility (14). Nota-
bly, OPN plays a role in various inflammatory disorders,
such as rheumatoid arthritis (15) and atherosclerosis (16),
in diabetic macro- and microvascular diseases (17), and
hepatic inflammation (18). Hepatic OPN expression is
upregulated in obesity (19) and in various models of liver
injury where OPN is localized to macrophages and Kupffer
cells (20,21). Furthermore, OPN is involved in the patho-
genesis of nonalcoholic fatty liver disease (NAFLD), which
is strongly associated with visceral obesity (19,22,23).

As reported recently, OPN gene expression is exten-
sively upregulated upon obesity in human and murine
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adipose tissue (24-26). While OPN plasma concentrations
are elevated in morbidly obese patients, data are inconsis-
tent in different murine models of obesity (24-27). A
recent publication (26) provided evidence that genetic
OPN deficiency improves diet-induced insulin resistance.

Therefore, we hypothesized that targeting OPN in estab-
lished obesity could reverse obesity-associated adipose
tissue inflammation and hepatic alterations and, conse-
quently, insulin resistance. We show that antibody-medi-
ated neutralization of OPN rapidly improved insulin
sensitivity in obese mice. Macrophage accumulation in
adipose tissue was considerably decreased and adipose
tissue inflammation was partially attenuated in anti-OPN-
treated mice. OPN neutralization increased hepatic signal
transducer and activator of transcription 3 (STAT3) acti-
vation that crucially contributes to insulin sensitivity and
downregulated genes related to hepatic inflammation and
gluconeogenesis. Hence, neutralization of OPN action
could provide a novel therapeutic approach for prevention
and treatment of obesity-induced insulin resistance and
type 2 diabetes.

RESEARCH DESIGN AND METHODS

Animals and diets. C57BL/6J mice were purchased from Charles River
Laboratories (Sulzfeld, Germany). At 7 weeks of age, male littermates were
placed for 24 weeks on a high-fat diet (HF group, n = 8/group, 60 kcal% fat,
D12492; Research Diets, New Brunswisk, NJ) and normal chow diet (NC
group, n = b/group) to induce obesity and to serve as lean controls,
respectively. All mice were housed in specific pathogen-free facility that
maintained a 12-h light/dark cycle. Mice had free access to food and water,
and food intake was monitored. Blood was drawn after 3 h fasting immedi-
ately before mice were killed. Gonadal white adipose tissue (GWAT) pads and
liver were collected. The protocol was approved by the local ethics committee
for animal studies and followed the guidelines on accommodation and care of
animals formulated by the European Convention for the Protection of
Vertebrate Animals Used for Experimental and Other Scientific Purposes.
Antibody treatment. Mice were treated with a neutralizing anti-mouse OPN
IgG (50 pg/mouse) or control goat IgG three times during 5e days by tail-vein
injection. OPN-specific IgG (R&D Systems, Minneapolis, MN) was produced in
goats by immunizing with NSO-derived, recombinant mouse OPN. Mice were
killed 2 days after last antibody application.

Metabolic measurements. Plasma glucose, cholesterol, triglyceride, and
free fatty acid concentrations were measured in EDTA plasma by an auto-
mated analyzer (Falcor 350; A. Menarini Diagnostics, Florence, Italy). We used
commercially available enzyme-linked immunosorbent assay kits to determine
plasma insulin (Mercodia, Uppsala, Sweden), IL-6, TNF-q, leptin, adiponectin,
OPN (all R&D Systems), and serum amyloid P (SAP) (Alpco Diagnostics,
Windham, NH). Plasma concentrations of alanine aminotransferase (ALT) and
aspartate aminotransferase (AST) were measured using the Reflotron analysis
system (Roche, Mannheim, Germany). We calculated homeostasis model
assessment of insulin resistance (HOMA-IR) as an index for insulin resistance
(28). Insulin sensitivity was assessed by insulin tolerance test (ITT) after a 3-h
fasting period. Blood glucose concentrations were measured before and 30,
60, 90, and 120 min after an intraperitoneal injection of recombinant human
insulin (0.75 units/kg body wt Actrapid for HF and 0.25 units/kg for NC mice,
respectively; Novo Nordisk, Bagsveerd, Denmark). Glucose tolerance was
assessed by a glucose tolerance test (GTT) after overnight fasting. Blood
glucose concentrations were measured before and 30, 60, and 90 min after an
intraperitoneal injection of 20% glucose (0.75 g/kg body wt for HF and 1.0 g/kg
body wt for NC mice, respectively).

