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Abstract

Modulation of cerebral Rho GTPases activity in mice brain by intracerebral administration of Cytotoxic Necrotizing Factor 1
(CNF1) leads to enhanced neurotransmission and synaptic plasticity and improves learning and memory. To gain more
insight into the interactions between CNF1 and neuronal cells, we used primary neuronal and astrocytic cultures from rat
embryonic brain to study CNF1 effects on neuronal differentiation, focusing on dendritic tree growth and synapse
formation, which are strictly modulated by Rho GTPases. CNF1 profoundly remodeled the cytoskeleton of hippocampal and
cortical neurons, which showed philopodia-like, actin-positive projections, thickened and poorly branched dendrites, and
a decrease in synapse number. CNF1 removal, however, restored dendritic tree development and synapse formation,
suggesting that the toxin can reversibly block neuronal differentiation. On differentiated neurons, CNF1 had a similar
effacing effect on synapses. Therefore, a direct interaction with CNF1 is apparently deleterious for neurons. Since astrocytes
play a pivotal role in neuronal differentiation and synaptic regulation, we wondered if the beneficial in vivo effect could be
mediated by astrocytes. Primary astrocytes from embryonic cortex were treated with CNF1 for 48 hours and used as
a substrate for growing hippocampal neurons. Such neurons showed an increased development of neurites, in respect to
age-matched controls, with a wider dendritic tree and a richer content in synapses. In CNF1-exposed astrocytes, the
production of interleukin 1b, known to reduce dendrite development and complexity in neuronal cultures, was decreased.
These results demonstrate that astrocytes, under the influence of CNF1, increase their supporting activity on neuronal
growth and differentiation, possibly related to the diminished levels of interleukin 1b. These observations suggest that the
enhanced synaptic plasticity and improved learning and memory described in CNF1-injected mice are probably mediated
by astrocytes.
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Introduction

Proteins belonging to the Rho GTPases’ family, including Rho,

Rac and Cdc42 subfamilies, act as molecular switches that cycle

between a GDP-bound inactive and a GTP-bound active state to

transduce extracellular signals to the actin cytoskeleton. Their

ability to modulate the organization of the actin network [1] plays

important roles in the morphogenesis of the dendritic spines of

neurons in the brain [2,3,4] and synaptic plasticity [5,6,7,8,9,10].

Although the picture is not fully resolved yet, it appears that Rac

and Cdc42, which induce actin polymerization, meshwork

formation and bundling, promote spine formation and maturation

[11], whereas RhoA activation, which promotes actin contraction,

results in spine retraction [12]. Dendritic spines are small, actin-

rich protrusions, and actin dynamics regulates their shape and

morphological plasticity. Importantly, activation of NMDA

receptors (as occurs in LTP) affects dendritic spine morphogenesis

by activation of Rac1 and actin remodeling [13], linking activity-

dependent synaptic plasticity to Rho GTPases. In the nervous

system, the Rho GTPases play a key role in several processes, and

mutations in proteins involved in Rho GTPase signaling may be

causative in some forms of mental retardation.

We have found that a bacterial protein toxin from Escherichia

coli, which activates the Rho GTPases, can improve learning and

memory in mice [14,15]. This toxin, named cytotoxic necrotizing

factor 1 (CNF1), acts by blocking the Rho GTPases in their

activated, GTP-bound state by catalyzing the deamidation of

a single glutamine residue of the Rho molecules, thus impeding

GTP hydrolysis and leading to their persistent activation [16,17].

CNF1 modulation of cerebral RhoA and Rac1 activity in mice re-

arranges cerebral actin cytoskeleton, enhances neurotransmission

and synaptic plasticity and improves cognitive performances

[14,15]. Also, CNF1 counteracts the formalin-induced inflamma-

tory pain in mice, after both peripheral and central administration,

further sustaining its ability in modulating CNS pathophysiology
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[18]. Very recently, we have demonstrated that CNF1, by directly

modulating the brain Rho GTPases, triggers structural remodeling

and functional plasticity into the adult rat visual cortex [19] and

improves the behavioral phenotype in a mouse model of Rett

syndrome [20].

