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Abstract: Conventional in silico modeling is often viewed as ‘one-target’ or ‘single-task’ computer-
aided modeling since it mainly relies on forecasting an endpoint of interest from similar input data.
Multitasking or multitarget in silico modeling, in contrast, embraces a set of computational techniques
that efficiently integrate multiple types of input data for setting up unique in silico models able to
predict the outcome(s) relating to various experimental and/or theoretical conditions. The latter,
specifically, based upon the Box–Jenkins moving average approach, has been applied in the last
decade to several research fields including drug and materials design, environmental sciences, and
nanotechnology. The present review discusses the current status of multitasking computer-aided
modeling efforts, meanwhile describing both the existing challenges and future opportunities of its
underlying techniques. Some important applications are also discussed to exemplify the ability of
multitasking modeling in deriving holistic and reliable in silico classification-based models as well
as in designing new chemical entities, either through fragment-based design or virtual screening.
Focus will also be given to some software recently developed to automate and accelerate such types
of modeling. Overall, this review may serve as a guideline for researchers to grasp the scope of
multitasking computer-aided modeling as a promising in silico tool.

Keywords: multitasking in silico modeling; moving average approach; virtual screening; software

1. Introduction

The current year marks 60 years of the onset of two-dimensional quantitative structure–
activity relationship (2D-QSAR) modeling, following the pioneering work of Hansch in
1962 [1]. In fact, Hansch’s work has paved the way for computer-aided drug design endeav-
ors that, since then, have been enriched by several other ligand-based (e.g., 3D-6D QSAR,
pharmacophore mapping, etc.) and structure-based (e.g., molecular docking, molecular
simulations, homology modeling, etc.) methodologies [2–4]. However, the advent of these
relatively new in silico approaches does not definitely extinguish the relevance of 2D-QSAR
modeling in computational chemistry [5]. Rather, owing to its simple and versatile nature,
the practice of 2D-QSAR modeling has been expanding and is applied now to numerous
different areas of science such as nanotechnology, materials, environment, and so forth [2].
Even for the drug discovery and development process, where the researchers have many
other in silico alternatives, 2D-QSAR still offers fast and effective solutions [6,7]. While
the primary objective remained unchanged, i.e., the consistent prediction of response vari-
able(s), it is undeniable that the past few decades have witnessed a variety of progress in
concepts and applications of 2D-QSAR modeling [3]. Modern 2D-QSAR practices now
embody a set of in silico modeling tools in which statistical and/or machine learning
techniques are applied to derive relationships between the targeted response variable(s)
and the descriptors encoding molecular structural attributes and properties. Naturally,
the reliability of these in silico modeling tools largely depend on the size and diversity of
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the datasets employed [2]. Indeed, due to the steady growth of available data, ‘big-data’
became a new trend for in silico modeling tools that in turn have been fueled by numerous
advances in computational efficiency as well as in model development strategies. How-
ever, resorting to big data does not always ensure an improvement of the applicability of
the derived models since variations in the experimental (or theoretical) conditions used
to determine the response variable(s) are often ignored [8]. That is why strategic data
integration-based in silico modeling approaches appear promising [8–10], mainly because
they do not only help to increase the size and diversity of the targeted data but at the same
time, account for the variations that are frequently encountered while merging data col-
lected from several sources [11,12]. Multitarget or multitasking (mtk) in silico modeling is
a comparatively novel advanced strategy that allows the merging of datasets pertaining to
multiple conditions to simultaneously predict the response variable(s) under such diverse
conditions [2,13–15].

The present review covers the main aspects of multitasking classification modeling
based on the Box–Jenkins moving average approach, since the latter has emerged as
one of the simplest approaches for building up unique 2D-QSAR models from large
heterogeneous datasets with multiple features [15,16]. Apart from discussing the objectives,
methodologies and applications, the review also sheds light on the software recently
developed for supporting and facilitating mtk-QSAR analyses. The future scope of such
multitasking modeling is also discussed in detail. It is important to mention here that the
application of perturbation theory along with machine learning techniques (PTML), as well
as those combined with the information fusion technique (PTMLIF), also falls within the
scope of the Box–Jenkins-based multitasking modeling, but such methodologies have been
thoroughly reviewed very recently [10] and have thus been excluded to maintain brevity of
this review.

2. Multitasking QSAR Modeling: Rationale and Existing Challenges

In silico QSAR modeling stands for the common practice of looking for relationships
between the endpoint (EP) response(s) of interest and descriptors encoding the molecular
structures (S) and properties (P) of a set of chemicals, through multivariate statistical
methods and/or machine learning techniques [2,17]. These relationships aiming at either
classification-based or quantitative predictions of the response(s) values pertain then to
mathematical models as follows:

EP = f (S,P) (1)

in which EP is considered to be only a function of S and P. However, it is well known that
the response(s) values clearly depend on the type of experimental procedures or theoretical
calculations employed or even if following the same type of protocol but in different
conditions (C). Therefore, with a larger perspective, the mathematical models are to be
described as follows:

EP = f (S,P,C) (2)

The workflow usually tracked for setting up QSAR models begins by assembling the
chemicals with known EP response(s) to form a dataset and in so doing, one frequently
encounters very dissimilar conditions. Conventional QSAR modeling, often referred to as
‘one target’ or ‘single-task’ in silico modeling, relies primarily on assuming similarity in
the experimental and/or theoretical conditions that often ends up limiting the inclusion of
small datasets. Even if datasets with multiple experimental/theoretical conditions are being
included, the influence of their variation is frequently ignored. As explained hereafter, the
moving average-based multitasking (MA-mtk) in silico modeling tends to overcome such
limitations [12,13].

Firstly, small datasets with large variations in the experimental and/or theoretical
protocols followed can be conveniently accommodated in the modeling datasets, thereby
enhancing their diversity as well as the applicability of the following in silico models.
Therefore, a shortage of data for a specific experimental/theoretical condition does not pose



Int. J. Mol. Sci. 2022, 23, 4937 3 of 21

any challenge for the modeler. This may be exemplified from a recently reported study [18],
in which the primary objective was to characterize the cytotoxicity of acrylic acid-based
dental monomers through QSAR modeling. The maximum number of data points found
for compounds assayed against one single type of cell line was 39, using the same biological
measurement, but when the cytotoxicity against other cell lines ought to be included, a
dataset of 138 data points could be built. Since this larger dataset included information
pertaining to as many as 18 different cell lines probed by five types of measurements, it
seemed worthwhile resorting to a moving average-based multitasking approach to retrieve
a more reliable QSAR model as compared to a single-task model, aside from covering a
larger response and experimental space [19].