Immunoflourescence, immunohistochemistry, tunel staining, and flow
cytometry. Frozen sections were prepared from murine GWAT and liver.
Sections were stained with rat anti-mouse F4/80 and Mac-2 IgG antibodies
(Serotec, Oxford, U.K. and Cedarlane, Burlington, ON, Canada, respectively).
Primary antibodies were detected with AlexaFluor 488 or AlexaFluor 594 goat
anti-rat IgG antibodies (Molecular Probes, Eugene, OR). As a negative control,
isotype control staining was done on selected sections. Nuclei were visualized
by DAPI staining. Slides were mounted in Vectashield (Vector Laboratories,
Burlingame, CA) and examined under a fluorescence microscope (Leica,
Wetzlar, Germany). Macrophage infiltration in adipose tissue and liver was
quantified by calculating the ratio of F4/80- and Mac-2-positive cells to total
nuclei (29). Apoptotic cells were stained on frozen sections using the
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Fluorescin In Situ Cell Dection Kit from Roche, according to manufacturer’s
instructions, in parallel with double staining for F4/80 and Mac-2, respectively,
as described above.

For paraffin sections, GWAT and liver samples were fixed with neutral
buffered 4% paraformaldehyde and were paraffin-embedded. Hematoxylin and
eosin staining was performed in liver as described elsewhere (22). After
dewaxation and rehydration, immunohistochemical staining for Mac-2 (Sero-
tec) and pSTATS3 (Tyr 705) (Cell Signaling, Danvers, MA) was performed on
adipose tissue and liver sections, respectively, using the ABC kit (Vector
Laboratories) according to the manufacturer’'s recommendations. As a nega-
tive control, staining was performed on selected sections with isotype control.
Samples were analyzed with standard light microscopy and a Zeiss Axio-
Imager Z1 microscope system with a charge-coupled device camera and a
TissueFAXS automated acquisition system (TissueGnostics, Vienna, Austria),
respectively. The percentage of pSTAT3-positive cells of 1,000 cells was
determined using HistoQuest software (TissueGnostics).

Stromal vascular cells (SVCs) of GWAT were isolated by collagenase
digestion and centrifugation to remove adipocytes as described (24). The
percentage of macrophages within SVCs was determined using phycoerythrin-
conjugated anti-F4/80 mAb (Abd Serotec) and standard flow cytometric
procedures.

Determination of liver triglyceride content. Liver triglycerides were
determined following lipid extraction as described previously (30) but by
using a commercially available enzymatic reagent (A. Menarini Diagnostics).
Cell culture and OPN treatment in HepG2 cells. Human hepatocellular
carcinoma (HepG2) cells (ATCC, Manassas, VA) were grown in RPMI-1640
medium (Invitrogen, Carlsbad, CA) supplemented with 10% (vol/vol) FCS,
penicillin/streptomycin (100 units/ml and 100 wg/ml) (Invitrogen) and 2
mmol/l glutamine at 37°C in humidified atmosphere containing 5% CO,. For
stimulation with OPN, cells were plated in six-well plates and grown to
confluence before overnight treatment in serum-free RPMI + 1% BSA. Cells
were stimulated or not with 0.5 pg/ml recombinant human OPN (Sigma, St.
Louis, MO) for 30 min or 2 days, as indicated. Cells were washed twice with
ice-cold PBS and lysed in ice-cold lysis buffer containing 1% Triton X-100
(Pierce, Rockford, IL), phosphatase, and protease inhibitors in Tris-buffered
saline (pH 7.4) and were subsequently incubated for 30 min on ice. Lysates
were cleared from nuclei and cell debris by centrifugation at 13,000 rpm for 1
min and were then prepared for immunoblotting.