Therefore, CNF1 can be viewed as a new pharmacological

agent able to enhance the changes in neuronal connectivity

associated with memory for by which the toxin can ameliorate the

neuronal function. To address this question, we have performed

a study on primary neuronal cultures of rat embryonic brain with

the aim of investigating the effects of CNF1 on in vitro neuronal

growth and differentiation, focusing on the development of

dendritic tree and synapse formation. Our data show that while

direct administration of CNF1 to neuronal cultures has a harmful

effect on neuronal maturation, hippocampal neurons conditioned

by CNF1-treated mation and to improve neuronal plasticity. It

remains, however, to define the mechanisms astrocytes show an

increase in dendrite growth and synapse formation, sustaining

a role for CNF1 in improving astrocytic neurosupportive activity.

Results

CNF1 modifies neuritic tree and synapse development in
neurons during differentiation
To analyze the effects of CNF1 on neuronal differentiation,

hippocampal cultures were treated at day-in-vitro (DIV) 2 with

CNF1 and fixed at DIV 14. At this stage, staining with the nuclear

dye Hoechst 33342 showed that, although cell density varied

among different cell cultures, there was no significant difference in

the neuronal cell number, within the same culture, between

control and CNF1 treatment (data not shown). However, neuronal

cell differentiation was profoundly affected. Indeed, while in

mature control neurons actin-labeled neurites were long, thin and

well defined, in CNF1-treated cultures, the neuritic tree and the

cell bodies were covered with numerous and short protrusions,

which gave the cells a spiny appearance (Figure 1A). CNF1-

induced cytoskeletal changes were accompanied by a lack of

synapse formation, as demonstrated by immunolabeling of

synaptophysin, an integral protein of synaptic vesicles. In fact, in

control cultures, at DIV 14, synaptophysin-positive synapses

appeared as discrete dots, regularly distributed along the MAP2-

positive dendrites (Figures 1A, B). In contrast, in CNF1-treated

hippocampal cultures, synaptophysin immunolabeling was more

dispersed and lacked the typical punctuated appearance along

dendrites (Figure 1A, B). In addition, while in control neurons,

PSD95, a marker of post-synaptic densities, and synaptophysin

were separately compartmentalized in the pre- and post-synaptic

districts, respectively, in CNF1-treated neurons, the pre- and post-

synaptic markers often lost their dot-like appearance and co-

localized (Figure 1C). Synaptophysin also showed a positivity in

growth cones, which were frequently observed in CNF1-treated

cultures (Figure 1A, inset). Counts of synaptophysin-positive

puncta along dendrites confirmed a decrease in synaptic density

in CNF1-treated cultures (Figure 1D).

Labeling of MAP2, a marker of dendritic cytoskeleton, also

highlighted CNF1-induced changes of the neuritic tree. In control

pure hippocampal neurons, during differentiation, MAP2-positive

dendritic tree gradually enlarged and became ramified, with thin

and smooth projections, until a complex network was formed

(Figure 2A, left column). Neuronal cell bodies maintained a round

shape, with limited dimensions. When exposed to CNF1 from

DIV 2 MAP2-positive dendrites appeared thicker and more

tortuous. Thin ramifications were lacking. Neuronal cell bodies

were larger, with a veil-like appearance (Figure 2A, right column).

Morphometric analysis confirmed that the dendrite diameter

(Figure 2C) and cell body area (Figure 2D) increased in cells

challenged with the toxin. Total somatodendritic MAP2-positive

area (Figure 2B), however, although showing a trend towards an

increase, did not reach significant values in CNF1-treated cultures,

possibly due to the loss of finer ramifications. Similar results were

obtained in pure cortical neuronal cultures (data not shown).

CNF1-induced changes in differentiating neurons are
reversible
In the experiments so far described, CNF1 was administered at

DIV 2 and persisted in the medium until fixation. We asked if

removal of the toxin during differentiation could modify the

observed changes in the growth of neuritic tree and synapse

formation (Figure 3). We compared the development of MAP2

positive dendritic tree, actin cytoskeleton and synaptophysin-

labeled synapses in neurons continuously exposed to CNF1 until

DIV 21, to neurons treated with CNF1 until DIV 9 and then

switched to CNF1-free medium until DIV 21. At the end of the

differentiation process, these neurons showed less impressive

changes than neurons continuously exposed to CNF1. Dendrites

increased in number, although they were still thicker and fewer,

compared to untreated cultures. Cell bodies also remained larger,

with a veil-like appearance, but the actin cytoskeleton showed the

formation of thinner and longer projections. The number of

synapses increased. These results suggest that block of maturation

induced by CNF1 is partially reversible once the toxin is removed.