Secondly, one unique mtk-QSAR model is capable of predicting multiple outcomes
simultaneously and the models’ descriptors may serve as ‘global descriptors’ to derive
general and holistic mechanistic interpretations for the endpoint response(s), which may
be disconnected on the grounds of conditions but are likely to be linked with each other
regarding mechanism(s) of action [8,20]. Finally, multitasking QSAR modeling improves the
scope of virtual screening since the virtual hits that are obtained display predictivity against
several different conditions. Therefore, the modelers are left with the options to select those
hits that are predicted to have positive responses either against all/maximum conditions
(for the design of pan-inhibitors, for example) or against some specific conditions (e.g., for
choosing isoform specific inhibitors) depending on the aim of the investigation [21,22].

Nevertheless, one may face several challenges while developing moving average-
based multitasking in silico models as not only additional steps are involved but additional
statistical and validation criteria are also to be satisfied, when compared to conventional
‘single-task’ in silico modeling [19]. It must be emphasized that similar to conventional
QSAR approaches, MA-mtk modeling follows the best practices outlined by the Organiza-
tion for Economic Co-Operation and Development (OECD), which state that each model
should have a defined end point, an unambiguous algorithm with a defined domain of
applicability, goodness of fit, robustness and predictive ability, as well as a mechanistic
interpretation, if possible [23]. The main challenge lies in the fact that the decision regarding
some choices may vary from one investigation to another and a general consensus is diffi-
cult to achieve. For example, in the initial stages, the modeler needs to decide how many
experimental and/or theoretical conditions are to be taken into account for the modeling.
Variations in the biological targets, types of biological measurements, and experimental
protocols are often easily identified as possible experimental conditions but such selec-
tion may vary depending on the investigation purpose. Furthermore, such selection of
experimental (theoretical) conditions often depends on the availability of information in
the literature or databases.

On the other hand, since the moving average-based mtk-QSAR approach discussed in
this review aims at developing classification-based models, the selection of acceptable cut-
off values for the response variable(s) becomes crucial. Naturally, such selection is expected
to vary in different studies and research. Recently, Kleandrova et al. recommended that
for drug-design purposes, the selected cut-off values should be set at least at the sub-
micromolar level and at the same time, the chosen cut-offs should prevent any excessive
imbalance between the number of chemicals assigned as active/positive and those assigned
as inactive/negative [24]. Another key challenge is to ensure that the predictivity of the so
derived models may be overestimated on the basis of some experimental and/or theoretical
conditions. The chance is higher because this type of in silico modeling constitutes a
single computational framework that yields a unique model and thus, it is likely that low
predictive accuracy against some conditions is overshadowed by the high accuracy over
other conditions. Ideally, the model should uniformly predict all experimental and/or
theoretical conditions. To tackle this challenge, the ‘condition-wise prediction’ strategy has
recently been introduced since it readily provides predictions of the model versus each
considered condition [12,25]. After carefully checking the results, the conditions with poor
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prediction statistics may be identified as outliers and at least a warning may be provided to
avoid making predictions with such conditions [18,21,25].

3. Multitasking In Silico Modeling Methodologies
3.1. Moving Average Approach

The moving average (MA) approach is fundamental for developing multitasking
models through data-integration, including PTML-based modeling efforts [10,13]. In such
an approach, the descriptors are transformed in a way so that these encode information
about both the compounds’ structures and the experimental/theoretical conditions under
which their response variable(s) have been attained. Therefore, even if the same chemical
compound displays two different endpoint responses pertaining to two different conditions,
the MA approach must generate two different descriptors for it. Originally, the Box–Jenkin’s
moving average (BJMA) approach has been delineated for time-series analysis, that is, based
on computing successive average values of a defined system property to forecast its value
at a different time [13,26]. In MA-mtk modeling, the Box–Jenkin’s operation is not related to
the time domain but instead rather to the various targeted experimental and/or theoretical
conditions. Even though a range of BJMA schemes have so far been employed, all of these
originated from the following formula:

∆(Di)cj = Di − avg(Di)cj (3)

Therefore, the new descriptors ∆(Di)cj, also referred to as ‘deviation descriptors’, are
calculated by subtracting from the input descriptors (Di) the avg(Di)cj values, in which the
latter stands for the arithmetic mean of active/positive data points of a specific element of
the experimental and/or theoretical conditions (ontology). Along with ∆(Di)cj, the avg(Di)cj
values have also been used as descriptors in previous works [27,28]. Other operators that
have recently been employed are basically modified forms of this formula, corresponding
to normalizations of the original operator with respect to the variation in sample size
against each condition and/or Di values (see Table 1). Still, there is not enough evidence to
prove that these modified operators may actually give rise or not to better statistical models
than the original operator. In a recent study, a comparative analysis was carried out using
some of these modified BJMA operators but a large variation in the predictive accuracy of
the derived models was not observed [12]. Yet, the importance of such modifications in
developing more predictive models may not be ruled out entirely.

Table 1. Box–Jenkins operators used in the different studies [24,29–35].

Operators Remarks

∆(Di)cj = Di − avg(Di)cj avg(Di)cj =
1

n(cj)

n(cj)

∑
i=1

Di

∆(Di)cj = pc·[Di − avg(Di)cj] pc: A probabilistic term

∆(Di)cj = [Di − avg(Di)cj]/(Dimax − Dimin) Dimax: Maximum value of Di
Dimin: Minimum value of Di

∆(Di)cj = [Di − avg(Di)cj]/[(Dimax − Dimin) p(cj)c] p(cj)c = n(cj)/N
(N: Total number of data points in the modeling set)

∆(Di)cj = [Di − avg(Di)cj]/[(Dimax − Dimin)
√

p(cj)c] p(cj)c = n(cj)/N

∆(Di)cj = [(Di − avg(Di)cj]/[SD(Di)
√

p(cj)c] SD(Di): Standard deviation of Di

3.2. Descriptor Calculation

The role of the original descriptors (Di) should not be overlooked in multitasking
QSAR modeling even though these are transformed by BJMA. Note that due to the nature
of the moving average approach already discussed, descriptors with high variances should
be preferred for modeling since near-constant descriptors may fail to provide information
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about the experimental systems. This is why a number of mtk-QSAR models were devel-
oped using 2D-atom and bond-based topological, as well as 2.5D chiral algebraic molecular
descriptors. Open-access Java-based tools such as QuBiLS-MAS and MODESLAB have
been extensively employed to develop mtk-QSAR models since these software tools allow
the computing of a large number of unique graph-based topological descriptors [36–38].
Software such as Dragon [39] has also a long history in setting up QSAR models with a large
number of descriptors that belong to various categories (e.g., constitutional, atom-based
fragments, geometrical, topological, etc.). Moving average-based multitasking QSAR mod-
eling is no exception and several models have been reported lately, using such DRAGON
descriptors. As such, it can be judged that there are no restrictions on the type of descriptors
to be employed in MA-mtk in silico modeling but no matter what type of descriptor is
used, pre-treatment is required to remove the near-constant descriptors.