Immunoblotting. Identical amounts of protein were separated by SDS-
PAGE and blotted onto nitrocellulose membranes (Hybond ECL; Little
Chalfont, Amersham, U.K.). Phosphorylated STAT3 (Tyr-705) and total
STAT3 were analyzed using respective mouse polyclonal antibodies (Cell
Signaling) followed by a horseradish peroxidase-labeled secondary anti-
body (Accurate, Westbury, NY). Chemiluminescence was generated by a
BM chemiluminescence substrate (Roche) and quantified on a Lumi-Imager
(Roche).

Phosphorylation of c-Jun NH,-terminal kinase (JNK) was determined
essentially as described (29). Briefly, GWAT was homogenized and lysed on
ice for 30 min in Tris-buffered saline, pH 7.4, containing 1% Triton X-100
(Pierce) and phosphatase and protease inhibitors. The tissue extract was
cleared from fat, nuclei, and debris by centrifugation. Phosphorylated JNK
(Thr-183, Tyr-185) and total JNK were analyzed as described for STAT3
immunblotting using respective rabbit polyclonal antibodies (Cell Signaling).
Reverse transcription and gene expression. Parts of GWAT and liver were
immediately snap frozen in liquid nitrogen for RNA isolation. Adipose tissue
and liver was homogenized in TRIzol reagent (Invitrogen), and RNA was
isolated according to manufacturer’s protocol. One microgram of total RNA
was treated with DNase I and reverse transcribed into cDNA using Superscript
II and random hexamer primers (all Invitrogen). Gene expression normalized
to 18S rRNA and Ubiquitin C, respectively, was analyzed by quantitative
real-time RT-PCR on an ABI Prism 7000 cylcer using commercial assays-on-
demand kits (all Applied Biosystems, Foster City, CA). Alternatively, the
expression of following murine genes were quantified by use of self-designed
primer pairs and iTaq SYBR Green Supermix (Bio-Rad Laboratories, Hercules,
CA): Tnf (5'-CCAGACCCTCACACTCAGATCA-3") forward, (5'-TGGTAT
GAGATAGCAAATCGGCT-3") reverse; Ccl2 (5'-AGGTCCCTGTCATGCT
TCTGG-3") forward, (5'-CTGCTGCTGGTGATCCTCTTG-3") reverse; Tgfbl
(5’-CTACCATGCCAACTTCTGTCTG-3") forward, (5'-CGGGTTGTGTTGGTT
GTAGA-3") reverse; Pckl (5'-AATCACCGCATAGTCTCTGAAGTT-3") forward,
(5'-ACACACACACATGCTCACACAG-3") reverse; and G6pc (5-CTGGTAGCCCT
GTCTTTCTTTG-3") forward, (5'-TTTCCAGCATTCACACTTTCCT-3") reverse.
Statistics. All data are given as means = SE. Comparisons were assessed by
unpaired two-tail Student’s ¢ test. A P value of =0.05 was considered
statistically significant.
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FIG. 1. Insulin sensitivity is improved by OPN neutralization. Mice were fed a high-fat diet (HF) to induce obesity or normal chow (NC),
respectively, for 24 weeks and were treated intravenously with an OPN-neutralizing (Anti-OPN) or control antibody three times during 5 days
at the end of the feeding period. An ITT was performed in lean and obese OPN antibody-treated (dashed lines) and control antibody-treated
(solid lines) mice 1 day after the last antibody application (r = 5 per group for NC and n = 8 per group for HF). A and B: Percent of basal glucose
during ITT in mice on high-fat diet (A) and normal chow (B). C: Area under the curve. D: HOMA-IR was calculated. *P = 0.05; **P < 0.01; #P =

0.06.

RESULTS

Diet-induced insulin resistance is reversed by anti-
body-mediated OPN neutralization. We first investi-
gated whether insulin resistance in obese mice is
ameliorated by systemic neutralization of OPN action.
Male C57BL/6J mice were fed a high-fat diet (HF) or
normal chow diet (NC) for 24 weeks to induce obesity and
insulin resistance or to serve as lean controls, respectively.
Mice from each group were then intravenously treated
with a neutralizing anti-mouse OPN antibody or control
IgG three times during 5 days. Specificity of the antibody
was tested by Western blot detecting OPN protein only in
plasma of wild-type but not of OPN-deficient (Sppl '~
knockout) mice (supplemental Fig. 1A [available in the
online appendix at http://diabetes.diabetesjournals.org/
cgi/content/full/db09-0404/DC1]).

