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Abstract: The aim of the research was to prepare low-cost adsorbents, including raw date pits and
chemically treated date pits, and to apply these materials to investigate the adsorption behavior
of Cr(III) and Cd(II) ions from wastewater. The prepared materials were characterized using SEM,
FT-IR and BET surface analysis techniques for investigating the surface morphology, particle size,
pore size and surface functionalities of the materials. A series of adsorption processes was conducted
in a batch system and optimized by investigating various parameters such as solution pH, contact
time, initial metal concentrations and adsorbent dosage. The optimum pH for achieving maximum
adsorption capacity was found to be approximately 7.8. The determination of metal ions was
conducted using atomic adsorption spectrometry. The experimental results were fitted using isotherm
Langmuir and Freundlich equations, and maximum monolayer adsorption capacities for Cr(III) and
Cd(II) at 323 K were 1428.5 and 1302.0 mg/g (treated majdool date pits adsorbent) and 1228.5 and
1182.0 mg/g (treated sagai date pits adsorbent), respectively. It was found that the adsorption
capacity of H2O2-treated date pits was higher than that of untreated DP. Recovery studies showed
maximal metal elution with 0.1 M HCl for all the adsorbents. An 83.3–88.2% and 81.8–86.8% drop
in Cr(III) and Cd(II) adsorption, respectively, were found after the five regeneration cycles. The
results showed that the Langmuir model gave slightly better results than the Freundlich model for
the untreated and treated date pits. Hence, the results demonstrated that the prepared materials
could be a low-cost and eco-friendly choice for the remediation of Cr(III) and Cd(II) contaminants
from an aqueous solution.

Keywords: date pits; adsorption; metal ions; model studies

1. Introduction

Over the last decade, the identification of toxic elements, particularly in water, has
grown into a key issue of public interest [1]. Among them, heavy metals have received
great attention because of their deadly nature [2]. Heavy metals are increasingly worrisome
due to their prospective influences on the environment and human health [2–4]. Owing
to their physical and chemical properties, they have are extensively disseminated into
the surroundings and are used in industrial areas including agricultural, medical and
domestic [5–7]. Industrial effluents are a major source of environmental pollution and
exposure to human beings [8]. Heavy metals are frequently present in water bodies, and
most of them are regarded as highly lethal even in very small amounts [9,10]. Heavy
metals, for instance, lead, cadmium, chromium, cobalt, arsenic, mercury and nickel, are
listed as very toxic elements [11]. These metals are assumed to be ubiquitous toxicants, and
their deadliness is influenced by many factors, for instance, the amounts of heavy metal
doses, types of elements and exposure route [12–14]. Heavy metals can be transported into
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the human body via many sources, for instance, water, air, skin and food, and can become
more lethal in the human body when they are not completely digested and stored in the
muscle [15,16]. They may damage various vital human organs such as gastrointestinal,
kidneys, bones, endocrine glands and central nervous system [17–20]. Prolonged exposure
to heavy metal has been associated with a number of deteriorating illnesses of these human
vital organs and may increase the threat of cancer diseases [19,21]. A few heavy metals are
also important for life and show a unique role in the metabolic system of human beings,
for instance, the functioning of of acute enzyme locations; however, they can damage the
organism in higher amounts [22]. Based on their carcinogenicity in experimental animals,
some heavy metals (cadmium, arsenic, nickel and chromium) have been categorized as
probable human carcinogens (Group 1) by the International Agency for Research on Cancer
(IARC) and the Environmental Protection Agency (EPA) [23].

To standardize the uncontrollable release of these unsafe toxins in water, either origi-
nating from natural or wastewater sources, innovative and modern water treatment tools
are offered worldwide. Numerous methods, for instance, ion exchange, membrane filtra-
tion, sola water evaporation, electrochemical process and others, have been applied to
eradicate these lethal chemicals [24–27]. Nevertheless, the conventional methods seem to
be inappropriate to apply in the elimination of heavy metals at low levels. In addition, they
harm both natural life and the environment. In recent years, the adsorption method has
been found to be appropriate for the removal of contaminants from polluted water samples.
Moreover, the adsorption method was found to be low-cost, easy to use, eco-friendly, and
highly effective compared to earlier methods [28–30]. The adsorption method comprises
the separation and aggregation of target analytes from one stage to another [30]. The
adsorption system is quite easy to work with and is very effective in the elimination of
deadly contaminants at low levels [30,31].