CNF1 effects in mixed astrocytic/neuronal cultures
Astrocytes have a pivotal role in neuronal differentiation. In

several neuronal cell models, including hippocampal cultures, the

presence of astrocytes improves and speeds up neuronal

differentiation [21,22]. We asked therefore if the presence of

astrocytes could modify CNF1 effects on neuronal cell growth. At

DIV14, in both hippocampal (data not shown) and cortical mixed

astrocytic/neuronal cultures (Figure 4A, B), the presence of

astrocytes rendered CNF1-induced neuronal cytoskeletal changes

less evident than in pure neuronal cultures, with a minor dendritic

tree remodeling (Figure 4A) and a decreased loss in synapses

(Figure 4B). Still, neurons treated with CNF1 in vitro, even in the

presence of astrocytes, had a less differentiated appearance than

control cultures, a finding that could hardly contribute to explain

the cognitive improvement observed after CNF1 treatment in vivo.

Western blot analysis, conducted in both pure neuronal (Figure 4C,

left) and mixed astrocytic/neuronal (Figure 4C, right) cultures,

showed that the levels of synaptic proteins, such as synaptophysin

and SNAP23, or of components of the dendritic tree, such as

spinophilin, were similar in CNF1-treated and control cultures.

This suggests that the observed changes in neuronal morphology

in CNF1-treated cells were not due to a different expression of key

molecules but probably depended on cytoskeletal remodeling.

CNF1 effects in differentiated cultures
So far, we had analyzed neuronal cell development in vitro under

the influence of CNF1 from the first stages of cell growth. We

wondered if the toxin had different effects on differentiated

neurons. For this purpose, we exposed to CNF1 neuronal cultures

at DIV 12, a stage where polarity has been achieved and synapse

formation is completed (Figure 4D). Again, under the influence of

CNF1, actin cytoskeleton underwent a profound morphological

remodeling. The cell body area increased and the neuritic network

lost its typical structure, composed of long, thin and smooth

neurites, and assumed a spider web-like appearance, with short,

Rho-Activated Astrocytes Boost Neuronal Growth
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Figure 1. CNF1 modifies actin cytoskeleton and synapse development in hippocampal neurons. Pure hippocampal neurons were
treated or not with CNF1 at DIV2 and fixed at DIV 14. A. Neurons were immunolabeled for F-actin, upper panel, or co-immunostained for
synaptophysin (green) and MAP2 (red), lower panel. In mature (DIV 14) control neurons, actin-labeled neurites are long, thin and well defined, while
after CNF1 treatment, the neuritic tree and the cell bodies have a spiny appearance, due to the presence of numerous short protrusions (bar
= 20 mm). In control cultures, at DIV 14, synaptophysin-positive synapses appear as small puncta, regularly distributed along the MAP2-positive
dendrites. In CNF1-treated hippocampal cultures, fewer synaptophysin-positive dots can be observed along dendrites (bar = 20 mm). A
synaptophysin-labeled growth cone is visible in the inset (bar = 10 mm). B. At higher magnification, the lower number of synaptophysin-positive
puncta along dendrites, induced by treatment with CNF1, can be better appreciated. C. While in control neurons, PSD95 and synaptophysin are
compartmentalized in the pre- and post-synaptic districts, respectively, in CNF1-treated neurons, the pre- and post-synaptic markers often co-localize
and loose their dot-like appearance. D. Synapse density was measured as number of synaptophysin-positive puncta along dendrites, immunostained
with MAP2. At least 30 images of dendrites (20 mm-long), obtained from 3 different cultures, were analyzed for each condition. The histogram
represents the mean values 6 S.E.M. *** = p,0.001 Statistical analysis was conducted by the nonparametric Mann-Witney U test.
doi:10.1371/journal.pone.0034115.g001

Rho-Activated Astrocytes Boost Neuronal Growth

PLoS ONE | www.plosone.org 3 April 2012 | Volume 7 | Issue 4 | e34115



interconnected and irregular projections. This remodeling affected

synapses, when compared to control cultures, as shown by

decreased synaptophysin-positive dots. Yet, no changes in the

expression of the synaptic proteins above mentioned could be

measured (Figure 4E).