Animals in the anti-OPN and control groups were of
comparable body weight before and after treatment (sup-
plemental Table 1). However, mice of each group weighed
slightly, but nonsignificantly, less at the end of the treat-
ment period presumably because they were repeatedly
fasted for the insulin and glucose tolerance test. Liver and
omental fat pad weight did not differ between antibody-
treated and control mice on the respective diet, and
anti-OPN treatment did not affect food intake (supplemen-
tal Table 1).

Strikingly, treatment with OPN-neutralizing antibody
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markedly improved insulin sensitivity in obese mice, as
shown by significantly reduced blood glucose concentra-
tions at 60, 90, and 120 min of an insulin tolerance test
(Fig. 1A) and a declined area under the curve (Fig. 1C). In
addition, insulin resistance as estimated by HOMA-IR was
significantly lower after anti-OPN treatment (Fig. 1D).
Insulin sensitivity was unaltered in NC mice irrespective of
anti-OPN treatment (Fig. 1B). However, glucose toler-
ance did not differ between antibody-treated and control
mice on either diet (supplemental Fig. 2). Taken to-
gether, these data strongly indicate enhanced insulin
sensitivity in obese mice upon OPN neutralization. Plasma
concentrations of glucose, cholesterol, triglycerides, free
fatty acids, adiponectin, leptin, TNF-«, and IL-6 did not
significantly differ between groups (supplemental Table 2).
OPN neutralization inhibits macrophage accumula-
tion in obese adipose tissue. To investigate potential
mechanisms underlying improved insulin sensitivity fol-
lowing OPN neutralization, we went on to examine adi-
pose tissue inflammation and macrophage accumulation.
mRNA expression of Emrl, the gene encoding the macro-
phage marker F4/80, was strikingly increased in obese
GWAT (Fig. 2A). However, Emrl expression was signifi-
cantly downregulated upon OPN neutralization compared
with control antibody treatment in HF mice, while Emr1
expression was unaffected between NC groups (Fig. 2A4).
In addition, the percentage of F4/80" cells in the SVC
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fraction was markedly reduced as determined by fluores-
cence-activated cell sorting analysis (Fig. 2B). Accordingly,
the number of macrophages in GWAT, as determined by
immunofluorescence (F4/80™) and immunohistochemistry
(Mac-2), was significantly lower in obese antibody-treated
compared with the HF control mice (Fig. 2C and D;
supplemental Fig. 3A and B) but did not differ between
lean mice (not shown).

Given the rapid reduction of adipose tissue macrophage
numbers after OPN neutralization and a potential anti-
apoptotic role of OPN in macrophages (31), we hypothe-
sized that enhanced apoptosis in anti-OPN-treated mice
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FIG. 2. Adipose tissue macrophage accumulation is reduced by OPN
neutralization. Obese high-fat diet-fed (HF) and lean normal chow-
fed (NC) mice were treated with OPN-neutralizing (Anti-OPN) or
control antibody (n = 8 per group for HF and n = 5 per group for NC
mice). A: mRNA expression of the macrophage marker F4/80 (en-
coded by Emrl gene) was analyzed in GWAT by real-time RT-PCR.
The mean of control HF was set to 100%. B: Percentage of macrophages
(F4/80-positive cells) in the SVC fraction of GWAT as determined by
flow cytometry. C: Adipose tissue macrophage accumulation was
determined by immunofluorescence of F4/80* cells (upper row) and
immunohistochemical staining of Mac-2* cells (bottom row) in
GWAT isolated from high-fat diet—-fed mice after anti-OPN or control
antibody treatment. Representative pictures are given in 40-fold
magnification. D: Adipose tissue macrophages as detected by F4/80
positivity in tissue sections were counted as F4/80* cells relative to
total number of cells. (A high-quality digital representation of this
figure is available in the online issue.)

could contribute to the disappearance of adipose tissue
macrophages. Terminal deoxynucleotidyl transferase—me-
diated dUTP-biotin nick-end labeling (TUNEL) staining of
GWAT sections revealed that the proportion of apoptotic
F4/80* cells was significantly increased by 2.16 = 0.30-fold
in obese OPN antibody-treated compared with control-
treated mice (Fig. 3). The abundance of apoptotic nonmac-
rophages was generally low (<15% of apoptotic cells) and
did not differ between the antibody-treated and the control
group on a high-fat diet (data not shown). Identical results
as for F4/80 staining were obtained for Mac-2 and TUNEL
double staining of GWAT sections (supplemental Fig. 3).
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double-positive cells per F4/80-positive cells). The mean of Control HF was set to 100%. *P = 0.05. (A high-quality digital representation of this

figure is available in the online issue.)