Here, it is important to mention that even though moving average approaches help in
merging the information pertaining to experimental conditions with that of the original de-
scriptors Di for jointly handling structural and physicochemical properties, the mechanistic
interpretation of the new descriptors ∆(Di)cj becomes much more complicated. Simply put,
these new descriptors explain the contribution of the original descriptors Di with respect to
the experimental elements cj. In fact, ∆(Di)cj descriptors built with the same Di values but
with different experimental elements (cj) were found in some models. From one side, these
models are clearly justified by the ability of such variables towards usefully predicting the
desired endpoints, though with costs regarding their mechanistic interpretation. For exam-
ple, in one work [21] two different descriptors ∆(C-012)me and ∆(C-012)bt appeared in the
same model with opposite correlation with the response variable. Therefore, it was inferred
that the molecular fragment descriptor C-012 improves the biological activity when it is
associated with the experimental condition—a kind of measurement of effects (me), whereas
it deteriorates it when the same descriptor is related to another experimental condition as
the assay types (at). Similar to conventional QSAR modeling, models containing a smaller
number of simpler descriptors are preferred. For example, in a very recently published
study [40], the authors developed two non-linear models with almost similar statistical
results. One of these was preferred over the other since it consisted of a smaller number
of descriptors and, at the same time, it provided a simpler and more detailed mechanistic
interpretation for the dataset.

3.3. Data Pooling, Databases, and Inclusion/Exclusion Criteria

Dataset collection and curation are undeniably crucial in MA-mtk in silico modeling.
Whenever endpoint responses are aimed to be modeled, one may rely upon databases
of compounds, such as the databases ChEMBL (https://www.ebi.ac.uk/chembl/), Bind-
ingDatabase (https://www.bindingdb.org/bind/index.jsp), or AFLOW (http://aflowlib.
org/), for a quick retrieval of data points. However, often datasets are required to be
manually collected from the literature. Unlike conventional in silico modeling, MA-mtk
modeling incurs risks when merging data points coming from diverse experimental and/or
theoretical conditions and therefore, the curation of the datasets needs to be carefully
performed. That is, one specific compound may be placed in the dataset for MA-mtk
modeling multiple times only if it leads to data points pertaining to different conditions. If
one compound is found to have the same categorical end-point with respect to the same
experimental and/or theoretical conditions, only one data point is retained, for obvious
reasons. However, given the same experimental/theoretical conditions, if two different
categorical end-points (for example, one active and another inactive) are found, both such
data points should be excluded to avoid inconsistent outcomes. In the latter case, it is
always better to fully inspect the reported investigations where such large variations in
results have been obtained and try to address what could have caused the variations before
including their data in the modeling dataset.

https://www.ebi.ac.uk/chembl/
https://www.bindingdb.org/bind/index.jsp
http://aflowlib.org/
http://aflowlib.org/
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3.4. Dataset Division

Another important consideration is, of course, in regard to dataset division. In one
approach, the entire modeling set is used for deriving the models and then the dataset is
divided into a training and a prediction set [41–43]. Alternatively, a second approach may
be adopted where the dataset is first divided into a modeling set and an external validation
set. The modeling set is only used for computing the avg(Di)cj descriptors and subsequently
the values of those are used in the calculation of ∆(Di)cj descriptors for both the modeling
and the external validation set [11,12,18]. In this second approach, the external validation
set has no role either in the model development or descriptor generation, and thus it can be
regarded as a true validation set. Noticeably, in such an approach, avg(Di)cj is fixed and any
new compound can then be directly fitted with the developed model for its prediction. One
should note, however, that the modeling dataset may be further divided into a training and
a test set, where the latter may serve multiple purposes. Firstly, it can act as an additional
validation set and if similarity is reached regarding the predictive accuracy between this
test and the external validation set, that thereby further justifies the consistent prediction
of the models, irrespective of which dataset division approach is adopted. Actually in a
previous work, we found that, for most cases, the predictive accuracy of test and external
validation sets are remarkably close to each other. On the other hand, such a test set may
also serve as a calibration set for selecting the best model out of many possible. Some
methods, such as the PS3M later described or hyperparameter optimization for machine
learning techniques, often require calibration and the test set may thus be utilized to ensure
better performance of these techniques [11,12,18,25].