CNF1-treated astrocytes provide a more efficient
substrate to neuritogenesis and synaptogenesis
In the protocols so far described, CNF1 was administered

directly to neurons, in the presence or not of astrocytes. However,

we reasoned that in in vivo treatment, where CNF1 is delivered by

means of intracerebroventricular injections, the toxin first interacts

with ependymal cells, which line the ventricles, and then with

astroglial cells, which surround the ependymal layer. Thus we

hypothesized that the beneficial effects observed in vivo could be

mediated by the interaction of CNF1 with astrocyes. To address

this question, we treated pure astrocytic cell cultures with CNF1

and analyzed how this treatment affected astrocytic ability to

support neuronal cell growth. At a difference from the experiments

so far conducted, hippocampal neurons, growing on CNF1-treated

astrocytes, but in absence of direct CNF1 influence, produced

a much more abundant dendritic tree, with richer branching,

creating a confluent network, as shown by MAP2 immunolabeling

(Figure 5A, B). At higher magnification, control dendrites

appeared smooth and devoid of ramifications, while dendrites

Figure 2. MAP2-labeling highlights CNF1-induced changes of the neuritic tree during differentiation. Pure hippocampal neurons were
treated or not with CNF1 at DIV2, fixed at DIV 6, 9, and 14, and immunolabeled for MAP2 (Figure 2A). In control hippocampal neurons, MAP2-positive
dendritic tree gradually enlarge and become ramified, until a complex network is formed. In neuronal cultures treated with CNF1, MAP2-positive
dendrites become thicker, showing few ramifications. Neuronal cell bodies are larger, with a veil-like appearance (bar = 20 mm). B, C, D.
Morphometric analysis of MAP2-positive area, dendrite diameter and cell body area in hippocampal neurons at DIV 14, treated or not with CNF1.
MAP2-positive, somatodendritic area (B) was measured and divided by the cell number in at least 5, randomly chosen fields (41.500 mm2) for each
condition in 4 different cultures. Dendrite diameter was measured in at least 50 dendrites, just before the first dendritic branching. Measures obtained
were averaged to produce a single mean value for each culture. Histogram shows mean values6 S.E.M of 4 different cultures. For neuronal cell body
area, at least 15 MAP2-positive neuronal cell bodies were measured and averaged for each condition in 4 different cultures. The results show that the
thickness of the dendrites and the cell body area are significantly increased in cells challenged with the toxin (* = p,0.05, Wilcoxon Matched Pairs
test).
doi:10.1371/journal.pone.0034115.g002
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growing on CNF1-pretreated astrocytes showed an extensive web

of fine projections (Figures 5C). Morphometric analysis confirmed

the augmented MAP2-positive area (Figures 5D). Furthermore, in

these neuronal/astrocytic co-cultures, immunolabeling for GFAP,

an important component of the astrocyte cytoskeleton, was less

evident in CNF1-treated astrocytes than in control cultures

(Figure 5A). Interestingly, the enlargement of the dendritic tree

was accompanied by an increased formation of synapses, as shown

by synaptophysin immunolabeling (Figures 5E, F), which was

particularly evident around neuronal cell clusters. Morphometric

analysis of synaptophysin-positive area confirmed a significant

increase of synapses in neuronal cell cultures growing on CNF1-

pretreated astrocytes (Figure 5G).

CNF1 treatment endows astrocytes with
a neuroprotective phenotype
A reduction in GFAP content has been put in relation to

increased astrocytic-induced dendritogenesis [23]. Therefore, to

investigate the mechanisms by which CNF1 confers to astrocytes

the above described properties, we grew pure astrocytic cultures

and analyzed GFAP content by Western blotting. GFAP was

evidently reduced after CNF1 treatment (Figures 6 panel A).