Hence, OPN neutralization in obese mice reduces adipose
tissue macrophage numbers at least in part by promoting
adipose tissue macrophage apoptosis.

OPN neutralization attenuates obesity-induced adi-
pose tissue inflammation. Immunoblot quantification of
OPN protein revealed decreased OPN content in obese
GWAT after OPN neutralization, even though not statisti-
cally significant. (supplemental Fig. 1B and C). However,
OPN plasma concentrations were similar in antibody-
treated and control mice and did not differ between lean
and obese mice 2 days after the last antibody application
(supplemental Table 2). To investigate potential effects of
OPN neutralization on inflammatory signaling related to
impaired insulin sensitivity in obese mice, we analyzed
activation of JNK by determining phosphorylation of JNK1
and JNK2 in GWAT (32). Notably, anti-OPN treatment
abolished JNK phosphorylation in obese (Fig. 4A and B)
but not in lean (Fig. 4C and D) mice. To further determine
effects of OPN neutralization on adipose tissue inflamma-
tion, we analyzed gene expression of the adipokines IL-6,
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TNF-a, MCP-1, and IL-10 in GWAT. Notably, IL-6 gene
expression in obese mice was markedly decreased upon
anti-OPN treatment, while TNF-o, MCP-1, and IL-10 were
not significantly reduced (Fig. 4F and F and supplemental
Fig. 4A and B). GLUT4 and insulin receptor substrate-1,
markers of insulin sensitivity, showed a nonsignificant
trend to upregulation in adipose tissue of anti-OPN-
treated obese mice (supplemental Fig. 4C and D). How-
ever, adiponectin mRNA expression was similar in all
groups irrespective of diet and antibody treatment (sup-
plemental Fig. 4F). Taken together, these data strongly
suggest that OPN neutralization effectively decreases del-
eterious inflammatory alterations in adipose tissue of
obese mice.

Obesity-induced hepatic inflammation is decreased
upon OPN neutralization. Anti-OPN treatment nonsig-
nificantly decreased OPN content in liver of obese mice
similar to adipose tissue (supplemental Fig. 1D and E).
Given the attenuation of adipose tissue inflammation in
antibody-treated HF mice, we investigated whether OPN
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FIG. 4. Adipose tissue inflammatory signaling and cytokine expression is attenuated by OPN neutralization in obese mice. Obese high-fat diet—fed
(HF) and lean normal chow-fed (NC) mice were treated with OPN-neutralizing (a-OPN) or control antibody (n = 8 per group for HF and n = 5
per group for NC mice). A-D: Immunoblot analysis and quantification of JNK1 and JNK2 phosphorylation in GWAT. Representative blots are
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(116) (E) and TNF-a (Tnf) (F) was analyzed in GWAT. The mean of Control HF was set to 100%. *P < 0.05; **P < 0.01.