In the present work, we prepared low-cost adsorbents from date pits and applied
them for the removal of potential heavy metals (cadmium and chromium) from aqueous
solutions. Date seeds are abundant in Saudi Arabia, and the presence of various functional
groups such as carboxylic acid, ester, carboxylate, hydroxyl, phenolic and amino in the
materials allow them to serve as potential adsorbents for the removal of heavy metal
ions. The negative (–OH) surface functionalities of the as-prepared date pit powders were
enhanced by treating them with hydrogen peroxide overnight with a magnetic stirrer. SEM,
BET and FT-IR techniques were used to analyze the as-prepared and treated samples, con-
firming the excellent surface morphology and particle size of the adsorbent materials. The
H2O2-treated date pits adsorbents showed outstanding adsorption capabilities, suggesting
that the materials could be effective for the removal of toxic metals (Cr(III) and Cd(II)) from
aqueous solutions.

2. Materials and Methods
2.1. Chemicals and Reagents

Experiments were carried out using a digital weight balance, 1000 mL beaker, 100 mL
conical flask, funnel and 1000 mL volumetric flask. Analytical-grade solvents and chemi-
cals were used throughout the experiments. The chloride salts of metals were procured
from BDH chemical supplier (Poole, UK). Sodium hydroxide (NaOH) and hydrochlo-
ric acid, which were used for the pH adjustment, were provided by Sigma-Aldrich,
St. Louis, MO, USA. Sulfuric acid (H2SO4), nitric acid (HNO3) and ammonium hydroxide
(NH4OH) were bought from Merck, Germany. Hydrogen peroxide (H2O2) solution of
30% v/v was purchased Sigma-Aldrich, Taufkirchen, Germany. The DI water used during
the whole experiment was produced from milli-Q water purification system (USA). Unless
otherwise stated, all other chemicals used in the experiments were analytical grade.

2.2. Instrumentation

The point of zero charge was determined using the salt-addition method (pHPZC).
SEM (SEM, Jeol JSM 5400 LV, Jeol Ltd., Tokyo, Japan) was used to examine the surface
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morphology of the as-prepared date pits and the treated date pits materials. The surface
was smooth. Fourier transform infrared spectroscopy (FT-IR, Thermo Scientific Nicolet
6700) with KBr dilution at 1:100 weight ratio corresponding to the wave numbers 400 and
4000 cm−1 were recorded with an average of 32 scans with a resolution of ±4 cm−1 to
explore the surface functionalities of the groups present over the synthesized adsorbents.
The pore size and surface area of samples were determined using a BET surface area
analyzer (Micromeritics–Gemini VII 2390 V1.03). A multifunctional X-ray diffractometer
was used to determine the surface crystallinity and average particle size of the samples
(XRD, Ultima IV, Rigaku).

2.3. Preparation of Standard Solution

The volumetric flask (1000 mL) was cleaned, oven-dried and labeled. All the stock
standard solutions of metal ions including Cr(III) and Cd(II) of concentration 1000 ppm
were prepared individually in DI water by accurately weighing their respective salts. The
stock solutions were then diluted to the desired concentration ranges using the continuous
dilution method. For calibration purposes, the sample was diluted to 10 ppm, 6 ppm,
4 ppm and 2 ppm.

2.4. Preparation of Biosorbent

Two types of dates (7 of each kg) were purchased from different local market stores in
Riyadh, Saudi Arabia. The varieties of dates chosen were majdool and sagai. The seeds
were separated from their original date fruits. Pictures of the collected date samples and
seeds are shown in Figure 1. The separated seeds were rinsed several times with clean tap
water and then with distilled water (DI) to eliminate any traces of consumable parts, dirt
and dust from them. Then, the clean seeds were dried in sunlight for several days and
then oven-dried at 80 ◦C for 2 h. Then, the dried seeds were taken out from the oven and
mechanically crushed using hammering and blending (Moulinex, 700 W) to powder form.
Further, the powder was crushed with a ball mill to prepare fine powder of homogeneous
size. Finally, the powder was sieved through 120 µM size sieve to get fine powder and
stored in clean and dry glass bottles. The adsorbents were named MDP (majdool date pits)
and SDP (sagai date pits), respectively.

2.5. H2O2 Treatment of Date Powders

Both the prepared MDP and SDP powder samples were treated with H2O2 (200 mL,
30% v/v) for the possible introduction of negative functionalities (-OH) onto the adsorbent
surface. It also helps to decompose organic content, reduce the biomass recalcitrance and
prevent cellulose degradation of the MDP and SDP powder [32]. This process was carried
out by taking 10 g powders of each date type in a 100 mL beaker individually and 100 mL
H2O2 solution and adding them into the beakers. Then, for proper mixing, a magnetic
bar was placed inside each beaker, and the beakers were kept overnight in a magnetic
stirrer at 125 rpm. Finally, the suspension was filtered through Buckner funnel using a
vacuum pump and washed several times with DI water to remove any traces of H2O2.
Then, the filtered powders were dried overnight with an oven at 90 ◦C. Then, they were
taken out, allowed to cool and stored in clean glass bottles until further testing for metal
ions adsorption. The treated materials were named TMDP and TSDP for majdool and sagai
date pits, respectively.
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2.6. Adsorption and Desorption Studies