Furthermore, in the same cultures, we measured the expression of

the pro-inflammatory cytokines TNF-a and IL-1b after challenge

with CNF1. We found that, whereas the expression of TNF-a was

unaffected (Figure 6, panel B), IL-1b was significantly decreased in

astrocytes challenged with the toxin (Figure 6, panel C). Since IL-

1b directly impairs neurogenesis [24], its decrease is consistent

with the observed positive modulation of dendritic growth after

Figure 3. CNF1-induced changes in differentiating neurons are reversible. Neurons were either continuously exposed to CNF1 until DIV 21,
or exposed to CNF1 until DIV 9 and then switched to CNF1-free medium until DIV 21. Control neurons received no treatment. Neurons were
immunolabeled for MAP2 (red), actin (green) and synaptophisin (green). At DIV 21, neurons that had been exposed to CNF1 only until DIV 9 show less
impressive changes than neurons exposed to CNF1 up to DIV 21. Dendrites are more numerous, although they are still thicker and fewer, compared
to untreated cultures. Cell bodies also remain larger, with a veil-like appearance, but the actin cytoskeleton show the formation of thinner and longer
projections. The number of synapses is increased. In micrograph showing F-actin and synaptophysin, nuclei are stained with DAPI (blue) (bar
= 50 mm).
doi:10.1371/journal.pone.0034115.g003
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treatment with CNF1. Finally, we analyzed if CNF1 influenced the

raise of intracellular Ca2+levels in astrocytes, following adminis-

tration of glutamate, using fluorimetric recordings with Fura-

2AM. We found that glutamate-induced Ca2+peaks were signif-

icantly lower in astrocytes treated with CNF1 (Figure 6D, E),

suggesting the induction of a more resistant phenotype to

gliotoxicity.

Discussion

Astrocytes, the most abundant glial cells in the brain, have long

been considered as a mere trophic support for neurons in the

CNS. Recently, however, several studies have highlighted their

importance in functions such as neurogenesis, neurotransmission,

metabolite and electrolyte homeostasis, synaptogenesis and

synapse modulation [25]. In this paper, we show for the first time

that astrocytes challenged with the Rho-activating CNF1 provide

a more efficient substrate to neuronal growth in primary neuronal

cultures. Also, we herein demonstrate that a direct exposure of

neurons to CNF1 leads to a reversible block of their maturation,

supporting the hypothesis that astrocytes but not neurons are

pivotal in the enhanced neurotransmission and synaptic plasticity

we previously observed after in vivo treatment with CNF1 [14,15].

Figure 4. CNF1 effects in mixed astrocytic/neuronal cultures and in differentiated cultures. Cortical mixed astrocytic/neuronal cultures
were treated with CNF1 at DIV2 and fixed at DIV 14. Neurons were immunolabeled for MAP2 (red) and synaptophysin (green) (A, bar = 50 mm). In the
presence of astrocytes, CNF1 induces less evident cytoskeletal changes than in pure neuronal cultures, with a minor dendritic tree remodeling, while
a few synapses persist (Figure 4B). Western blot analysis, in both pure neuronal (Figure 4C, left) and mixed astrocytic/neuronal (Figure 4C, right)
cultures, show that the levels of synaptic proteins, such as synaptophysin and SNAP23, or of components of the dendritic tree, such as spinophilin,
are similar in CNF1-treated and control cultures. Differentiated neurons at DIV 12 were exposed to CNF1, fixed at DIV 14 and immunolabeled for actin
(red) and synaptophysin (green) (Figure 4D, bar = 20 mm). Under the influence of CNF1, actin cytoskeleton shows a marked remodeling, with increase
in cell body size and development of fine and short neuritic branches. Synaptic density decreases, when compared to control cultures. Again, no
changes in the expression of the synaptic proteins above mentioned was measured by Western blotting (Figure 4E).
doi:10.1371/journal.pone.0034115.g004
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Figure 5. CNF1-treated astrocytes provide a more efficient substrate to neuritogenesis and synaptogenesis. Pure astrocytic cell
cultures, at confluence, were treated with CNF1 for 48 h. After change of the medium, hippocampal neurons were seeded on the astrocytic
monolayer, fixed at DIV 14, and immunolabeled for MAP2 (red) and GFAP (green) or synaptophysin (green). The exposure of astrocytes to CNF1
causes a decrease in GFAP staining (A) whereas hippocampal neurons, growing on CNF1-treated astrocytes but in absence of direct CNF1 influence,
produce a much more abundant dendritic network, as shown by MAP2 immunolabeling (A,B, bars = 200 mm). In C, a detail of a black and white
image used for morphometric analysis emphasizes the change in the dendritic tree, which, growing on control astrocytes, appear smooth and poorly
branching, while on CNF1-pretreated astrocytes, show much wider ramifications (C). D. Morphometric analysis of MAP2-positive area. In hippocampal
neurons co-cultured with astrocytes, after background subtraction, MAP2-positive area was measured as percentage of the total field area
(0.15 mm2). Values obtained for each field were pooled to obtain a single mean value for each neuronal culture (n = 5). Bars represent mean values6
S.E.M (Figure 5C, * = p,0.05, Wilcoxon Matched Pairs test). The richer dendritic tree is accompanied by an increased formation of synapses, as shown
by synaptophysin immunolabeling, particularly enriched around cell bodies (E, bar = 50 mm). Synaptophysin-positive puncta are also visible along
dendrite bundles (F). G. Morphometric analysis of synaptic density. Synaptophysin-positive area was measured in 41.500 mm2-large fields obtained
from 3 different experiments, conducted in duplicate from 2 different cultures. At least 16 images were analyzed for each condition and the results
pooled. Histogram represents the values + S.E.M. Statistical analysis was conducted by the nonparametric Wilcoxon Matched Pairs tests.
doi:10.1371/journal.pone.0034115.g005