3.5. Set-Up of the MA-Mtk Model

Undoubtedly, robust model development strategies are required for setting up moving
average-based mtk-QSAR models, since the number of input descriptors are actually
multiplied based on the number of experimental conditions. Due to the same reason,
effective variable selection procedures should be employed for building linear or non-linear
interpretable models with a limited number of features. Forward selection strategies such as
the fast stepwise selection algorithm have been successfully employed initially to develop
linear discriminant analysis (LDA) models using commercial software packages [27,37].
However, a more advanced stochastic approach, such as the genetic algorithm, later proved
to be an extremely useful alternative and was applied on the open source software QSAR-Co
for setting up LDA-based mtk-QSAR models [44]. Recently, two non-stochastic approaches,
namely the fast stepwise (FS) and sequential forward selection (SFS) algorithms, were
available for establishing LDA models in another open source software QSAR-Co-X [12].
Both stochastic and non-stochastic strategies have their advantages and disadvantages.
For example, the stochastic GA variable selection approach lacks reproducibility and it
is not known a priori how many runs are needed to reach the best LDA model, meaning
that it might be needed to be repeated several times [12]. Nevertheless, due to its unique
feature selection methodology, the chance of obtaining a highly predictive LDA model with
GA is remarkably high, especially when other strategies fail to develop predictive models
from a large number of independent parameters. In contrast, with the same parameter
settings, the FS or SFS variable selection algorithms are always reproducible and the
corresponding LDA models are also easily obtained. Yet, no feature selection algorithm is
flawless and comparative analysis may be the only way to retrieve the most predictive linear
model [30]. Very recently, a post-selection similarity search-based modification strategy
(so-called PS3M) has been proposed with the hypothesis that, no matter what variable
selection algorithm is employed, the model produced should be treated as a reference
model that itself is not the best model but it should be similar to the best model [18]. As
such, descriptors which are similar or highly correlated to each descriptor of the model
are firstly searched using a Euclidian distance scheme. Subsequently, each original model
descriptor is replaced with its similar descriptors found and the resulting modified models
checked to see if they have better statistical quality or not. If a better model is obtained, it
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is automatically treated as a reference model and the same steps repeated until no better
model is obtained. As of now, PS3M appears as a promising strategy, especially when a
large pool of descriptors is employed and therefore its potential in mtk-QSAR modeling
may not be ignored [18,21]. Apart from the selection schemes referred, the Shannon
entropy has also been used in research for the most discriminating features to set-up
non-linear models [33,45]. Even though non-linear models developed with a maximum
pool of descriptors, the latter abolishes the mechanistic interpretability and, therefore,
feature-selection strategies are often employed to establish models with a limited number
of variables that afford highlighting of the most significant descriptors. Similarly, several
advanced machine learning (ML) tools have been applied to search the most predictive
non-linear models (see Table 2), which at the cost of mechanistic interpretability produce
highly predictive mtk-QSAR models [12,25]. So far, ML techniques such as artificial neural
networks and tree-based techniques such as random forests (RF) and gradient boosting
have proven to be the most successful ones [18,21,24,33,41–43,46]. In a recent work, even
though deep neural networks gave rise to a highly predictive model its predictivity was
similar to the RF model, which was ultimately reported [21]. Thus, deep learning may play
an important role in future developments of MA-mtk models [2]. Due to the complex nature
of the data-matrices involved in this type of in silico modeling, it is always advisable that
along with deploying multiple ML strategies, hyperparameter tuning should also be taken
into consideration for optimizing the parameters to obtain the validated models [12]. For
example, in one recent investigation [18], six different ML methods (i.e., RF, GB, SVM, kNN,
NB and ANN) were employed with hyperparameter optimization to develop non-linear
models and it was the ANN model that afforded the most predictive model. In another
study [25], seven different ML methods were employed with hyperparameter optimization,
and the internal predictivity (confirmed by 10-fold cross-validated accuracy) was as follows:
GB (91.54%) > RF (91.02%) > DT (84.33%) > ANN (82.97%) > kNN (79.20%) > NB (69.40%) >
SVM (62.30%). It is noticeable that even with hyperparameter optimization, large variations
in predictivity may be observed when one switches from one ML tool to another. Therefore,
the application of multiple robust ML methods definitely improves the scope of reaching
better predictive models.

Table 2. Feature selection and machine learning tools used for moving average based multitasking
modeling [12,21,44].

Feature Selection Tools—Linear Models (LDA) Machine Learning Tools—Non-Linear Models

Fast stepwise (FS) selection Decision trees (DT)
Sequential forward selection (SFS) Random forests (RF)
Genetic algorithm (GA) selection Gradient boosting (GB)

Post-selection similarity search modification (PS3M) Support vector machines (SVM)
k-nearest neighborhood (kNN)

Bernoulli naïve Bayes (NB)
Artificial neural networks (ANN)

Deep neural networks (DNN)

3.6. Statistical Analysis and Validation

The statistical quality of both linear and non-linear mtk-QSAR classification models
can be judged in terms of the criteria goodness-of-fit and goodness-of-prediction. Goodness-
of-fit is frequently checked by standard statistics such as the Wilks’ lambda (λ), chi-square
(χ2), the Fisher ratio (F), and the corresponding p-level (p). Similarly, the predictive accuracy
of the models is commonly estimated by means of the confusion matrix that comprises
the number of true positives (TP), true negatives (TN), false positives (FP), false negatives
(FN), and allows then to compute other statistics such as the accuracy (Acc), the Matthews
correlation coefficient (MCC), and so forth [25,44]. The moving average methodology
generally gives rise to highly correlated modified variables and data pretreatment is thus
required to remove such redundant features. In particular, the proposed linear model
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should also be assessed for chance correlation by the Y-randomization test [44], recently
modified for mtk-QSAR modeling to also consider the role of experimental conditions (cj).
In this modified test, so called Y randomization with conditions (Yc) [12], the response
variable(s) along with the experimental elements are scrambled to generate multiple ran-
domized data-matrices. New models, based on the fits to these scrambled data-matrices,
are then calculated using the same original model descriptors. A high difference between
the statistical parameters (i.e., λ and Acc) of the new models and the original model then
conveys its robustness [12]. The range of validity of a QSAR model must be well assayed,
in terms of the range of biological response data within, it will predict reliably and also in
terms of the type of chemical structure on which it is based.

No in silico QSAR model is meant to predict the whole range of possible chemicals and
targeted response(s). That is, any QSAR model must have a defined applicability domain
(AD). From the viewpoint of mt-QSAR modeling, the AD is the endpoint response(s) and
experimental (theoretical) space within which the model can make trustworthiness predic-
tions. A number of strategies have so far been applied to define the AD of QSAR models
and none of these has proven to be superior to others [47]. Two different ways may be used
to determine the applicability domain of the MA-mtk models. The first one is essentially
defined by the experimental elements since it is always advisable to consider only external
validation compounds that follow the same experimental and/or theoretical conditions
under which the modelling dataset samples have been obtained. Structural outliers are gen-
erally identified through the same procedures by which conventional classification-based
QSAR models are (e.g., the leverage approach). However, AD determination methods may
vary depending on the type of model, i.e., linear or non-linear models. For linear models,
the AD set by the standardization method proposed by Roy et al. [48] has lately been
applied in several studies [11,12,18]. In contrast, the AD of non-linear models is difficult
to define but techniques such as the confidence estimation approach [49] can be used to
identify structural outliers [12,44]. Recently, another method for establishing the AD of
any type of model has been suggested, in which local binary scores are calculated for its
descriptors based on their minimum and maximum values. Subsequently, these scores are
summed up to obtain a total score from which the outliers are detected as the latter should
have a total score less than this [38].

4. Applications of Mtk-QSAR Modeling

A considerable number of mtk-QSAR models based on the moving average approach
have been developed and proposed in the last 10 years for tackling a wide range of
applications, such as drug design and development, toxicology, and environmental sciences,
including nanotechnology. For the sake of discussion, in this section, such mtk-QSAR
models will be divided into two main categories considering the main objective of the
study, namely as targeting the activity against cells, organisms, and species (a), or that
against bio-macromolecular targets (b). There are however some investigations that fall
into both categories [28,43,50–53]. Most of these models have been developed by collecting
data from the CHEMBL database, which is regarded as one of the largest and most reliable
databases to date.