Removal of heavy metal ions was carried out through batch adsorption studies. To do
so, 0.05 g powder of each date’s seeds adsorbents were put into a previously cleaned and
dry 100 mL Erlenmeyer flask, and 20 ppm (Co) metal solutions were added individually
into the flask. The solutions in the flasks were kept in a shaker overnight with a speed
of 100 rpm to allow equilibration. The mixtures were then filtered and stored in a cool
and dry place. At equilibrium, the concentration of metal ions, Ce, was quantitatively
determined by atomic adsorption spectroscopies, AAS (Thermo Scientific Evolution 600,
Waltham, MA, USA).

The percentage adsorption (%) and metal ions removal capacity of the adsorbents
at equilibration time (qe) and at arbitrary time t (qt) were calculated according to
Equations (1)–(3) [32]:

Adsorption% =
(Co −Ce)

Co
× 100 (1)

adsorption capacity at equilibrium
(
qe
)
= (Co −Ce)×

V
m

(2)

adsorption capacity at time t (qt) = (Co −Ct)×
V
m

(3)
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where Co, Ce, and Ct are the initial, equilibrium and at-time-t concentrations, respectively
(mg/L), of heavy metal solution; V is the volume (L) of heavy metal solution; and m is
the mass (g) of adsorbents. The adsorption capacities, both (qe) and (qt), were calculated
as mg/g.

The initial pH (pHi) of metal solutions of Co, 25 mg/L, was changed from 2 to 10 for
the pH investigations. The effects of metal ion starting concentration (Co) on adsorption
were investigated in the range of 20–100 mg/L at temperatures ranging from 293 to 323 K.
The contact time (t) experiment for the target analytes adsorption at Co of 25 mg/L were
carried out at intervals ranging from 2 min to 24 h.

For desorption experiments, adsorbents (0.05 g) were initially saturated for 24 h with
metal ions solutions (50 mL; 25 mg/L) individually. To remove unadsorbed traces of
treated metal ions, saturated adsorbents were gently rinsed with DI water. Thereafter, the
metal ions from saturated adsorbent samples were eluted using different eluents, including
NaOH, HNO3, HCl, H2SO4 and CH3COOH solutions (50 mL; 0.1 mol/L). The concen-
tration of metal ions in the eluent was quantitatively determined, and the corresponding
percentage of desorption (% Desorption) was calculated as:

%Desorption = (Concentration of metal ion desorbed/Concentration of metal ions
adsorbed on adsorbent) × 100

2.7. Thermodynamic Studies of Metal Ions Adsorptions

Thermodynamic parameters are very important for adsorption studies, indicating the
spontaneity of the adsorption process. The negative value of Gibb’s free energy change
(∆G◦) for a given temperature indicates the spontaneity of the adsorption process. Among
the parameters, Gibb’s free energy change (∆G◦) were calculated using Equation (1)

∆G◦ = −RT lnKa, (4)

while the change in enthalpy (∆H◦) and change in entropy (∆S◦) were determined using
the equation,

∆G◦ = ∆H◦ − T∆S◦ (5)

where R is the gas constant (8.314 J/mol K), T is the temperature in Kelvin (K) and Ka is
the Langmuir constant [33].

3. Results and Discussion
3.1. Characterization
3.1.1. Analysis of Adsorbent’s Surface and Pore Size

Surface morphology and physical properties of different as-prepared and treated
adsorbents were investigated by SEM. Figure 2 shows the SEM images of MDP, TMDP,
SDP and TSDP samples. The SEM image indicates the rough, highly porous and defined
structure surface morphologies of the adsorbents suitable for metal adsorption. In addition,
the SEM micrographs revealed that the treated date pits (TMDP, TSDP) were of higher
porosity compared to the raw material (MDP, SDP). The Energy Dispersive X-ray Spec-
troscopy Analysis (EDX) was performed to determine the composition of the adsorbents,
which confirms that the adsorbents consisted of carbon and negative heteroatoms such
as oxygen and nitrogen. Upon H2O2 treatment, the adsorbents show a higher amount of
oxygen, as expected (33 to 41%), indicating the conversion of DPs into negatively charged
surfaces (Table 1).
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Table 1. EDX analysis of the as-prepared (MDP, SDP) and treated (TMDP, TSDP) materials.