Figure 6. CNF1 treatment reduces GFAP and IL-1b levels and glutamate-dependent intracellular Ca2+ rise in pure astrocytic
cultures. The CNF1-induced decrease in GFAP level, observed by immunofluorescence (Figure 5, panel A), is confirmed by Western blot analysis
(panel A). In the supernatants from control and CNF1-treated astrocytes, the expressions of TNF-a and IL-1b were measured by ELISA. While the levels
of TNF-a are unaffected (panel B), IL-1b is significantly decreased in astrocytes challenged with the toxin (panel C). Intracellular Ca2+ levels were
analyzed in astrocytes, following administration of glutamate (after a 3 min baseline), using fluorimetric recordings with Fura 2 AM (panels D,E). In D,
the time course of a representative experiment is shown. The values of at least 6 cells were recorded and averaged. In E, Ca2+ levels were compared at
the baseline and in the peak region. Data for three different experiments were pooled and analyzed. At least 6 cells were evaluated in each
experiment. Bars represent mean values 6 S.E.M. Glutamate induces significantly lower Ca2+ peaks in astrocytes treated with CNF1 than in control
cells (panels C and E *p,0.05 unpaired Student’s t-test).
doi:10.1371/journal.pone.0034115.g006
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The improvement of learning and memory that follows the

intracerebral administration of CNF1 suggests that the toxin can

influence the physiology of CNS by modulating Rho GTPases,

which play a fundamental role in the development of dendritic

spines and synapses [26,27,28]. To closely monitor CNF1 effects

on neuronal growth and differentiation, in search of a morphologic

counterpart of the improvement in learning and memory of

CNF1-treated mice, we exposed to CNF1 primary hippocampal

cultures from rat embryonic brains. Neurons treated with CNF1,

especially from the early stages of development, underwent

profound modifications, including the development of filopodia-

like actin-positive protrusions along neurites and around cell

bodies, thickening of dendrites, lack of synapse formation, poor

dendritic branching. Similar results were obtained in the presence

of astrocytes or for neuronal cultures obtained from a different

brain region, such as the cortex. Analogous, although less evident,

effects were observed after CNF1 treatment of mature neurons.

Synaptic loss was not due to decreased synthesis of proteins of

synaptic vesicles, whose levels were similar to that of control

cultures, as shown by Western blot experiments. Thus, far from

enriching the neuritic network as expectable from in vivo results,

CNF1-treated neurons reduced the complexity of dendritic tree

with respect to control neurons and, furthermore, inhibited the

formation of synapses. This pattern of growth suggested a block of

neuronal maturation, which was also suggested by the persistence

of growth cones, normally disappearing after the first days in

culture, in advanced stages of development (DIV 14). Consistently,

removal of the toxin from the cell culture medium allowed the

neuronal cultures to regain the differentiation process, with

recovered growth of dendrite network and synapse formation.