4.1. MA-Mtk Modeling of the Activity against Cells/Organisms/Species

Due to a complex bio-functional mechanism, the activity of a compound may vary from
one cell to another as often observed in research focused on the anticancer or antimicrobial
properties of chemicals [27,33]. Therefore, a major focus has been invested in applying
multitasking modeling for predicting the antiproliferative or antimicrobial activity of
compounds against various cells (i.e., mammalian or microbial).

Let us start with a fragment-based mtk-QSAR modeling study reported in 2011, based
on a dataset containing 449 compounds with measured cytotoxicity against twelve different
mammalian sarcoma cells (making a total of 3017 data points) [27]. In this study, just
one particular category of descriptors was employed, namely substructural descriptors
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comprising functional group counts, atom centered fragments and spectral moments of
the bond adjacency matrix. Among these, only the spectral moment descriptors were
subjected to the moving average approach to derive avg(Di)cj as well as ∆(Di)cj descriptors.
Combining these different classes of descriptors and by adopting a linear discriminant
analysis (LDA), an interpretable model with a pool of thirteen descriptors was finally built
that demonstrated consistent accuracy of ca. 91 and 90% over the training (Ntraining = 1887)
and test (Ntest =1130) data-point sets, respectively. A similar methodology was followed in
the next few years to develop predictive mtk-QSAR models based on datasets of chemicals
with tested antiproliferative potential against prostate carcinoma cells [54], breast carcinoma
cells [55], gliomas [56], colorectal carcinoma cells [57] and bladder cancer cells [58]. A couple
of remarks from these studies are picked out here. First, these mtk-QSAR models have
always been derived by resorting to deviation descriptors. Second, in some of the later
studies, an artificial neural network (ANN) methodology has also been employed to set-up
non-linear models with selected features. In fact, the non-linear models obtained through
including a larger number of ∆(Di)cj features displayed a higher predictive accuracy as
compared to their LDA counterparts. These remarks clearly indicate the significance
of ∆(Di)cj descriptors. Furthermore, despite the fact that such models were based on a
considerably large number of data points, all depicted an overall predictive accuracy higher
than 85% and the majority of them attained an accuracy above 90%. Worth mentioning as
well here, is that the antiproliferative potential of chemicals is a difficult biological property
to target from a computer-aided modeling point of view, due to the fact that numerous
biochemical mechanisms may be involved. Therefore, from this aspect, the performance
of all these models should be considered as highly satisfactory. What is more, one should
highlight the advantage of resorting to fragment-based descriptors in mtk-QSAR modeling,
that is, the possibility of estimating the contributions of different fragments to the biological
activity studied that can be employed as 2D pharmacophores for designing new possible
leads. As an example, Figure 1 shows new anti-breast cancer leads suggested following
that strategy, based on their fragment contributions [55].
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More recently, Kleandrova et al. reported a multitasking modeling study with the
aim of simultaneously predicting the inhibitory activity of chemicals against various liver
cancer cell lines [32]. The dataset used in this study was collected from the Genomics of
Drug Sensitivity in Cancer (GDSC) and contained 192 (FDA approved or experimental)
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drugs that have been assayed against 17 different liver cancer cell lines, resulting in a total
of 3079 data points. Furthermore, only ∆(Di)cj descriptors derived from total and local
(atom-based) non-stochastic quadratic indices were chosen to build non-linear classification
models using ANN. The best mtk-QSAR model found contained nine descriptors and gave
rise to a moderate predictivity (ca. 85% overall accuracy) but enabled the virtual design of
six new promising anticancer agents against the liver cancer cell lines considered.

A significant number of multitasking modeling studies based on the moving average
approach have been performed to probe antimicrobial and antiviral activities in the last
10 years [31,50–53,59–66]. Table 3 displays the details of the methodology employed, the
studied endpoint responses, and bio-targets considered, per year. While the evidence
of a preference for ANN-based models is observed in certain instances, FS-LDA is the
most usual choice for the methodological approach to be followed. The type of endpoints
investigated also covered a wide range apart from the antimicrobial or antiviral activities,
ranging from solely toxicity properties to absorption, distribution, metabolism, elimination,
and toxicity (ADMET) since the latter play a key role on guiding hit-to-lead and lead-
optimization efforts, and on average the predictive accuracy for these models was in the
proximity of 90% or greater.

Table 3. Selected multitasking classification modeling studies in antimicrobial and antiviral research.

Year Methodology a No. of Chemicals
(Ndp) b Endpoint Responses c Bio-Targets d Acc (%) e Ref.

2013 RBF-ANN 8560 (10,918) Anti-Enterococci activities and
toxicological profiles

Enterococci strains; Mus musculus;
Rattus norvegicus;

human lymphocytes
92.30 [59]

2013 RBF-ANN 6974 (11,576) Anti-Streptococci activities and
toxicological profiles

Streptococci strains; Mus musculus;
Rattus norvegicus 98.08 [60]

2013 FS-LDA 20,863 (34,629) Anti-Mycobacterial activity and
ADMET properties

Mycobacterium spp. strains; proteins;
Mus musculus; Rattus norvegicus;

Homo sapiens
94.80 [51]

2014 FS-LDA 23,705 (37,834) Anti-Escherichia coli activities
and ADMET properties

Escherichia coli strains; proteins;
laboratory animals (mice and rats);

Homo sapiens
95.85 [52]

2014 FS-LDA 26,945 (48,874) Anti-cocci activities
and ADMET properties

Gram-positive cocci strains; proteins;
cell lines; laboratory animals;

humans
92.89 [61]

2014 LNN-LDA 21,582 (43,249) Anti-HIV-1 activity and
epidemiological profile

Viral or human proteins/enzymes
(e.g., CC-CKR-5, HIV-1 RT, and
HIV-1 PR); laboratory animals;

humans

76.76 [62]

2015 FS-LDA 30,738 (54,682) Anti-Pseudomonas activities
and ADMET properties

Pseudomonas spp. strains;
proteins/enzymes; Mus musculus;

Rattus norvegicus; Homo sapiens
90.62 [63]

2015 FS-LDA 22,009 (30,181) Anti-NOMA activity and
ADMET profiles

Bacteria linked to NOMA infections
(e.g., Fusobacterium spp.,

Prevotella spp., Bacillus, etc.); cell
lines; laboratory animals; humans

92.12 [53]

2016 FS-LDA 2123 (3592) Anti-microbial peptides (AMP)
activity and cytotoxicity

Gram-negative bacterial strains;
mammalian cell types 97.40 [50]

2016 FS-LDA 1581 (2488) AMP activity Gram-positive bacterial strains 94.57 [64]

2017 FS-LDA 20,562 (29,682) Anti-HIV activity and
ADMET properties

HIV; proteins/enzymes; cell lines;
laboratory animals; humans 96.26 [43]

2017 FS-LDA 29,863 (40,158) Anti-Hepatitis C activity and
ADMET properties

Hepatitis C; proteins/enzymes;
mammalian cells 95.35 [31]

2020 MLP-ANN 18,798 (21,369)
Anti-malarial activity,

cytotoxicity, and
pharmacokinetic properties

Plasmodium falciparum strains;
proteins; mammalian cells; plasma

and liver microsomes
90.49 [65]

a RBF: radial basis function; ANN: artificial neural networks; FS-LDA: forward stepwise–linear discriminant
analysis; LNN: linear neural networks; MLP: multilayer perceptron. b No. of chemicals: Number of chemicals with
unique structures; Ndp: Number of data points considered in the modeling taking into account the experimental
conditions. c ADMET: absorption, distribution, metabolism, elimination, and toxicity; AMP: antimicrobial
peptides. d CC-CKR-5: C−C chemokine receptor type 5; HIV-1 RT: HIV-1 reverse transcriptase; HIV-1 PR: HIV-1
protease; NOMA: cancrum oris; Mtb: Mycobacterium tuberculosis. e Average accuracy obtained from the training
and prediction sets.
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However, some of the works had particular aspects that needed more detailed address.
Regarding antimicrobial peptides (AMP) [50,64], since they have a unique structural nature,
as an approach to effectively compute the challenging AMP molecular descriptors, the
peptide sequences were first converted to FASTA sequences, which were subsequently
converted to 3D formats for the calculation of topological indices (e.g., Kier–Hall indices
and Broto–Moreau autocorrelations) that were then subjected to the BJMA technique. Both
works adopted the strategy of collecting AMPs from the Database of Antimicrobial Activity
and Structure of Peptides (DBAASP), and the models exhibited a predictive accuracy higher
than 90% in both the training and prediction sets.

Another team established as its main goal to generate complex networks of AIDS
incidence among USA counties, relative to the preclinical activity of drugs against the
human immunodeficiency virus (HIV) [62]. Several ANNs have been trained for such a
purpose, using as input information the indices of social networks (taken from public epi-
demiological databases) and molecular graphs (i.e., Balaban information indices to describe
the chemical structures of anti-HIV drugs). The best mtk-QSAR found was a linear ANN
and exhibited an overall accuracy of ca. 80%. Moreover, the drug–county network built
from such a model supplied useful information about the most effective drugs to treat HIV
in different populations (from the US counties) with a given epidemiological prevalence.

Another work that was published more recently, in 2017, is also worth mentioning
here [31]. Given the fact that Hepatitis C is one of the deadliest, unresolved health problems
globally, the modeling addressed both the anti-Hepatitis C potency and ADMET profiles
of several chemicals collected from ChEMBL by considering also their testing conditions,
namely: the types of biological measurements, different bio-targets, information regard-
ing the assays (labeling whether the assay focused on the study of binding phenomena,
functional/physiological responses, or ADMET profiles), as well as the involved target
mappings. Furthermore, this work, apart from considering the latter experimental con-
ditions, modified the moving average formulae by multiplying the deviation descriptors
with a probabilistic factor (pc) denoting the degree of reliability of the experimental assay
(i.e., autocuration, intermediate, and expert, respectively). As such, the best FS-LDA-based
linear model found (40,158 data points), developed with topological descriptors known as
bond-based quadratic indices [36], afforded an overall accuracy higher than 95%.

Notwithstanding, all of the above-mentioned investigations developed the MA-mtk
models with relatively large datasets, something that was not the case for two recent
reports, one that involved the environmental toxicity of deep eutectic solvents [66] and
another about the cytotoxicity of acrylic acid-based dental monomers, this latter with only
138 data points [18]. As the last dataset was highly inhomogeneous in nature, given the
fact that 58 different chemicals were tested against 18 different cell lines with five different
types of measurements, apart from model generation, the challenges which also remained
were the validation of the model and to establish that each experimental condition of the
dataset was predicted with consistent accuracy. The development strategy involved the
selection of the best mtk-QSAR model from twelve different linear models generated by
varying data-distribution and feature-selection techniques. The most predictive linear
model was generated with moderate to good predictivity against the training (91%), test
(91%) and external validation (85%) sets. Note that, in this work, the PS3M strategy was
employed for the first time, and it led to a ‘similar’ model with higher statistical accuracy
against the training (94%) and the external validation (89%) sets without any change in the
predictive accuracy of the test set. Finally, a technique named ‘condition-wise prediction’
was employed to split the prediction results into different experimental conditions in
order to identify poorly predicted experimental conditions. However, it was observed
that the model provided satisfactory predictivity against most of these conditions. Such
investigations show that the MA-mtk modeling approach may also be applied to relatively
small datasets but many more of these studies should be reported in the future along with
experimental validation to confirm this idea.
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To conclude this analysis of MA-mtk modeling of the activity against cells/organisms/
species, going beyond the scope of drug design and discovery, some MA-mtk studies have
also focused on the environmental toxicity of diverse categories of chemicals [28,33,67].
Particularly noteworthy is a recent multitasking modeling study of the ecotoxicity of vari-
ous classes of pesticides [33]. Departing from 260 structurally diverse peptides, a dataset
containing 3610 data points was formed by considering four primary different experimental
conditions, namely: me (toxicity measurements), bs (bioindicator species), ag (assay guide-
lines) and ep (exposure periods). Alongside these, three secondary additional experimental
conditions, i.e., concentration lethality (lc), target mapping (tm) and time classification (tc),
were also considered for computing the moving average-based descriptors. The ANN
model with the highest discriminant power found thereafter included nine deviation de-
scriptors, computed from the original graph-based topological features, and depicted an
overall accuracy of 83 and 76% in the training and prediction sets, respectively. The same
dataset and starting descriptors were later used in another investigation [12] for building
multitasking models using a different machine learning tool—i.e., random forests (RF),
but in particular with the aim of comparing different moving average-based algorithms to
understand their effects in the models’ predictive accuracy. Five different moving average
algorithms, which had been employed previously in different investigations, were used
to derive five different models. Interestingly, the comparative analyses showed that the
predictive accuracy of these models did not vary to a large extent.