Element (keV)
Mass%

MDP Error SDP Error TMDP Error TSDP Error

C··K 0.277 40.11 0.10 40.10 0.11 37.22 0.10 37.80 0.11
N··K 0.392 26.64 0.28 27.60 0.25 21.4 0.09 22.30 0.06
O··K 0.525 33.26 0.08 32.30 0.07 41.38 0.06 39.90 0.09
Total 100 100 100 100

The BET surface areas were determined for untreated and H2O2-treated date pit
powder. The surface area for treated materials was found to increase from 2.94 to 9.97 m2/g
in TMDP, while for TSDP, the areas changed from 2.80 to 9.46 m2/g. These changes in
areas indicate the development of porosity during the H2O2 treatment of the as-prepared
materials and enhancing their adsorption properties [32]. The adsorption average pore
widths of both H2O2-treated and untreated dates pit powder were found to be in the range
of 5–10 nm.

3.1.2. Fourier-Transform Infrared Spectroscopic Analysis (FTIR)

Before and after metal ion adsorption, FTIR was used to better understand the ad-
sorption mechanism for both as-prepared and treated adsorbents. FTIR is a useful tool
for identifying the functional groups on the surface of the adsorbent and how they are
affected by the experimental circumstances. RDP is a type of lignocellulosic material made
up primarily of cellulose, hemicellulose, lignin and protein. Oxygen-rich components
such as hydroxyl, ether and carbonyl functional groups are abundant in cellulose and
hemicellulose. The ability of RDP to adsorb heavy metals is explained by the presence
of these groups on its surface [34]. Figure 3 (upper panel) shows a broad peak in the
3230–3560 cm−1 range, indicating the presence of -OH, -NH or both, which is characteristic
of lignocellulosic organic polymers [35]. The two peaks at 2921 and 2843 cm−1 indicate
aliphatic C-H stretching vibrations. Peaks at 1739, 1602 and 1039 cm−1 show the presence
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of C=O (unconjugated carbonyl), C=C and C-O, respectively, with the small peaks between
C=C and C-O referring to methyl group bending peaks [34,36]. The phenolic and C–O
stretching vibrations of carboxylates produced a band at 1403–1432 cm−1. The bands
between 1200 and 1350 cm−1 and 1000 and 1150 cm−1 were due to carboxylic acid and
C–O–C vibrations, respectively. The presence of -OH polysaccharide groups is confirmed
by a band at 500–700 cm−1. A minor shift (to higher wavenumbers) in peak position
and increases in peak intensities were observed after Cr(III) and Cd(II) adsorption on
adsorbents at peaks 3230–3560 cm−1,1739 cm−1 and 1039 cm−1. A minor shift (to higher
wavenumbers) in peak position and increases in peak intensities were observed after Cr(III)
and Cd(II) adsorption on adsorbents at peaks 3230–3560 cm−1, 1739 cm−1 and 1039 cm−1,
which shows the involvement of the corresponding moieties in adsorption of metal ions.
From these findings, it can be postulated that -OH or NH C=O and C-O functions were
principally responsible for binding Cr(III) and Cd(II) over the surface via electrostatic
interactions and lone-pair donation [32]. As a result, electrostatic interactions, as well as
coordination-binding, could be the possible mechanism for metal adsorption.
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Figure 3. FT-IR of TMDP, TMDP-Cr(III), TSDP and TSDP-Cr(III). (Experimental conditions: Co: 25 mg/L; m: 0.005 g; V:
0.05 L; T: 25 ◦C; contact time: 5 h; agitation speed: 100 rpm).

3.2. Adsorption Properties
3.2.1. Effect of pH

Adsorptions of Cr(III) and Cd(II) on MDP, TMDP, SDP and TSDP were studied for pHi
range: of 2.9 to 11.1, while pH higher than that was excluded to avoid any precipitation
of metal ions as hydroxide species [37]. All the metal ions are cationic in solutions, and
there is a possibility of competition in adsorption between the metal ions and the proton
(H+) in the initial pH (pHi) range considered in this experiment. The adsorption capacities
of Cr(III) ions were initially found to be increased and reached the maximum values
of 158 mg/g and 192 mg/g at pH 7.8, while for Cd(II), it reached its highest values of
108 mg/g and 121 mg/g at pH 7.8, which was also true for MDP and TMDP, respectively.
Similarly, adsorption capacities of Cr(III) were found to be increased from 56 to 132 mg/g
and 86 to 193 mg/g for the pH increments of 2.9 to 6.5, while for Cd(II), the adsorption
capacities were found to be maximum 94 mg/g and 148 mg/g at pH 7.8 for SDP and TSDP,
respectively. The decrease in adsorption capacities was recorded for a further increase in
pH (Figure 4). The adsorption maxima for both Cr(III) and Cd(II) were observed at pH
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values of 7.8, which were above the point of zero charges (pHPZC) for MDP, TMDP, SDP and
TSDP (Figure 4). At pH 6.3 and 6.5, the pHPZC value becomes zero for Cr(III) and Cd(II),
respectively, indicating the neutral surface of the materials. Below and above this pHpzc
value, the surfaces become positive and negatively charged, respectively. Both Cr(III) and
Cd(II) are cationic; thus, at acidic conditions, it is possible that the surfaces of both TMDP
and TSDP become excessively protonated, which inhibits the binding of metal ions on the
adsorbent surfaces. The protonation decreases with the increase in pH (7.8), resulting in
an increase in Cr(III) and Cd(II) binding over TMDP and TSDP. A drift in the pH graph
was obtained above pH 7.8 during the study (Figure 4), suggesting the occurrences of
neutralization of the adsorbents surface together with adsorption equilibrium.
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Figure 4. Equilibrium adsorbed concentration (qe) as a function of initial pH (pHi) (A,C,E,G), and
pHi versus final pH (pHf) plot (B,D,F,H) for Cr(III) and Cd(II) adsorption onto MDP, TMDP, SDP
and TSDP. (Co: 25 mg/L; m: 0.005 g; V: 0.05 L; T: 25 ◦C; contact time: 5 h; agitation speed: 100 rpm).