The results of these experiments, where CNF1 was administered

directly to neurons, in the presence or not of astrocytes, did not

explain the beneficial effects of CNF1 on behavioral tasks observed

in in vivo administration of the toxin. However, we reasoned that in

in vivo treatment, where CNF1 is delivered by means of

intracerebroventricular injections, the toxin first interacts with

ependymal cells, which line the ventricles, and then with astroglial

cells, which are in close contact with the ependymal layer. Thus

we hypothesized that the effects observed in vivo could be mediated

by the interaction of CNF1 with astrocyes. To address this issue,

we analyzed the growth of hippocampal neurons on astrocytes that

had been previously treated with CNF1. Intriguingly, when seeded

on CNF1-treated astrocytes, neurons showed a much more

abundant development of dendritic tree, as compared to neurons

grown on untreated astrocytes. Furthermore, synapses developed

normally and were more numerous. It is reasonable to speculate

that the enhanced synaptic plasticity and improved learning and

memory observed in vivo could be mediated by the interaction of

CNF1 with astrocyes.

It has long been known that astrocytes, when co-cultured with

neurons, have the ability to improve neuronal growth, differen-

tiation and synaptic formation [29]. How did CNF1 improve this

ability? First of all, we found that the toxin induced a decrease in

GFAP expression. GFAP is the main intermediate filament protein

in mature astrocytes, but also an important component of the

cytoskeleton in astrocytes during development. GFAP has been

shown to be involved in astrocyte functions relevant to CNS

regeneration and synaptic plasticity. Several lines of evidence

suggest that the observed reduction in GFAP content in CNF1-

treated astrocytes could be related to the increased dendritogen-

esis. GFAP has in fact been found to be a negative regulator of

astrocytic ability to improve neuronal growth and neuritogenesis

[30]. In addition, highly reactive astrocytes, as shown by GFAP

immunostain, induce the formation of fewer synaptic contacts in

co-cultured neurons, compared to less reactive astrocytes [31].

Recent studies showed that increased astrocytic GFAP expression

can be related to neuron atrophy whereas diminished GFAP

content restores neurite outgrowth in certain conditions [32]. It is

worthwhile mentioning that various pathologic conditions of CNS

are accompanied by reactive gliosis, which is characterized by an

increase in the expression of GFAP and is considered to have a role

in neurodegeneration [23]. Therefore, the capacity of CNF1 of

modulating GFAP content could result crucial in those neurolog-

ical diseases where astrocytosis contributes to neuronal damage.

It is well known that in GFAP-overexpressing, activated

astrocytes, the secretion of pro-inflammatory cytokines is up-

regulated and it is believed to contribute to neurodegeneration

[33]. We wondered if CNF1-treated astrocytes, where low levels of

GFAP are detected, also showed decreased levels of cytokines. In

our model, when exposed to CNF1, astrocytes reduced the

secretion of IL-1b while that of TNF-a was unvaried, suggesting

a selective effect of CNF1 on the cytokine network. This result is in

line with our results, since IL-1b can significantly reduce dendrite

development and complexity in neuronal cultures [34]. In

addition, upregulation of IL-1b was observed to negatively

influence neurogenesis [24] and neurodevelopment [35], possibly

by interfering with the signaling of BDNF, a major trophic factor

in the CNS, critical for the development and survival of certain

neuronal populations [36]. Thus, it is reasonable to expect that

low levels of this cytokine may be related to an improvement of

neuronal growth. In addition, it is worth noting that IL-1b is

considered to contribute to neurotoxicity in several neurodegen-

erative diseases. This observation further prompts to consider

CNF1 as a candidate therapeutic option in neurodegenerative

conditions where upregulation of proinflammatory cytokines is

considered of pathogenetic relevance.

Like in neurons, overstimulation of glutamate receptors induce

in astrocytes an increase in intracellular Ca2+concentrations,

which may be at origin of gliotoxic effects, resulting in dysfunction

and death of astrocytes [37]. Since astrocytes are the major sink of

glutamate in the brain, being mainly responsible for glutamate

removal from the extracellular space [38], they represent one of

the important components of CNS defense against glutamate

excitotoxicity. For this reason, dysfunctional astrocytes may

exacerbate excitotoxic cell damage [39]. We checked if CNF1

treatment could modulate glutamate response in astrocytes and

found that intracellular Ca2+peak, following glutamate adminis-

tration, was significantly reduced, compared to untreated astro-

cytes, suggesting an increased Rho-dependent ability of astrocytes

to counteract excitotoxic stimuli.

As a whole, these results suggest that the changes observed in

astrocytes after CNF1 treatment (decrease in GFAP and IL-1b
levels, reduction of glutamate-driven intracellular Ca2+concentra-

tions) i) provide a rationale to the observed improvement of

neuritic tree growth in co-cultured neurons; ii) depict a neuropro-

tective astrocytic phenotype. In conclusion, considering the

pathogenetic link between astrocytes and neurological disorders,

through pathways that include inflammation, oxidative stress and

excitotoxicity [40], our results encourage further studies on CNF1-

astrocyte interactions, also in view of a possible development of

new therapeutic approaches.

Materials and Methods

Ethics Statement
All primary cultures used in this study were obtained from

Wistar rat embryos at gestational day 18 (Charles River). This

study was carried out in strict accordance with the recommenda-
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tions in the Guide for the Care and Use of Laboratory Animals of

the National Institutes of Health. The protocol was approved by

the Committee on the Ethics of Animal Experiments of the

University of Minnesota (Permit Number: 27-2956).

Primary cultures
After dissection, hippocampi were dissociated in trypsin and

plated on poly-L-lysine-coated glass coverslips in Minimum

Essential Medium (MEM), containing 10% fetal calf serum; after

two hours, the medium was replaced with Neurobasal Medium

(NBM) supplemented with B27. To obtain pure neuronal cultures,

hippocampal neurons were treated at day-in-vitro (DIV) 1 with

1.5 mM Arabinosyl-Cytosine (Ara-C). In these conditions, neuro-

nal cultures contain 1–2% of Glial Fibrillary Acidic Protein-

positive astrocytes [41]. To analyze neuronal cell number, nuclei

were stained with Hoechst 33342 in pure neuronal cell cultures at

DIV 14. Five different fields (20x) were randomly chosen in

coverslips obtained from four different cultures. Nuclei were

counted and averaged. To obtain mixed neuronal/astrocytic

cultures, no Ara-C was added. At DIV 14, in mixed cultures

astrocyte number ranged from 20 to 40% of the cell population

(data not shown). For pure and mixed cortical cultures, cortices

were dissected, dissociated and plated, as described for hippo-

campal cultures. In all neuronal cultures (with the exception of

cultures undergoing CNF1 interrupted treatment, see below), cell

culture media were never totally substituted and small aliquots of

NBM-B27 (5–10% in volume) were added once a week. In the

protocol for CNF1 interrupted treatment, where CNF1-containing

cell culture medium was substituted with CNF1-free medium at

DIV 9, NBM-27 conditioned by untreated cultures grown in

parallel was used. Primary astrocytic cultures were obtained from

the cortex of rat embryos. After dissection and dissociation, as

already described, cortical cell suspension was seeded in flasks in

MEM, containing 10% fetal calf serum and let grow until

confluence. Cells were replated twice to obtain a cell culture highly

enriched in astrocytes. Contamination of microglial cells was

below 1%, as shown by staining with Bandeiraea simplicifolia lectin-

peroxidase conjugate (data not shown). For primary astrocytic-

neuronal co-cultures, astrocytes were first seeded on glass cover-

slips and let grow until confluent. Hippocampal neuron suspen-

sion, obtained as described above, was seeded on the astrocytic

monolayer and treated at DIV 1 with Ara-C, to block further

growth of astrocytes. All cell cultures were grown at 37u in 5%

CO2.

CNF1 preparation and treatments
CNF1 was obtained from the 392 ISS strain (kindly provided by

V. Falbo, Rome, Italy) and purified as previously described [42].

CNF1 was used at the concentration of 10210 M.

Cell cultures were treated according different protocols. A)

Treatment of immature neurons: CNF1 was administered to pure

or mixed neuronal cultures at DIV2 until fixation (5 or 9 or 14 or

21 DIV). B) Treatment of mature neurons: hippocampal neurons

at DIV 12 were treated for 48 h and then fixed. C) Interrupted

treatment of immature neurons: pure hippocampal neurons were

treated at DIV 2; at DIV 9, CNF1-containing medium was

substituted with CNF1-free medium. At this stage of development,

neuronal survival deeply depends on autocrine production of

growth factors, thus abrupt change of medium with fresh NBM-

B27 is deleterious for neurons in vitro. To overcome this problem,

NMB-B27 derived from untreated cultures grown in parallel was

used instead of fresh medium. