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To better understand the dynamics of the hepatitis B virus (HBV) infection, we introduce an improved HBV model with standard
incidence function, cytotoxic T lymphocytes (CTL) immune response, and take into account the effect of the export of precursor
CTL cells from the thymus and the role of cytolytic and noncytolytic mechanisms.The local stability of the disease-free equilibrium
and the chronic infection equilibrium is obtained via characteristic equations. Furthermore, the global stability of both equilibria
is established by using two techniques, the direct Lyapunov method for the disease-free equilibrium and the geometrical approach
for the chronic infection equilibrium.

1. Introduction

Currently, HBV infection is a major global health problem,
which can lead to cirrhosis and liver cancer. From the World
Health Organization (WHO), more than 240 million people
have chronic (long-term) liver infections, and about 600, 000
people die every year due to the acute or chronic conse-
quences of hepatitis B [1]. Therefore, many mathematical
models have been developed in order to understand the
dynamics of HBV infection. In this paper, we consider the
model presented by Pang et al. in [2] that is given by the
following nonlinear system of differential equations:

�̇� = 𝜆 − 𝑑𝑥 − 𝛽V𝑥 + 𝑞𝑦𝑧,

̇𝑦 = 𝛽V𝑥 − 𝑎𝑦 − (𝑝 + 𝑞) 𝑦𝑧,

V̇ = 𝑘𝑦 − 𝑢V,

�̇� = 𝑏 +
𝑐𝑦𝑧

𝜔 + 𝑦
− 𝜇𝑧,

(1)

where 𝑥(𝑡), 𝑦(𝑡), V(𝑡), and 𝑧(𝑡) are the numbers of uninfected
target cells, infected cells, free virus, and CTL cells at time 𝑡,
respectively. Susceptible host (healthy hepatocytes) cells are

produced at a rate 𝜆, die at a rate 𝑑𝑥, and become infected
by virus at a rate 𝛽𝑥V. Infected cells die at a rate 𝑎𝑦, return to
the uninfected state by a nonlytic effector mechanism [3] at
a rate 𝑞𝑦𝑧, and are killed by the CTL immune response at a
rate 𝑝𝑦𝑧. Free virus is produced by infected cells at a rate 𝑘𝑦
and decays at a rate 𝑢V. CTL cells expand in response to viral
antigen derived from infected cells at a rate 𝑐𝑦𝑧/(𝜔+𝑦), where
𝑐 is HBV-specific CTL stimulation rate and𝜔 represents virus
load for half-maximal CTL cells stimulation [4] and decay
in the absence of antigenic stimulation at a rate 𝜇𝑧. The
parameter 𝑏 represents the export of precursorCTL cells from
the thymus [4]. Note that the CTL immune response plays an
important role in antiviral defense by killing infected cells and
its effect has recently drawn much attention of many authors
(see, e.g., [5–10]).

On the other hand, the authors Pang et al. [2] determined
the basic reproduction number of system (1) as follows:

𝑅
∗

0
=
𝜆

𝑑

𝛽𝑘

𝑢 (𝑎 + (𝑝 + 𝑞) (𝑏/𝜇))
. (2)

As in [10, 11], we observe that 𝑅∗
0
is proportional to 𝜆/𝑑

which represents the number of total cells of the liver. This
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suggests that (1)may not be a reasonablemodel for describing
HBV virus infection since it implies that an individual with
a smaller liver may be more resistant to the virus infection
than an individual with a larger one. Therefore, we propose
the following model:

�̇� = 𝜆 − 𝑑𝑥 −
𝛽V𝑥
𝑥 + 𝑦

+ 𝑞𝑦𝑧,

̇𝑦 =
𝛽V𝑥
𝑥 + 𝑦

− 𝑎𝑦 − (𝑝 + 𝑞) 𝑦𝑧,

V̇ = 𝑘𝑦 − 𝑢V,

�̇� = 𝑏 +
𝑐𝑦𝑧

𝜔 + 𝑦
− 𝜇𝑧.

(3)

In our case, the basic reproduction number is

𝑅
0
=

𝛽𝑘

𝑢 (𝑎 + (𝑝 + 𝑞) (𝑏/𝜇))
, (4)

which is independent of liver size.
The rest of this paper is organized as follows. In the next

section, we show that our model is well posed by proving
the existence, positivity, and boundedness of solutions of
problem. Further, we determine the steady states of the
model. In Section 3, we discuss the local stability of equilibria
by analyzing the corresponding characteristic equations. The
global stability of equilibria is analyzed in Section 4. The
paper ends with a conclusion and discussion in Section 5.

2. Well Posedness and Steady States

In this section, we will establish the positivity and bounded-
ness of solutions of model (3), which imply that our model is
well posed. Further, we will determine the steady states of the
model.

2.1. Positivity and Boundedness of Solutions. First, we have the
following result.

Theorem 1. All solutions starting from nonnegative initial
conditions exist for all 𝑡 > 0 and remain bounded and
nonnegative. Moreover, we have

(i) 𝑇(𝑡) ≤ 𝑇(0) + 𝜆/𝛿,

(ii) V(𝑡) ≤ V
0
+ (𝑘/𝑢)‖𝑦‖

∞
,

(iii) 𝑧(𝑡) ≤ 𝑧
0
+ 𝑏/𝜇 + (𝑐/𝑝𝜔)(𝜆/𝜇 + 𝑥

0
+ 𝑦
0
+max(0, 1 −

𝑑/𝜇)‖𝑥‖
∞
+max(0, 1 − 𝑎/𝜇)‖𝑦‖

∞
),

where 𝑇 = 𝑥 + 𝑦 that represents the total cells of liver and 𝛿 =
min(𝑎, 𝑑).

Proof. For the positivity, we show that any solution starting
in nonnegative orthant R4

+
= {(𝑥, 𝑦, V, 𝑧) ∈ R4 : 𝑥 ≥ 0,

𝑦 ≥ 0, V ≥ 0, 𝑧 ≥ 0} remains there forever. In fact,
(𝑥(𝑡), 𝑦(𝑡), V(𝑡), 𝑧(𝑡)) ∈ R4

+
and we have

�̇�|
𝑥=0

= 𝜆 + 𝑞𝑦𝑧 ≥ 0,

̇𝑦
𝑦=0

= 𝛽V ≥ 0,

V̇|V=0 = 𝑘𝑦 ≥ 0,

�̇�|
𝑧=0

= 𝑏 > 0.

(5)

Hence, the positivity of all solutions initiating in R4
+
is

guaranteed.
Now, we prove that the solutions are bounded.
As �̇� ≤ 𝜆 − 𝑑𝑥 − 𝑎𝑦, we deduce that

𝑇 (𝑡) ≤ 𝑇 (0) 𝑒
−𝛿𝑡

+
𝜆

𝛿
(1 − 𝑒

−𝛿𝑡

) , (6)

since 0 ≤ 𝑒−𝛿𝑡 ≤ 1 and 1 − 𝑒−𝛿𝑡 ≤ 1, we get (i).
Next, we show (ii).The equation, V̇ = 𝑘𝑦−𝑢V, implies that

V (𝑡) = V
0
𝑒
−𝑢𝑡

+ 𝑘∫

𝑡

0

𝑦 (𝑠) 𝑒
(𝑠−𝑡)𝑢

𝑑𝑠. (7)

Then,

V (𝑡) ≤ V
0
+
𝑘

𝑢

𝑦
∞

(1 − 𝑒
−𝑡𝑢

) . (8)

Since 1 − 𝑒−𝑡𝜇 ≤ 1, we deduce (ii).
Finally, we show (iii). From the fourth equation of (3), we

get

�̇� + 𝜇𝑧 ≤ 𝑏 +
𝑐

𝜔
𝑦𝑧. (9)

Hence,

�̇� + 𝑏𝑧 ≤ 𝑏 +
𝑐

𝑝𝜔
[𝜆 − (�̇� + 𝑑𝑥) − ( ̇𝑦 + 𝑎𝑦)] . (10)

Thus,

𝑧 (𝑡) 𝑒
𝜇𝑡

− 𝑧
0
≤ (

𝑏

𝜇
+

𝑐𝜆

𝑝𝜔𝜇
) (𝑒
𝜇𝑡

− 1)

−
𝑐

𝑝𝜔
[ ∫

𝑡

0

𝑒
(𝜇−𝑑)𝑠

𝑑

𝑑𝑠
(𝑥 (𝑠) 𝑒

𝑑𝑠

) 𝑑𝑠

+∫

𝑡

0

𝑒
(𝜇−𝑎)𝑠

𝑑

𝑑𝑠
(𝑦 (𝑠) 𝑒

𝑎𝑠

) 𝑑𝑠] .

(11)

Using the integration by parts, we get

∫

𝑡

0

𝑒
(𝜇−𝑑)𝑠

𝑑

𝑑𝑠
(𝑥 (𝑠) 𝑒

𝑑𝑠

) 𝑑𝑠

= [𝑥 (𝑠) 𝑒
𝜇𝑠

]
𝑡

0
− (𝜇 − 𝑑)∫

𝑡

0

𝑥 (𝑠) 𝑒
𝜇𝑠

𝑑𝑠,

∫

𝑡

0

𝑒
(𝜇−𝑎)𝑠

𝑑

𝑑𝑠
(𝑦 (𝑠) 𝑒

𝑎𝑠

) 𝑑𝑠

= [𝑥 (𝑠) 𝑒
𝜇𝑠

]
𝑡

0
− (𝜇 − 𝑎)∫

𝑡

0

𝑦 (𝑠) 𝑒
𝜇𝑠

𝑑𝑠.

(12)
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Hence,

𝑧 (𝑡) ≤ [
𝑐

𝑝𝜔
(𝑥
0
+ 𝑦
0
) + 𝑧
0
] 𝑒
−𝜇𝑡

+ (
𝑏

𝜇
+

𝑐𝜆

𝑝𝜔𝜇
) (1 − 𝑒

−𝜇𝑡

)

+
𝑐

𝑝𝜔
{∫

𝑡

0

[(𝜇 − 𝑑) 𝑥 (𝑠) + (𝜇 − 𝑎) 𝑦 (𝑠)] 𝑒
𝜇(𝑠−𝑡)

𝑑𝑠

−𝑥 (𝑡) − 𝑦 (𝑡) } .

(13)
If 𝜇 − 𝑑 ≤ 0 and 𝜇 − 𝑎 ≤ 0, we have

𝑧 (𝑡) ≤ 𝑧
0
+
𝑏

𝜇
+

𝑐

𝑝𝜔
(
𝜆

𝜇
+ 𝑥
0
+ 𝑦
0
) . (14)

If 𝜇 − 𝑑 ≤ 0 and 𝜇 − 𝑎 ≥ 0, we have

𝑧 (𝑡) ≤ 𝑧
0
+
𝑏

𝜇
+
𝑐

𝑝𝜔
[
𝜆

𝜇
+ 𝑥
0
+ 𝑦
0
+ (1 −

𝑎

𝜇
)
𝑦
∞
] . (15)

If 𝜇 − 𝑑 ≥ 0 and 𝜇 − 𝑎 ≤ 0, we have

𝑧 (𝑡) ≤ 𝑧
0
+
𝑏

𝜇
+
𝑐

𝑝𝜔
[
𝜆

𝜇
+ 𝑥
0
+ 𝑦
0
+ (1 −

𝑑

𝜇
) ‖𝑥‖
∞
] . (16)

If 𝜇 − 𝑑 ≥ 0 and 𝜇 − 𝑎 ≥ 0, we have

𝑧 (𝑡) ≤ 𝑧
0
+
𝑏

𝜇
+

𝑐

𝑝𝜔
[
𝜆

𝜇
+ 𝑥
0
+ 𝑦
0
+ (1 −

𝑑

𝜇
) ‖𝑥‖
∞

+(1 −
𝑎

𝜇
)
𝑦
∞
] .

(17)

From (14)–(17), we deduce (iii).

2.2. Steady States. In this subsection, we show that there
exist a disease-free equilibriumand one infection equilibrium
which represents the chronic infection equilibrium.

It is not hard to see that if 𝑅
0
≤ 1, the disease-free

steady state 𝐸
𝑓
(𝜆/𝑑, 0, 0, 𝑏/𝜇) is the unique steady state, cor-

responding to the extinction of the free virus. The following
result presents the existence and uniqueness of endemic
equilibrium when 𝑅

0
> 1.

Theorem 2.
(1) If 𝑅

0
≤ 1, then the system (3) has a unique disease-free

equilibrium of the form 𝐸
𝑓
(𝜆/𝑑, 0, 0, 𝑏/𝜇).

(2) If 𝑅
0
> 1, then the system (3) has a unique chronic

infection equilibrium of the form 𝐸
∗

(𝑥
∗

, 𝑦
∗

, V∗, 𝑧∗)
with 𝑥∗ > 0, 𝑦∗ > 0, V∗ > 0, and 𝑧∗ > 0.

Proof. At any equilibrium, the following equations hold:

𝜆 − 𝑑𝑥 −
𝛽V𝑥
𝑥 + 𝑦

+ 𝑞𝑦𝑧 = 0,

𝛽V𝑥
𝑥 + 𝑦

− 𝑎𝑦 − (𝑝 + 𝑞) 𝑦𝑧 = 0,

𝑘𝑦 − 𝑢V = 0,

𝑏 +
𝑐𝑦𝑧

𝜔 + 𝑦
− 𝜇𝑧 = 0.

(18)

By (18), we get

V =
𝑘𝑦

𝑢
,

𝑧 =
𝑏 (𝜔 + 𝑦)

𝜇𝜔 + (𝜇 − 𝑐) 𝑦
,

𝑥 = 𝑓 (𝑦) ,

(19)

where

𝑓 (𝑦) =
𝜆

𝑑
− 𝑦(

𝑎

𝑑
+

𝑝𝑏 (𝜔 + 𝑦)

𝑑𝜇𝜔 + 𝑑 (𝜇 − 𝑐) 𝑦
) . (20)

Hence, we obtain the following equation:

𝛽𝑘

𝑢

𝑓 (𝑦)

𝑓 (𝑦) + 𝑦
= 𝑎 +

𝑏 (𝑝 + 𝑞) (𝜔 + 𝑦)

𝜇𝜔 + (𝜇 − 𝑐) 𝑦
. (21)

Now, we consider the function 𝑔 defined on
[0, +∞[−{𝜇𝜔/(𝑐 − 𝜇)} by

𝑔 (𝑦) =
𝛽𝑘

𝑢

𝑓 (𝑦)

𝑓 (𝑦) + 𝑦
− 𝑎 −

𝑏 (𝑝 + 𝑞) (𝜔 + 𝑦)

𝜇𝜔 + (𝜇 − 𝑐) 𝑦
. (22)

We have 𝑔(0) = (𝛽𝑘/𝑢)(1 − 1/𝑅
0
) > 0 and

𝑓


(𝑦) = − (
𝑎

𝑑
+

𝑝𝑏 (𝜔 + 𝑦)

𝑑𝜇𝜔 + 𝑑 (𝜇 − 𝑐) 𝑦
)

−
𝑑𝑐𝑝𝑏𝜔𝑦

[𝑑𝜇𝜔 + 𝑑 (𝜇 − 𝑐) 𝑦]
2
< 0,

𝑔


(𝑦) =

𝛽𝑘 (𝑦𝑓


(𝑦) − 𝑓 (𝑦))

𝑢(𝑓 (𝑦) + 𝑦)
2

−
(𝑝 + 𝑞) 𝑐𝑏𝜔𝑦

[𝜇𝜔 + (𝜇 − 𝑐) 𝑦]
2

< 0.

(23)

Let 𝛼 = 𝜇𝜔/(𝑐 − 𝜇) be a pole of 𝑔; then, we discuss two cases.

(i) If 𝑐 > 𝜇, then𝛼 > 0. As 𝑧 = 𝑏(𝜔+𝑦)/(𝜇𝜔+(𝜇−𝑐)𝑦) ≥ 0
we deduce that 𝑦 < 𝛼. Hence there is no equilibrium
point if 𝑦 ≥ 𝛼. It is easy to show that

lim
𝑦→𝛼

−

𝑔 (𝑦) = −∞. (24)

Then the function 𝑔 admits a unique root 𝑦∗ on inter-
val ]0, 𝛼[, since 𝑓(0) = 𝜆/𝑑 > 0 and lim

𝑦→𝛼
−𝑓(𝑦) =

−∞. So, there exists a unique 𝑦 ∈]0, 𝛼[ such that
𝑓(𝑦) = 0. We have

𝑔 (𝑦) = −𝑎 −
𝑏 (𝑝 + 𝑞) (𝜔 + 𝑦)

𝜇𝜔 + (𝜇 − 𝑐) 𝑦
< 0. (25)

We deduce that 0 < 𝑦∗ < 𝑦; this implies that 𝑓(𝑦) <
𝑓(𝑦
∗

) < 𝑓(0) because 𝑓 is decreasing on ]0, 𝛼[. Then
0 < 𝑥
∗

< 𝜆/𝑑. Clearly V∗ and 𝑧∗ are positive.
Hence, there exists a unique endemic
𝐸
∗

(𝑥
∗

, 𝑦
∗

, V∗, 𝑧∗) with 𝑦∗ ∈]0, 𝑦[, 𝑥∗ > 0, V∗ > 0,
and 𝑧∗ > 0.
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(ii) If 𝑐 < 𝜇, then 𝛼 < 0 and lim
𝑦→+∞

𝑓(𝑦) = −∞.
Since 𝑓(0) = 𝜆/𝑑 > 0, hence there exists a unique
𝑦 ∈]0, +∞[ such that 𝑓(𝑦) = 0.
We have

𝑔 (𝑦) = −𝑎 −
𝑏 (𝑝 + 𝑞) (𝜔 + 𝑦)

𝜇𝜔 + (𝜇 − 𝑐) 𝑦
< 0. (26)

Using the same technique, we deduce that 𝑥∗, V∗, and
𝑧
∗ are positive.

Thus, there exists a unique endemic𝐸∗(𝑥∗, 𝑦∗, V∗, 𝑧∗)
with 𝑦∗ ∈]0, 𝑦[, 𝑥∗ > 0, V∗ > 0, and 𝑧∗ > 0.

This proves the theorem.

3. Local Stability of Equilibria

Let 𝐸(𝑥, 𝑦, V, 𝑧) be any arbitrary equilibrium. Then the char-
acteristic equation about 𝐸 is given by



−𝑑 −
𝛽V𝑦

(𝑥 + 𝑦)
2
− 𝜉

𝛽𝑥V
(𝑥 + 𝑦)

2
+ 𝑞𝑧 −

𝛽𝑥

𝑥 + 𝑦
𝑞𝑦

𝛽V𝑦
(𝑥 + 𝑦)

2

−
𝛽𝑥V

(𝑥 + 𝑦)
2

− 𝑎 − (𝑝 + 𝑞) 𝑧 − 𝜉
𝛽𝑥

𝑥 + 𝑦
− (𝑝 + 𝑞) 𝑦

0 𝑘 −𝑢 − 𝜉 0

0
𝑐𝜔𝑧

(𝜔 + 𝑦)
2

0
𝑐𝑦

𝜔 + 𝑦
− 𝜇 − 𝜉



= 0. (27)

The characterization of the local stability of the disease-free
equilibrium is given by the following statement.

Theorem 3. Let us define 𝑅
0
= 𝛽𝑘/(𝑢(𝑎 + (𝑝 + 𝑞)(𝑏/𝜇))).

(i) If 𝑅
0
< 1, then 𝐸

𝑓
is locally asymptotically stable.

(ii) If 𝑅
0
> 1, then 𝐸

𝑓
is unstable.

Proof. At 𝐸
𝑓
, (27) reduces to

(𝜇 + 𝜉) (𝜉 + 𝑑) [𝜉
2

+ (𝑢 +
𝛽𝑘

𝑢𝑅
0

) 𝜉 +
𝛽𝑘

𝑅
0

(1 − 𝑅
0
)] = 0,

(28)

where the roots are

𝜉
1
= − 𝜇,

𝜉
2
= − 𝑑,

𝜉
3
= (− (𝑢 +

𝛽𝑘

𝑢𝑅
0

)

−√(𝑢 +
𝛽𝑘

𝑢𝑅
0

)

2

− 4
𝛽𝑘

𝑅
0

(1 − 𝑅
0
)) (2)

−1

,

𝜉
4
= (− (𝑢 +

𝛽𝑘

𝑢𝑅
0

)

+√(𝑢 +
𝛽𝑘

𝑢𝑅
0

)

2

− 4
𝛽𝑘

𝑅
0

(1 − 𝑅
0
)) (2)

−1

.

(29)

It is clear that 𝜉
1
, 𝜉
2
, and 𝜉

3
are negative. Moreover, 𝜉

4

is negative when 𝑅
0
< 1; thus, 𝐸

𝑓
is locally asymptotically

stable.

Now, we focus on local stability of the chronic infection
equilibrium 𝐸

∗. It is easy to verify that the point 𝐸∗ does not
exist if 𝑅

0
< 1 and 𝐸∗ = 𝐸

𝑓
when 𝑅

0
= 1. If 𝑅

0
> 1, then we

have the following theorem.

Theorem 4. If 𝑅
0
> 1, then the chronic infection equilibrium

𝐸
∗ is locally asymptotically stable.

Proof. We assume that 𝑅
0
> 1. At 𝐸∗, (27) reduces to

𝜉
4

+ 𝑎
1
𝜉
3

+ 𝑎
2
𝜉
2

+ 𝑎
3
𝜉 + 𝑎
4
= 0, (30)

where

𝑎
1
= 𝑢 + 𝑁 + 𝜙

1
,

𝑎
2
= 𝑁 (𝑢 + 𝜙

1
) + 𝑢(𝑑 +

𝛽V∗

𝑥
∗
+ 𝑦
∗

) + 𝜙
2
+𝑀𝑦

∗

(𝑝 + 𝑞) ,

𝑎
3
= 𝑁 (𝑢𝜙

1
+ 𝜙
2
) + 𝑢𝜙

3
+ 𝜙
4
+𝑀𝑦

∗

𝑢 (𝑝 + 𝑞) ,

𝑎
4
= 𝑢 (𝑁𝜙

3
+ 𝜙
4
) ,

(31)

with

𝑀 =
𝑐𝜔𝑧
∗

(𝜔 + 𝑦
∗
)
2
,

𝑁 = 𝜇 −
𝑐𝑦
∗

𝜔 + 𝑦
∗

,
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𝐶
1
=

𝛽V∗𝑦∗

(𝑥
∗
+ 𝑦
∗
)
2
,

𝐶
2
=

𝛽V∗𝑥∗

(𝑥
∗
+ 𝑦
∗
)
2
+ 𝑞𝑧
∗

,

𝜙
1
= 𝑎 + 𝑑 + 𝐶

1
+ 𝐶
2
+ 𝑝𝑧
∗

,

𝜙
2
= 𝑑𝐶
2
+ (𝑑 + 𝐶

1
) (𝑎 + 𝑝𝑧

∗

) ,

𝜙
3
= 𝐶
1
(𝑎 + 𝑝𝑧

∗

) +
𝑑𝛽V∗

𝑥
∗
+ 𝑦
∗

,

𝜙
4
= 𝑀𝑦

∗

[(𝑝 + 𝑞) 𝑑 + 𝑝𝐶
1
] .

(32)

Clearly when 𝑅
0
> 1, 𝑎

1
, 𝑎
2
, 𝑎
3
, and 𝑎

4
are positive. In

addition,


𝑎
1
1

𝑎
3
𝑎
2



= 𝑢𝑑 (𝐶
2
+ 𝑎 + 𝑑 + 𝑝𝑧

∗

)

+ 𝑁 (𝑎𝑢 + 𝑎𝑑 + 𝑎
2
+ 𝜙
2
+ 𝑑𝜙
1
)

+ 𝑑𝜙
2
+ 𝑎
2
(𝑎 + 𝐶

2
) + 𝐶
1
(𝑎
2
− 𝑝𝑀𝑦

∗

) > 0.

(33)

In the same manner, we have


𝑎
1
1 0

𝑎
3
𝑎
2
𝑎
1

0 𝑎
4
𝑎
3



= 𝑎
3



𝑎
1
1

𝑎
3
𝑎
2



− 𝑎
2

1
𝑎
4
> 0. (34)

From the Routh-Hurwitz theorem given in [12], all roots of
(30) have negative real parts.Then𝐸∗ is locally asymptotically
stable when 𝑅

0
> 1.

4. Global Stability of Equilibria

In this section, we establish the global stability of the
equilibria. Firstly, we have the following result.

Theorem5. Thedisease-free equilibrium𝐸
𝑓
is globally asymp-

totically stable when 𝑅
0
≤ 1.

Proof. Define

𝐷 = {(𝑥, 𝑦, V, 𝑧) ∈ R
4

+
: 𝑧 ≥

𝑏

𝜇
} . (35)

We see that any solution (𝑥(𝑡), 𝑦(𝑡), V(𝑡), 𝑧(𝑡)) starting in
𝐷 remains there forever. Indeed, fromTheorem 1 we get that
(𝑥(𝑡), 𝑦(𝑡), V(𝑡), 𝑧(𝑡)) ∈ R4

+
. It remains to prove that 𝑧(𝑡) ≥ 𝑏/𝜇

with 𝑧
0
≥ 𝑏/𝜇. From the fourth equation of (3), we get

𝑧 (𝑡) ≥
𝑏

𝜇
+ (𝑧
0
−
𝑏

𝜇
) 𝑒
−𝜇𝑡

. (36)

This implies that 𝑧(𝑡) ≥ 𝑏/𝜇. Hence (𝑥(𝑡), 𝑦(𝑡), V(𝑡), 𝑧(𝑡)) ∈ 𝐷.

If 𝑅
0
≤ 1, let us define a function 𝑉 on𝐷 as follows:

𝑉 = 𝑦 +
𝛽

𝑢𝑅
0

V. (37)

Calculating the time derivative of𝑉 along the solution of (3),
we obtain

�̇� =
𝛽

𝑅
0

(
𝑥

𝑥 + 𝑦
𝑅
0
− 1) V − (𝑝 + 𝑞) (𝑧 −

𝑏

𝜇
)𝑦,

≤
𝛽

𝑅
0

(𝑅
0
− 1) V.

(38)

Since 𝑅
0
≤ 1, then �̇� ≤ 0. Furthermore, if 𝑆 is the set of

solutions of the system, where �̇� = 0, then the Lyapunov-
LaSalle theorem [13] implies that all paths in𝐷 approach the
largest positively invariant subset of the set 𝑆. Here, 𝑆 is the
set, where V = 0. On the boundary of𝐷, where V = 0, we have
𝑦 = 0, �̇� = 𝜆 − 𝑑𝑥, and �̇� = 𝑏 − 𝜇𝑧. Then

lim
𝑡→+∞

𝑥 (𝑡) =
𝜆

𝑑
, lim

𝑡→+∞

𝑧 (𝑡) =
𝑏

𝜇
. (39)

Thus, all solution paths in 𝐷 approach the disease-free equi-
librium𝐸

𝑓
when𝑅

0
≤ 1. Hence, 𝐸

𝑓
is globally asymptotically

stable in𝐷.

To study the global stability of the chronic infection
equilibrium, we will use the geometric approach defined by
Li andMuldowney in [14]. A short overview of this geometric
approach can be found in [15–17]. In a more simple way,
Theorem 5.3 in [14] requires three conditions ensuring that
global stability of a given equilibrium point is verified.

The first condition is the existence of a unique locally
stable endemic equilibrium. Indeed, as proved in
Theorem 4 from this paper, 𝐸∗ is the unique locally
stable endemic equilibrium when 𝑅

0
> 1.

The second condition is the existence of a compact
set in the interior of the definition domain of the
solutions𝐷 defined in the proof ofTheorem 5, which
is absorbing for the system (3). This is equivalent as
shown in [18] to the uniform persistence of the state
variables and the boundness of 𝐷. In our case, we
proved in Theorem 1 that all solutions in system (3)
are bounded.Thus the set𝐷 is also bounded. Further,
we have proved in Theorem 3 that the disease-free
equilibrium 𝐸

𝑓
is unstable if 𝑅

0
> 1. This instability

of 𝐸
𝑓
on 𝜕𝐷 implies the uniform persistence [19].
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The third condition is the fulfillment of the Bendixson
criterion [14]. In order to verify this third condition,
we consider the following subsystem of (3):

�̇� = 𝜆 − 𝑑𝑥 −
𝛽V𝑥
𝑥 + 𝑦

+ 𝑞𝑦𝑧,

̇𝑦 =
𝛽V𝑥
𝑥 + 𝑦

− 𝑎𝑦 − (𝑝 + 𝑞) 𝑦𝑧,

V̇ = 𝑘𝑦 − 𝑢V.

(40)

The Jacobian matrix of system (40) is

𝐽 = (

−𝑑 −
𝛽V𝑦

(𝑥 + 𝑦)
2

𝛽V𝑥
(𝑥 + 𝑦)

2
+ 𝑞𝑧 −

𝛽𝑥

𝑥 + 𝑦

𝛽V𝑦
(𝑥 + 𝑦)

2
−

𝛽V𝑥
(𝑥 + 𝑦)

2
− 𝑎 − (𝑝 + 𝑞) 𝑧

𝛽𝑥

𝑥 + 𝑦

0 𝑘 −𝑢

)

(41)

and its second addictive compound matrix is

𝐽
[2]

=
(
(

(

−𝑑 −
𝛽V
𝑥 + 𝑦

− 𝑎 − (𝑝 + 𝑞) 𝑧
𝛽𝑥

𝑥 + 𝑦

𝛽𝑥

𝑥 + 𝑦

𝑘 −𝑑 −
𝛽V𝑦

(𝑥 + 𝑦)
2
− 𝑢

𝛽V𝑥
(𝑥 + 𝑦)

2
+ 𝑞𝑧

0
𝛽V𝑦

(𝑥 + 𝑦)
2

−
𝛽V𝑥

(𝑥 + 𝑦)
2

− 𝑎 − (𝑝 + 𝑞) 𝑧 − 𝑢

)
)

)

. (42)

In this case, we choose 𝑃 = diag(1, 𝑦/V, 𝑦/V). Hence,

𝑃
𝑓
𝑃
−1

= diag(0,
̇𝑦

𝑦
−
V̇
V
,
̇𝑦

𝑦
−
V̇
V
) , (43)

where matrix 𝑃
𝑓
is obtained by replacing each entry 𝑝

𝑖𝑗
of 𝑃

by its derivative in the direction of solution of (40).Moreover,
we have

𝐵 = 𝑃
𝑓
𝑃
−1

+ 𝑃𝐽
[2]

𝑃
−1

= (
𝐵
11
𝐵
12

𝐵
21
𝐵
22

) , (44)

where

𝐵
11
= − 𝑑 −

𝛽V
𝑥 + 𝑦

− 𝑎 − (𝑝 + 𝑞) 𝑧,

𝐵
12
= (

𝛽V𝑥
𝑦 (𝑥 + 𝑦)

𝛽V𝑥
𝑦 (𝑥 + 𝑦)

) ,

𝐵
21
= (

𝑘
𝑦

V
0

) ,

𝐵
22
= (

̇𝑦

𝑦
−
V̇
V
− 𝑑 − 𝑢 −

𝛽V𝑦
(𝑥 + 𝑦)

2

𝛽V𝑥
(𝑥 + 𝑦)

2

+ 𝑞𝑧

𝛽V𝑦
(𝑥 + 𝑦)

2

̇𝑦

𝑦
−
V̇
V
− 𝑎 − (𝑝 + 𝑞) 𝑧 − 𝑢 −

𝛽V𝑥
(𝑥 + 𝑦)

2

).

(45)

Let (𝑤
1
, 𝑤
2
, 𝑤
3
) be a vector in R3; choose a norm in R3

defined as follows: |𝑤
1
, 𝑤
2
, 𝑤
3
| = max{|𝑤

1
|, |𝑤
2
| + |𝑤

3
|} and

let 𝜇 be the Lozinskii measure with respect to this norm.Then
we have the following estimate; see [20]:

𝜇 (𝐵) ≤ sup {𝑔
1
, 𝑔
2
} , (46)

where 𝑔
1
= 𝜇
1
(𝐵
11
) + |𝐵

12
| and 𝑔

2
= |𝐵
21
| + 𝜇
1
(𝐵
22
); here 𝜇

1

denotes the Lozinskii measure with respect to 𝑙
1
vector norm

and |𝐵
12
| and |𝐵

21
| are matrix norms with respect to 𝑙

1
norm.

Moreover, we have

𝜇
1
(𝐵
11
) = − 𝑑 −

𝛽V
𝑥 + 𝑦

− 𝑎 − (𝑝 + 𝑞) 𝑧,

𝐵12
 =

𝛽V𝑥
𝑦 (𝑥 + 𝑦)

=
̇𝑦

𝑦
+ 𝑎 + (𝑝 + 𝑞) 𝑧,

𝐵21
 =

𝑘𝑦

V
=
V̇
V
+ 𝑢,
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𝜇
1
(𝐵
22
) = max{

̇𝑦

𝑦
−
V̇
V
− 𝑑 − 𝑢,

̇𝑦

𝑦
−
V̇
V
− 𝑎 − 𝑢 − (𝑝 + 𝑞) 𝑧}

≤
̇𝑦

𝑦
−
V̇
V
− 𝑢 − 𝛿.

(47)

Hence, we obtain

𝑔
1
=

̇𝑦

𝑦
− 𝑑 −

𝛽V
𝑥 + 𝑦

,

𝑔
2
≤

̇𝑦

𝑦
− 𝛿.

(48)

Therefore,

𝜇 (𝐵) ≤
̇𝑦

𝑦
− 𝛿. (49)

Consequently,

𝑞
2
= lim
𝑡→∞

sup sup
𝑋
0

∈𝐾

1

𝑡
∫

𝑡

0

𝜇 (𝐵) 𝑑𝑠 ≤ −
𝛿

2
< 0, (50)

which implies that the third condition is realized. Hence, the
conditions of Theorem 3.5 in [14] are fulfilled; consequently,
the endemic equilibrium (𝑥

∗

, 𝑦
∗

, V∗) of the subsystem (40) is
globally asymptotically stable.

Now, consider the fourth equation of system (3)

�̇� = 𝑏 +
𝑐𝑦𝑧

𝜔 + 𝑦
− 𝜇𝑧, (51)

and its limit system is

�̇� = 𝑏 +
𝑐𝑦
∗

𝑧

𝜔 + 𝑦
∗

− 𝜇𝑧. (52)

Since 𝜇 − 𝑐𝑦∗/(𝜔 + 𝑦∗) = 𝑏/𝑧∗, we get

�̇� = 𝑏 (1 −
𝑧

𝑧
∗

) . (53)

Therefore,

lim
𝑡→∞

𝑧 (𝑡) = 𝑧
∗

. (54)

Thus, the endemic equilibrium 𝐸
∗ is globally asymptotically

stable.
Summarizing the above, we have established the follow-

ing result.

Theorem 6. The chronic infection equilibrium 𝐸
∗ is globally

asymptotically stable if 𝑅
0
> 1.

5. Conclusion and Discussion

In this paper, we have presented a mathematical model
based on a nonlinear system of differential equations. The
population cells were partitioned into four classes, uninfected

target cells, infected cells, free virus, and CTL cells. The
basic reproduction number 𝑅

0
corresponding to our model

is independent of the liver size. Then, our model is more
reasonable than the model presented in [2] to describe the
HBV infection. In addition, we have proved the existence,
positivity, and the boundedness of solutions of the problem,
which implies that the model is well posed. By analyzing
the model, we have shown that the disease-free equilibrium
𝐸
𝑓
is globally asymptotically stable if the basic reproduction

number satisfies 𝑅
0
≤ 1, which leads to the eradication

of virus from the liver. When 𝑅
0
> 1, the disease-free

equilibriumbecomes unstable and a unique chronic infection
equilibriumexists and is globally asymptotically stable. In this
case, the virus persists in the population.

From our main results summarized above, we conclude
that the dynamical behavior of our model is completely
determined by the basic reproduction number𝑅

0
.This allows

determining the strategies to control the HBV infection by
reducing the value of 𝑅

0
to below or equal one (the case

when 𝐸
𝑓
is globally asymptotically stable). From the explicit

formula (4) for 𝑅
0
, we see that 𝑅

0
can be decreased by

increasing the export of precursor CTL cells from the thymus
and both cytolytic and noncytolytic mechanisms.This obser-
vation shows that the CTL immune response plays a critical
role in eradication of virus from the liver. On the other hand,
𝑅
0
can be decreased by decreasing the parameters 𝛽 and 𝑘

which represent the rates of infection andproduction of virus,
respectively. To do this biologically, we improve better our
model by introducing the nucleoside analogues lamivudine
or adefovir dipivoxil drug treatment in order to stop the
virus from replicating. In addition, nucleoside analogues
may also interfere with de novo infection of hepatocytes by
hindering the transformation of relaxed circular DNA into
cccDNA [21]. So, under therapy both production rate of new
virions (𝑘) and the rate of de novo infection (𝛽) are reduced.
Consequently, our model becomes

�̇� = 𝜆 − 𝑑𝑥 − (1 − 𝜂)
𝛽V𝑥
𝑥 + 𝑦

+ 𝑞𝑦𝑧,

̇𝑦 = (1 − 𝜂)
𝛽V𝑥
𝑥 + 𝑦

− 𝑎𝑦 − (𝑝 + 𝑞) 𝑦𝑧,

V̇ = (1 − 𝜖) 𝑘𝑦 − 𝑢V,

�̇� = 𝑏 +
𝑐𝑦𝑧

𝜔 + 𝑦
− 𝜇𝑧,

(55)

where the parameters 𝜂 and 𝜖measure the efficacy of the ther-
apy. An efficacy of 0 (0%) denotes that there is no inhibition,
whereas an efficacy of 1 (100%) denotes complete inhibition.
The basic reproduction number 𝑅

0𝑇
under therapy becomes

𝑅
0𝑇
=

(1 − 𝜖) (1 − 𝜂) 𝛽𝑘

𝑢 (𝑎 + (𝑝 + 𝑞) (𝑏/𝜇))
, (56)

which implies that the basic reproduction number can be
decreased by increasing the efficacy of drug treatment.
Therefore, the results obtained from thiswork can be useful to
determine an effective treatment against the hepatitis B virus.
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