3.2.2. Effect of Initial Concentration and Temperature

Adsorption of Cr(III) (at Co: 10, 20, 30, 40 and 50 mg/L) on as-prepared and treated
dates pit adsorbents (TMDP and TSDP) were studied at temperatures range of 20 to 50 ◦C
to determine their corresponding equilibrium isotherms and presented in Figure 5. Initially,
the vertical slopes of the plots represent a rapid increase in solid-phase concentrations
of both Cr(III) and Cd(II) on the treated date pits with the increment of liquid-phase
concentrations. The same trends with lower adsorption capacities were observed for the
as-prepared adsorbents (MDP and SDP, not shown in the Figure). The correlation coeffi-
cient (R2) values for the graph Ce vs. qe at different temperatures were found to be in the
range of 0.8686 to 0.9955 for Cr(III), while they were in the range of 0.9814 to 0.9975 for
Cd(II) adsorption. The increase in their respective concentration gradients might be acting
as a driving force to overcome the resistance barrier mass transfer between solution/solid
phases. Finally, the slopes of the plots started to decrease and become parallel to Ce (x-axis),
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indicating the saturation of both untreated and treated date pit adsorbent surfaces with
Cr(III) adsorption. The adsorption of Cr(III) and Cd(II) on both the untreated and treated
date pit adsorbents were increased with temperature, confirming the endothermic ad-
sorption process, consistent with previous studies on metal ion adsorption [38]. At 293 K
temperature, the adsorption capacities of Cr(III) and Cd(II) on TMDP were 55.3–217 and
15.3–120.0 mg/g, while on TSDP, the solid-phase concentration ranges (qe) were 53.2–199.7
and 11.5–115.0 mg/g respectively. The regular increments in the qe values were noticed
with increasing temperature. At temperatures 303, 313 and 318 K, the solid phase concentra-
tion ranges of Cr(III) on TMDP were 58.3–245.4, 59.9–269.9 and 60.1–278.9, while on TSDP
the ranges of qe were 58.2–201.5, 59.9–209.9 and 60.1–213.9 mg/g, respectively. Similarly,
for Cd(II), the solid phase concentration ranges on TMDP were 19.8–132.0, 20.9–140.0 and
21.5–141.8, while on TSDP, the qe was found in the ranges of 16.2–122.0, 18.2–135.0 and
21.2–139.18 mg/g at temperatures of 303, 313, and 318 K, respectively.
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3.2.3. Effects of Contact Time

Adsorption of Cr(III) and Cd(II) on TMDP and TSDP as a function of contact time
for different concentrations of the metal ions was tested from 5 to 300 min, and Figure 6
illustrates the effects of contact time on adsorption of both the metal ions. Slow adsorption
of both the metal ions was observed on TMDP and TSDP and reached an equilibrium
in 300 min (5 h). The R2 values for the graph of time (min) vs. Qe (mg/g) at various
concentration levels were found to be in the range of 0.7644 to 0.9881 for Cr(III) and 0.8995 to
0.9477 for Cd(II) adsorption. The equilibrium adsorption capacity (Qe) for Cr(III) on TMDP
was 190, 281 and 451 mg/g, while for Cd(II) ions, the Qe was 121, 211 and 371 mg/g for
the concentrations of 20, 30 and 50 ppm, respectively. Similarly, the adsorption capacity
(Qe) for Cr(III) on TSDP was 140, 229 and 359 mg/g, while for Cd(II) ions, the Qe was
109, 198 and 298 mg/g for the concentrations of 20, 30 and 50 ppm, respectively. Lower
adsorption capacities were noticed for as-prepared materials, MDP and SDP (not shown in
the Figure).

3.2.4. Adsorption Modeling
Equilibrium Isotherm

Two-parameter analysis during the study and Langmuir and Freundlich [39] isotherm
models in linear form were used.

Langmuir isotherm model in non-linearized and linearized form is expressed as

qe =
qmkLCe

1 + kLCe
(6)

Ce

qe
=

1
kLqm

+
1

qm
×Ce (7)

where qm (mg/g) and KL (L/mg) are the constants for maximum monolayer adsorption
capacity and a constant related to the heat of adsorption, respectively.

Freundlich isotherm in linear and non-linear form is expressed as [39]

qe = KF ×Ce
1/n (8)

log qe = log KF +
1
n

log Ce (9)

where KF ((mg/g) (L/mg)(1/n)) and n are the Freundlich constants related to bonding
energy and deviation in adsorption from linearity, respectively. If n = 1 (linear adsorption
process), n < 1 (chemical adsorption process), n > 1 (physical adsorption process).

The relevant parameters for Cr(III) and Cd(II) adsorption on TMDP and TSDP at var-
ious temperatures are shown in Table 2. Regression coefficient (R2) values for Cr(III) and
Cd(II) adsorption on both TMDP and TSDP at varied temperatures were comparatively higher
for Langmuir isotherm model, agreeing well with previously reported results of metal ion
adsorption [32,40]. In addition, the applicability of the Langmuir model hints towards a
monolayer metal ions coverage over adsorbents at varied temperatures. Maximum mono-
layer adsorption capacity (qm) for Cr(III) increased from 400 (400/51.99 = 7.693 mmol/g) to
1428 mg/g (1428/51.99 = 27.46 mmol/g) for TMDP and 388 mg/g (388/51.99 = 7.463 mmol/g)
to 1182 mg/g (1182/51.99 = 27.735 mmol/g) for TSDP materials, while the temperature was in-
creased from 293 K to 323 K. The maximum monolayer adsorption for Cd(II) for Cd(II) increased
from 352 mg/g (352/112.4 = 3.132 mmol/g) to 1302 mg/g (1302/112.4 = 11.584 mmol/g) for
TMDP and 332 (332/112.4 = 2.954 mmol/g) to 1182 mg/g (1182/112.4 = 10.516 mmol/g) for
TSDP materials, with increasing temperature from 293 to 323 K. The increase in temperature
may have increased the frequency of collisions between the adsorbents and Cr(III) and Cd(II),
resulting in enhanced adsorption. Additionally, the rise in temperature might have ruptured the
surface bonds of the materials, exposing the active site and thus enhancing metal ion adsorption.
The magnitudes of the separation factor (KL) for both Cr(III) and Cd(II) adsorption on TMDP
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and TSDP at the studied temperature ranges were in the range between 0 and 1, indicating
a favorable adsorption process. The magnitude of KF increased with temperature, as for the
intensification of metal ions and adsorbents interaction with temperature, and the n > 1 values
confirm the physical adsorption process (Table 2).
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Table 2. Isotherm parameters for the adsorption of Cr(III) and Cd(II) on TMDP and TSDP.

Isotherm

Temperature, K

293 303 313 323

Cr(III) Cd(II) Cr(III) Cd(II) Cr(III) Cd(II) Cr(III) Cd(II)

TMDP

Langmuir
qm (mg/g) 400 352 666.67 602 1000 908 1428.5 1302
KL (L/mg) 0.03592 0.02920 0.03727 0.03870 0.05744 0.04344 0.07599 0.05494

R2 0.9929 0.9881 0.9952 0.9897 0.9963 0.9901 0.9981 0.9932
Freundlich
KF (mg/g) 18.5642 12.5642 28.5642 19.258 46.5142 36.2548 68.56142 56.258
(L/mg)1/n

n 1.3821 1.0821 1.6821 1.3021 1.8211 1.5821 1.9821 1.7821
R2 0.9763 0.9485 0.9805 0.9622 0.9884 0.9715 0.9887 0.9810

TSDP

Langmuir
qm (mg/g) 388 332 606.67 552 910 808 1228.5 1182
KL (L/mg) 0.03222 0.02520 0.03327 0.03071 0.05044 0.04004 0.07219 0.0509

R2 0.9909 0.9289 0.9921 0.9611 0.9938 0.9822 0.9941 0.9938
Freundlich
KF (mg/g) 14.2125 8.2314 22.0213 15.1254 37.8541 28. 8254 56.2242 42.1258
(L/mg)1/n

n 1.0132 1.0021 1.2168 1.1021 1.6211 1.3021 1.7621 1.2154
R2 0.9521 0.8257 0.9644 0.8666 0.9788 0.8801 0.9801 0.9002