neutralization also affects obesity-induced systemic and
hepatic inflammation. Systemic concentrations of serum
amyloid P (SAP) were markedly elevated in obese control
mice but returned to lean levels upon OPN neutralization
(86.0 = 24.4 ng/ml vs. 30.9 = 8.1 ng/ml; lean control 36.5 *
6.4 ng/ml; P < 0.05; Supplemental Table 2). Plasma con-
centrations of leptin, IL-6, and TNF-a remained unaffected
by OPN treatment in obese mice (supplemental Table 2).
Notably, hepatic expression of the inflammatory proteins
TNF-a and transforming growth factor (TGF)-f1 was
decreased in anti-OPN-treated animals compared with
controls (Fig. 5A and B), whereas expression of the
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anti-inflammatory IL-10 was significantly enhanced in liv-
ers of OPN antibody-treated mice (Fig. 5C). Hepatic gene
expression of the macrophage marker F4/80 (Emrl) was
markedly downregulated upon OPN neutralization in
obese mice (Fig. 5D). Accordingly, hepatic macrophage
accumulation as determined by immunoflourescence (Fig.
5F and F') and immunohistochemistry (supplemental Fig. 5A)
was attenuated upon anti-OPN treatment. TUNEL staining
revealed that, similar to adipose tissue, the proportion of
apoptotic macrophages was significantly increased in obese
anti-OPN- compared with control-treated animals (Fig. 5F
and G).
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FIG. 5. OPN neutralization decreases hepatic inflammation. Obese high-fat diet-fed (HF) mice were treated with OPN-neutralizing (Anti-OPN) or
control (n = 8 per group) antibody. Hepatic expression of genes for the inflammatory cytokines TNF-a (Tnf) (A) and TGF-B1 (Tgfb1) (B), the
anti-inflammatory IL-10 (1110) (C), and for the macrophage marker F4/80 (Emr1) (D) was analyzed by real-time RT-PCR. The mean of Control was set
to 100%. E-G: Hepatic macrophage accumulation and apoptosis. E: Macrophages were stained red by immunoflourescence using Mac-2 monoclonal
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Inflammatory alterations in liver could be related to lipid high-fat diet (supplemental Fig. 5B). Moreover, no change
accumulation. However, liver triglyceride content was in lipid droplet size by short-term OPN neutralization was
similar in the anti-OPN and control group kept on a evident in hematoxylin and eosin-stained liver sections
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(supplemental Fig. 5C). Gene expression of the lipogenic
markers fatty acid synthase (FAS) and sterol regulatory
element-binding protein-1c (SREBP-1¢) did neither show
any difference by anti-OPN treatment in obese mice (sup-
plemental Fig. 5D and E). Plasma concentrations of the
hepatic enzymes ALT and AST were unaffected by anti-
OPN treatment in obese mice (supplemental Fig. 5F and
G). These results indicate that short-term neutralization of
OPN attenuates hepatic inflammation and macrophage
accumulation in obese mice independent of hepatic
steatosis.

Antibody-mediated OPN neutralization rescues he-
patic STAT3 activation. Hepatic STAT3 signaling is
essential for normal glucose homeostasis (33,34), and
IL-10 is known to induce hepatic STAT3 phosphorylation
(35,36). To investigate whether OPN neutralization affects
hepatic STAT3 activation in obesity, we studied STAT3
activation in livers of anti-OPN- and control antibody—
treated obese mice. Hepatic STATS3 tyrosine phosphorylation
was markedly increased in obese anti-OPN- compared with
control-treated mice, as shown by immunohistochemistry
(Fig. 64 and B). To investigate whether OPN directly affects
STATS3 activation, we treated human hepatocellular carci-
noma (HepG2) cells with or without OPN and quantified
STAT3 tyrosine phosphorylation by immunoblot. Indeed,
OPN treatment markedly decreased basal pSTATS in HepG2
cells (Fig. 6C), indicating a direct inhibitory effect of OPN on
STATS tyrosine phosphorylation.

OPN neutralization downregulates expression of he-
patic gluconeogenic markers. Since STATS3 sensitizes
insulin signaling by negatively regulating glycogen syn-
thase kinase-38 (GSK-3(3; gene Gsk3b) expression, we
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studied mRNA expression of GSK-38 in liver of anti-OPN-—
treated and control mice. We observed a significant de-
crease in hepatic GSK-33 gene expression upon OPN
neutralization (Fig. 7A). Insulin signaling in the liver leads
to suppression of gluconeogenesis. The key gluconeogenic
enzymes phosphoenolpyruvate carboxykinase (PEPCK;
gene Pckl) and glucose 6 phosphatase (G6P; gene G6pc)
that are targets of GSK-3B8 (37) and relevant markers of
hepatic insulin resistance (38), were both significantly
downregulated upon anti-OPN treatment (Fig. 7B and C).
Taken together, these data indicate that OPN promotes
hepatic gluconeogenesis, thereby contributing to obesity-
induced insulin resistance.