4.2. MA-Mtk Modeling of the Activity against Bio-Macromolecular Targets

As different pathways and bio-macromolecular targets have increasingly been iden-
tified in the last few decades, MA-mtk modeling is becoming an interesting tool in the
design of both selective and pan-inhibitors, depending on the roles of these closely related
bio-macromolecular targets against any specific disease. Quite expectedly, significant ef-
forts have since been invested to set up mtk-QSAR models with multiple macromolecular
cellular targets [38,68–70]. For example, in 2013, with a strategy encompassing LDA and
ANN tools to set up linear and non-linear models for probing several proteins involved in
the progression of leukemia, the substructural and global descriptors that were used had
no modification but spectral moments derived from the bond adjacency matrix (µk) were
subjected to the moving average approach to compute the deviation descriptors [69]. Both
ANN and LDA models had an overall accuracy above 90%, with the ANN model com-
prising a total of eleven descriptors out of which four belonged to ∆(Di)cj. Another study
by Casañola-Martin et al. [70] is worth mentioning here. Starting from 2954 unique drugs
retrieved from the CHeMBL database making 5062 data points, the authors developed an
LDA-based mtk-QSAR model with seven descriptors that predicted the outcomes of more
than 450 different type of assays against at least 1 out of 20 experimental parameters related
to the ubiquitin–proteasome pathway. Though affording an overall accuracy of 70%, when
considering the complexity of the modeling-data matrix as well as the fact that numerous
biochemical mechanisms are likely to be involved in the ubiquitin–proteasome pathway,
this study clearly demonstrated that the moving average-based mtk-QSAR modeling may
be expanded towards overly complex biochemical pathways.

More recently, several works have focused on targeting the inhibition of various
bio-macromolecular targets of cancer such as PI3K [11], AKT [25], ERK [46], MNK [21],
HSP90 [41], and BET bromodomain [38]. Their main aim was to set-up models capable
of simultaneously predicting the inhibitory potential of the chemicals against various
isoforms of such biological targets. Notwithstanding, these models may definitely be used
for obtaining isoform-specific inhibitors. Integrating other in silico strategies, especially
structure-based techniques, when bio-macromolecular targets are involved can provide
that aspect. In fact, recently linear and non-linear MA-mtk models were developed for
coping with the inhibitors of three different isoforms of the BET (bromodomain and extra-
terminal) family of bromodomain-containing proteins (i.e., BRD2, BRD3, BRD4) that serve
as epigenetic regulators in the progression of cancer [38]. High accuracy values (>85%) were
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obtained for both models though the ANN-based model was definitely more predictive.
In addition, not only the desirable fragments were identified for the design of potential
virtual leads against these targets, but also the designed leads were separately docked into
the active sites of X-ray crystal structures of BRD2, BRD3, BRD4 to find the most promising
candidate among these leads (Figure 2).
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by Scotti and co-worker [38].

The approach of mixing or coupling in silico strategies is a key aspect in these MA-
mtk-QSARs. Support from other ligand- and structure-based in silico methodologies may
assist in further filtering and ranking the positive hits obtained from the QSAR model
(Figure 3), as the latter action cannot be provided by simple virtual screening. Furthermore,
assessment of the druggability and synthetic accessibility may also help in curtaining the
number of hits [8,21,24]. Table 4 lists some of these tools and webservers that have already
been used along with MA-mtk models to select the hits.
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Table 4. Some in silico tools and webservers employed for multitasking modeling.

Method Software/Webserver

Pharmacophore mapping PharmMapper [25,71]

Molecular docking AutoDock [21,25,72], AutoDock Vina [25,73],
Molegro irtual Docker [24,74]

Similarity search SIMSEARCH [21]
Molecular dynamics simulations Amber [21,75], Gromacs [46,76]

Homology modeling SwissModel [25,77]
Drug-likeness SwissADME [21,78]

Synthetic accessibility SwissADME [21,78]
Graph-based signature MycoCSM [22,79]

Though the choice of an in silico strategy to be adopted depends largely on the
researchers, more often it is the nature of the biological targets involved in the work that
becomes the most crucial factor for choosing which method is to be adopted. Discussing
two recently published investigations, one involving the design of pan-AKT inhibitors [25]
and the other one focused on the design of pan-MNK inhibitors [21], may enlighten
how rigorous application of in silico methods helps in the selection of the promising
hits (see Figure 3). Being kinase enzymes, both AKT and MNK possess highly flexible
catalytic sites and therefore semi-rigid docking may be unreliable. Therefore, in both
these investigations, MD simulations of ligand-receptor complexes was chosen as the last
resort to finalize the hits. For AKT inhibitors, virtual hits obtained from the predictive
linear (GA-LDA model yielding an overall accuracy > 88%) and non-linear (developed
with XGBoost yielding an overall accuracy > 91%) MA-mtk models were further filtered
through reverse pharmacophore mapping strategy, i.e., the pharmacophores generated
on each query compound were matched with a large database containing structure-based
pharmacophores generated with the X-ray crystal structures of ligand-receptor complexes
to rank these complexes as per the fit values. As such, a reverse pharmacophore mapping
strategy may be exploited to validate the results of virtual screening and for filtering the hits.
Here, seven virtual hits were obtained from MA-mtk modeling but five hits were retained
after pharmacophore mapping for further processing. Finally, MD simulations were carried
out with each of these five hits to ensure the theoretical binding potentials of these hits
against all AKT isoforms and on the basis of these analyses, one candidate was selected as
the most promising virtual hit for pan-AKT inhibition. Regarding the MNK-1 and MNK-2
inhibitors [21], the final MA-mtk model was used for the screening of the commercial
library to obtain 20 potential virtual hits. Unlike resorting to reverse pharmacophore
mapping to improve confidence over these hits and to select the most promising hits, a
much faster strategy based on similarity searching was taken into consideration. In this
method, the fingerprints of the virtual hits were cross-matched with a database containing
MNK-1 and MNK-2 inhibitors to identify those hits with a maximum number of matches
vs. the experimentally tested potent MNK-1/2 inhibitors. These filtered hits were further
processed by MD simulation analyses and theoretical binding energy calculations that led
to only the four most promising candidates. In future it is expected that experimental
validation coupled with these in silico strategies may lead towards finding target-based
therapeutic agents for various other diseases.

In addition to the cancer progression targets discussed above, biological targets related
to other diseases such as antimicrobial [24,80–82], antihypertensive [83], neuroprotective
and neurotoxic [13,84], and anti-inflammatory agents [35], and have been the object of
research within the MA-mtk-QSAR context. In a recent work aimed at designing anti-
inflammatory agents through the dual inhibition of caspase-1 and TNF-α, the dataset
contained 1476 data points built from 1444 molecules with activity tested against caspase-1
or TNF-α [35]. Evidently, the data was structurally and biologically diverse in nature and so
the authors considered only two experimental conditions, namely the biological targets and
their experimental assay types, to derive the deviation descriptors starting from topological
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indices. Two similar but different cut-off values of 1000 nM and 1635 nM were assigned
for these two biological targets to distinguish the active samples from inactive ones. The
resulting MLP-ANN non-linear model afforded an overall predictive accuracy higher than
88%, and a virtual screening was performed with agency-regulatory chemicals to select
and rank the most promising virtual hits for dual inhibition of these two proteins.

5. Software Developed for Multitasking Modeling

This section briefly describes three software packages that have been developed
recently for accelerating MA-mtk modeling as outlined in the current review. These are
QSAR-Co, QSAR-Co-X and FRAMA. Both QSAR-Co and QSAR-Co-X are available in the
public domain with detailed instruction manuals.

5.1. QSAR-Co

QSAR-Co [44], which was introduced in 2019, is a Java based open-access tool for
developing moving average-based mtk-QSAR models by means of GA-LDA and RF tech-
niques (available at https://sites.google.com/view/qsar-co, see Figure 4). This software,
which utilizes the WEKA library for RF-based model development, was designed to auto-
matically calculate moving average-based deviation descriptors starting from the original
descriptors, which are fed into the software as a .csv file, alongside the name of compounds,
the experimental/theoretical conditions, and the endpoint response(s) to be targeted. The
software automatically yields output .csv files containing statistical parameters such as the
sensitivity, specificity, accuracy, the Matthews correlation coefficient (MCC), etc., and re-
ceiver operating characteristics (ROC) plots of the models, along with the selected features
values, observed and predicted response(s), as well as the applicability domain estimated
by either the standardization approach or the confidence estimation approach. Furthermore,
QSAR-Co allows the remotion of less important descriptors to be performed, the division
of the dataset with multiple methods, and is also capable of diagnosing query chemicals,
which is extremely useful in virtual screening efforts.
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5.2. QSAR-Co-X

With the aim of expanding the scope of software QSAR-Co, another software named
QSAR-Co-X [12] was introduced in 2021. This open source standalone toolkit built by
using Python 3 (available at https://github.com/ncordeirfcup/QSAR-Co-X) comprises
four different modules. Module 1 is designed for the calculation of deviation descriptors
using diverse Box–Jenkins’s operators, starting from the categorical endpoint response(s),
the related experimental/theoretical conditions, and the original descriptors. The same
module performs data division for generating the training, test and external validation sets,
followed by the descriptor generation and development of the linear mtk-QSAR models
by application of the LDA technique along with FS or SFS feature-selection algorithms.
Subsequently, either prediction when the endpoint response is known or screening when
it is unknown can be performed using the external validation set to estimate the ‘true’
predictivity of the model. Furthermore, this module performs Yc-randomization and
produces output files containing the resulting statistical parameters, and the information
regarding the model descriptors and its applicability domain determined by either the
standardization or the confidence estimation approach (see Figure 5). Modules 2 and 3,
on the other hand, are intended for the development of non-linear models using multiple
machine learning methods including (a) k-nearest neighborhood (kNN), (b) Bernoulli naïve
Bayes (NB) classifier, (c) support vector classifier (SVC), (d) random forests (RF), (e) gradient
boosting (GB), and (f) multilayer perceptron (MLP) neural networks. For all these non-
linear modeling techniques, the Scikit-learn machine learning package is used. Module
2 provides the facility of hyperparameter optimization for each of these ML tools based
on the information provided by the user in .csv format. On the other hand, non-linear
models are developed using the fixed user-specific parameters. Module 4 is used for
‘condition-wise prediction’ to assess the accuracy of the generated models against each
experimental condition.
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5.3. FRAMA

FRAMA, is a Windows desktop application developed in 2017 [10,85], which sup-
ports various file formats and allows the user to perform several data preprocessing and
classification tasks of the input and output variables (see Figure 6). After pretreating the
data, the selected variables can then be subjected to batch operations by the user, in which
classical BJMA operators can be computed for conducting multilinear regression or classifi-
cation multitasking assessments, as well as PTML analyses. The processing information
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alongside several parametric statistics computed for each type of modeling is stored in .csv
spreadsheets for further analysis.
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6. Future Scope

MA-mtk modeling techniques have been applied, with excellent results, in a number
of different research areas. Irrespective of the nature of the chemicals, disease, targets,
experimental conditions, or even dataset size, highly predictive models have been ob-
tained. However, as the majority of investigations have been focused on anticancer and
antimicrobial research, the likelihood, in coming years, of MA-mtk modeling expanding to
cover diseases such as diabetes, cardiovascular disorders, inflammatory disorders, or CNS
disorders, where only a few investigations have been performed till date, is to be expected.

In addition, the scope of deep learning has already been discussed in model devel-
opment, and similarly, model development and validation should be improved with the
inclusion of more refined feature selection and ML tools (e.g., logistic regression), which
are still witnessing extensive advancement and transformation [86,87]. Further work may
also be required on the modification of Box–Jenkin’s moving average algorithms, and
comparative analyses should be performed to understand if any of such modification leads
to a model with improved predictive accuracy or not.

Another aspect to consider is that investigations have so far focused on fragment-based
design [8,27,28], whereas other relied on virtual screening of commercial databases [21,46].
Recently, the application of Bemis–Murcko scaffolds was suggested to extract the fragments
from large databases to estimate their contributions [11,46]. However, lead generation and
optimization from favorable fragments should be made more systematic in the future by
using methods such as scaffold hopping, fragment linking, fragment growing, R-group
analyses, or PROTAC design, for example [88]. New techniques, if implemented, made
available to the users in the form of tools in software packages such as QSAR-Co, QSAR-
Co-X, etc., will allow the advance of the research globally. Finally, experimental validation
of the proposed hits must be encouraged to realize the true potential of MA-mtk modeling.

7. Conclusions

With increasing chemical and biological knowledge, which produces a huge amount
of available data, continuously accumulated in scientific literature and databases, the in
silico methods adopted for the design of new molecular entities must be able to tackle
in a fast and simple manner this scientific data, if molecular design is to evolve towards
a multitasking optimization process. The current review focuses on the current status
and future scope of moving average-based multitasking in silico modeling that tend to
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serve the above-mentioned purpose. Alongside discussing the basic methodologies of
MA-mtk modeling, some works were specifically addressed at understanding how their
integration of datasets with variable experimental assay conditions improves the diversity
and reliability of in silico models. This discussion may provide a more wholistic idea about
mechanistic interpretations. Furthermore, the discussion of these recent advances included
the newly-developed tools for facilitating such modeling. As such, not only does this review
provide important updates and guidelines for multitasking in silico classification modeling
but it also explores how it is expected that such modeling will expand the research areas
that are yet to be covered.
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