3.3. Adsorption Kinetics

Pseudo-first-order [41], and pseudo-second-order [42] models in linear form were
used on adsorption kinetic data, and the models in linearized forms are as follows:

log
(
qe1 − qt

)
= log qe −

k1

2.303
× t (10)

t
qt

=
1

k2qe2
2 +

1
qt
× t (11)

where, the adsorption capacities for the pseudo-first-order model and pseudo-second-order
model at equilibria and at time t are denoted by qe1, qe2 and qt, respectively, while k1 and
k2 are the pseudo-first-order and pseudo-second-order rate constants, respectively.

For Cr(III) and Cd(II) adsorption on MDP, TMDP, SDP and TSDP, the obtained kinetic
parameters are shown in Table 3. Higher R2 (closer to unity) supports pseudo-second-order
kinetic model fitting to both the metal ions (II) adsorption data in all the tested adsorption
systems. Similarly, the closeness of the experimental adsorption capacities (qe,exp) to
computed adsorption capacities (qe2,cal.) validate the applicability of the aforementioned
pseudo-second-order model to the data. Ghobadi et al. [43] reported similar results for
La(III) and Ce(III)) adsorption on MnFe2O4-graphene nanoparticles.
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Table 3. Kinetic parameters for the adsorption of Cr(III) and Cd(II) on various DP adsorbents (initial concentration, Co for
Cr(III) and Cd(II) was 20 mg/L).

Kinetics Model
MDP TMDP SDP TSDP

Cr(III) Cd(II) Cr(III) Cd(II) Cr(III) Cd(II) Cr(III) Cd(II)

qe,exp (mg/g) 159 108 191 121 140 109 190 120
Pseudo-first-order

qe1,cal (mg/g) 132 85 151 101 109 79 148 101
K1(1/min) 0.0064 0.0059 0.0062 0.0061 0.0060 0.0058 0.0068 0.0063

R2 0.9787 0.9688 0.9822 0.9588 0.9666 0.9589 0.9787 0.9689
Pseudo-second-order

qe2,cal (mg/g) 162 110 194 123 144 111 195 122
k2 (g/mg.min) 0.0004 0.0009 0.0002 0.0006 0.0006 0.0005 0.0008 0.0007

R2 0.9907 0.9818 0.9877 0.9900 0.9811 0.9901 0.9878 0.9719

3.4. Adsorption Thermodynamics

Thermodynamic parameters relating to Cr(III) and Cd(II) adsorption on various
adsorbents, such as standard changes of entropy (∆S◦), enthalpy (∆H◦) and free energy
(∆G◦), are calculated using van Hoff plots [44] and are shown in Table 4. The adsorption
of Cr(III) and Cd(II) on MDP, TMDP, SDP and TSDP was endothermic, as evidenced by
positive ∆H◦ values. The ∆S◦ values for Cr(III) and Cd(II) adsorption on MDP, TMDP, SDP
and TSDP were all positive, indicating that the adsorption process was random as a result
of energy redistribution between the metal ions and the adsorbent [45]. Furthermore, the
increase in the degree of freedom of the adsorbed metal ions is confirmed by positive ∆G◦

values. For all types of adsorbents, the ∆G◦ values for both Cr(III) and Cd(II) adsorption
were negative, indicating that the adsorption process was spontaneous. With increasing
temperature, much higher negative ∆G◦ values suggest that the adsorption process tended
toward spontaneity [32].

Table 4. Thermodynamic parameters for the adsorption of Cr(III) and Cd(II) on various DP adsorbents
(initial concentration, C0 for Cr(III) and Cd(II) was 20 mg/L).

Adsorbents ↓ ∆H◦ (kJ/mol) ∆S◦ (J/mol-K) ∆G◦ (kJ/mol)

Temperature→ 293 K 303 K 313 K 323 K

MDP 6154 20.77 −113.79 −430.13 −644.08 −802.54
TMDP 8511 29.77 −153.79 −539.13 −877.08 −912.54

SDP 4254 15.22 −103.79 −295.13 −523.08 −912.54
TSDP 7588 27.66 −143.79 −509.13 −697.08 −832.54

3.5. Elution and Regeneration Studies

The number of eluents was used to test the Cr(III)- and Cd(II)-saturated adsorbents
for elution investigations. The elution of both metal ions from all saturated adsorbents
was found to be minimal (2.7–3.8%) with 0.1 mol/L NaOH; however, with 0.1 M HCl,
a sufficiently higher amount of metal ions was desorbed for all adsorbents (83.0–97.2%)
(Figure 7). The elution of both Cr(III) and Cd(II) with eluents followed the order: 0.1 mol/L
NaOH < 0.1 mol/L CH3COOH < 0.1 mol/L H2SO4 < 0.1 mol/L HNO3 < 0.1 mol/L HCl.
Thus, the maximum Cr(III) ions elution achieved with HCl (0.1 mol/L) were (97.2%), while
it was 94.0% for Cd(II) ions. The higher desorption of both metal ions with comparatively
strong acid indicated an ion-exchange process, which might govern metal ions binding on
adsorbents surface.
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(Co: 25 mg/L; m: 0.05 g; V: 0.05 L; T: 25 ◦C; contact time: 5 h; agitation speed: 100 rpm).