DISCUSSION

The increasing prevalence of obesity demands novel pre-
ventive and therapeutic approaches to treat obesity-asso-
ciated complications, particularly insulin resistance, that
leads to type 2 diabetes and promotes cardiovascular
disease. We and others have recently reported that OPN
expression is considerably upregulated in human obesity
as well as mouse models of genetic and diet-induced
obesity (24-26). Here, we show that antibody-mediated
neutralization of OPN attenuates adipose tissue, hepatic,
and systemic inflammation and markedly improves insulin
sensitivity in murine obesity.

A recent publication demonstrated that genetic OPN
deficiency attenuates adipose tissue inflammation and
insulin resistance in a model of murine diet-induced
obesity (26). This genetic approach shows that obesity-
induced metabolic alterations are improved if OPN is
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already absent during development, including enlargement
of fat depots. Here, we show that short-term OPN neutral-
ization attenuates inflammation and insulin resistance
when obesity has already been established. In addition,
our results indicate that negative OPN effects on glucose
metabolism are obesity dependent because OPN neutral-
ization did not alter insulin sensitivity and adipose tissue
inflammation in lean mice (Figs. 1-4). Other than in
genetic OPN deficiency (26), glucose tolerance was appar-
ently not affected by short-term OPN neutralization. How-
ever, it remains elusive whether a long-term treatment
with an OPN neutralizing antibody is able to restore 3-cell
function and therefore improve glucose tolerance in obe-
sity. Insulin resistance is rapidly reversible, particularly in
mice (39). Similar to our data on OPN neutralization,
treatment with an anti-TNF-a monoclonal antibody rap-
idly improved insulin sensitivity in patients with rheuma-
toid arthritis (40). These and our findings reveal a potential
therapeutic impact of targeting obesity-associated inflam-
matory mediators linked to insulin resistance and the
metabolic syndrome.

Obesity-driven insulin resistance is associated with mac-
rophage accumulation in adipose tissue (6). OPN is in-
volved in macrophage migration and macrophage-driven
inflammatory disorders (11,15,16). Treatment with anti-
OPN antibody for only 5 days significantly decreased
adipose tissue and liver macrophage numbers in obese
mice (Fig. 2 and Fig. 5D-F). Similarly, blocking of the
chemokine receptor CCR2 for 9 days resulted in a signif-
icant reduction of adipose tissue macrophage accumula-
tion (5). Thus, macrophage turnover appears to be rather
high in obese murine adipose tissue.

OPN has previously been shown to be a survival factor
for macrophages in HIV-induced brain disease (31) and for
T-cells in an arthritis model (41). Here, we show that the
rapid reduction of adipose tissue and liver macrophages
by OPN neutralization was accompanied by a significantly
increased number of apoptotic macrophages (Fig. 3 and
Fig. 5F and G; Supplemental Fig. 3), indicating that mac-
rophage apoptosis contributes to reduced macrophage
abundance in anti-OPN-treated mice. Aside from en-
hanced macrophage apoptosis, disturbed cell migration
could contribute to the reduction of macrophages in
adipose tissue and liver of anti-OPN-treated mice, since
OPN is well-known to be critically involved in migration of
monocytes and macrophages (11,26). Hence, the marked
obesity-induced upregulation of OPN expression in adi-
pose tissue and liver (24) could promote macrophage
accumulation in both tissues not only by stimulating
cell migration (42) but also by preventing macrophage
apoptosis.

Since we did not observe reduced OPN plasma concen-
trations after anti-OPN treatment (supplemental Table 2),
we assume functional neutralization of OPN to underlie
the decrease in adipose tissue and liver macrophage
numbers (43,44). Since macrophages are the major source
of OPN at least in adipose tissue (24), the somewhat
reduced tissue OPN content following OPN neutralization
is probably due to diminished local production.

A high-fat diet causes activation of the JNK pathway that
leads to insulin resistance by serine phosphorylation of
insulin receptor substrate proteins (4,32,45). OPN neutral-
ization inhibited inflammatory signaling by negatively reg-
ulating JNK1 and JNK2 phosphorylation in obese adipose
tissue (Fig. 4A and B). In contrast to reduced GWAT
expression of IL-6, a potent mediator between obesity-
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induced adipose tissue inflammation and insulin resis-
tance (46), TNF-a, MCP-1, and IL-10 expression remained
unaffected (Fig. 4F and F and supplemental Fig. 4A and B).
Our data are in accordance with a recent publication
showing that adipose tissue—specific deletion of JNKI1
significantly reduced obesity-induced insulin resistance
and IL-6 expression in adipose tissue, while TNF-a re-
mained unaltered (47). Taken together, these results em-
phasize abolished JNK activation to be a crucial
mechanism for anti-inflammatory effects of OPN neutral-
ization in adipose tissue.

Obesity is a prominent risk factor for the development
of nonalcoholic fatty liver disease including steatohepati-
tis (NAFLD/NASH), which is related to hepatic insulin
resistance (48,49). Macrophages are the primary source of
hepatic inflammatory cytokines such as TNF-a, which
critically contributes to hepatic insulin resistance and
hepatic steatosis in diet-induced obesity (50). Treatment
with anti-OPN decreased hepatic expression of the mac-
rophage marker F4/80 and of inflammatory cytokines
TNF-a and TGF-B (Fig. 5A, B, and D). Recently, IL-10 was
demonstrated to act as a protective factor against diet-
induced insulin resistance and inflammation in liver (51).
Here, we show that in contrast to adipose tissue, hepatic
IL-10 expression was significantly elevated upon anti-OPN
treatment (Fig. 5C). This tissue-specific difference in cyto-
kine response to OPN neutralization might be attributed to
the fact that in liver not only macrophages but also
hepatocytes produce IL-10 (52). Taken together, OPN
neutralization attenuated hepatic inflammation in obesity,
which is in accordance with a reported role of OPN in the
pathogenesis of NASH elicited by methionine and choline
diet (22,23).

Elevated expression of the gluconeogenic enzymes
PEPCK and G6P is a hallmark of hepatic insulin resistance
(38). STATS is a critical transcription factor for sensitizing
insulin signaling in hepatocytes through suppression of
GSK-33, PEPCK, and G6P (33,37,563). Whereas OPN neu-
tralization increased hepatic STAT3 activation in vivo,
OPN stimulation diminished STAT3 phosphorylation in
HepG2 cells in vitro (Fig. 6). Hence, we provide a novel
link between OPN and STATS3 activation, indicating that
beneficial effects of OPN neutralization on hepatic glu-
coneogenesis could be mediated by STAT3. Effects of
short-term OPN neutralization on hepatic inflammation
and gluconeogenic enzyme expression cannot be attrib-
uted to reduced hepatic steatosis, as shown by unaltered
hepatic triglyceride content, liver histology, and gene
expression of lipogenic markers (supplemental Fig. 5B-FE).
These data suggest that STATS3 activation following short-
term anti-OPN treatment specifically regulates gluconeo-
genesis without affecting lipogenesis. However, it remains
elusive whether long-term treatment with an OPN neutral-
izing antibody is able to prevent or reverse hepatic steato-
sis and NAFLD.

Circulating concentrations of adiponectin and leptin,
adipokines known to impact liver function (54), were not
affected by OPN neutralization (supplemental Table 2).
However, the plasma concentration of the classical murine
inflammatory marker SAP that is produced by hepatocytes
(65) was normalized by anti-OPN treatment (supplemental
Table 2), corroborating attenuation of hepatic inflamma-
tion. Whether systemic or local hepatic effects of OPN
neutralization underlie the reduction of the inflammatory
marker SAP remains elusive. Nevertheless, these data
indicate that OPN neutralization reduces hepatic inflam-
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mation and improve hepatic regulation of glucose ho-
meostasis in obesity.

Our studies revealed a dual role of OPN in obesity-
associated insulin resistance by showing that at least two
organs could contribute to improved insulin sensitivity
upon OPN neutralization. On the one hand, OPN neutral-
ization interferes with diet-induced macrophage accumu-
lation and inflammatory signaling in adipose tissue, well
known to be associated with insulin resistance. On the
other hand, we demonstrate that OPN critically affects
macrophage infiltration, STAT3 signaling, and regulation
of gluconeogenesis in liver. In conclusion, neutralization
of OPN significantly attenuates obesity-induced inflamma-
tion and insulin resistance, implicating that targeting OPN
action could improve metabolic regulation and cardiovas-
cular risk in obese patients.
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