Following the optimization of HCl (0.1 mol/L) for Cr(III) and Cd(II) from saturated
MDP, TMDP, SDP and TSDP, regeneration tests were conducted to determine the reusability
efficiency of the adsorbents. A drastic fall in Cr(III) (85.3–88.2%) and Cd(II) (81.8–86.8%)
adsorption on MDP, TMDP, SDP and TSDP were observed after the second regeneration
steps. The distortion of surface morphology during repeated adsorption and elutions of
Cr(III) and Cd(II) was a probable mechanism behind a drop in metal ion adsorption. As
a result, MDP, TMDP, SDP and TSDP could be effectively reutilized for Cr(III) and Cd(II)
adsorption with no significant adsorption potential loss during initial regeneration.

There is inadequate research using date seed powders as adsorbents for the removal of
heavy metals. Few research studies have used date stones, raw date pits and burnt date pits
as potential adsorbents rather dates pit powders for the removal of heavy metals [46,47],
while, an enhanced adsorption of heavy metals was reported with the burning of the date
seeds. Mohamed et al. [48] reported Cu(II) adsorption using ajwa date pits powder, and
the carbonized date seeds for the removal of Cu(II) from wastewater was demonstrated
by others [49]. Our results for Cr(III) and Cd(II) removal using MDP, SDP, TMDP and
TSDP were not significantly different from the reported findings in terms of heavy metal
adsorption; only the preparation of the adsorbents was slightly different. However, in
the current research, both the untreated and H2O2 treated materials showed excellent
adsorption efficiency for Cr(III) and Cd(II) ions.
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A series of batch experiments was performed to optimize the adsorbent dosage,
solution pH, contact time and initial adsorbate concentrations, and the metal ions were de-
termined using atomic adsorption spectrometry (AAS). The maximum adsorption capacity
for all the metal ions was noted at pH 7.8. The obtained results were found to be best fitted
with the Langmuir isotherm model, where the maximum adsorption capacities (monolayer)
at 323 K were 1428.5 mg/g and 1302.0 mg/g (TMDP) and 1228.5 mg/g and 1182.0 mg/g
(TSDP) for Cr(III) and Cd(II), respectively. The efficiencies of all the adsorbents—MDP, SDP,
TMDP and TSDP—were compared, and it was found that for both Cr and Cd elements,
the adsorption capacities of TMDP and TSDP were much higher compared to untreated
materials (MDP and SDP). However, a slightly higher adsorption capacity of TMDP was
noticed compared to TSDP, and the most efficiently removed metal ion was Cr(III), then
Cd(II), for all the adsorbents. This could be attributed to the surface morphology and pore
size of the adsorbents. The higher pore size and surface functionality of the H2O2 treated
material compared to MDP and SDP were indicated by FTIR, BET, and SEM results.

4. Conclusions

In conclusion, optimized MDP, TMDP, SDP and TSDP exhibited excellent adsorption
potential for Cr(III) and Cd(II) in their respective adsorption systems. The H2O2-treated
materials showed better adsorption capacities compared to as-prepared materials. How-
ever, better adsorptions of Cr(III) metal were noticed compared to Cd(II) in all the tested
adsorbents. The obtained R2 for Ce vs. Qe graph at various temperatures was in the range
of 0.8686 to 0.9975 for both Cr(III)and Cd(II) adsorption. Similarly, the R2 for the Time (min)
vs. Qe (mg/g) graph was obtained in the range of 0.7644 to 0.9881 for both metal ions at
varying concentrations. The adsorptions of both metal ions on MDP, TMDP, SDP and TSDP
were endothermic, and a pseudo-second-order kinetics model is better suited in all cases.
Langmuir isotherm model showed slightly better results than the Freundlich model for
the untreated and treated date pits, indicating monolayer coverage. Elution experiments
showed maximum Cr(III) and Cd(II) recovery with 0.1 mol/L HCl. The obtained adsorp-
tion and regeneration results indicate that the synthesized adsorbent materials could be
useful for the adsorption of heavy metals from the aqueous system.
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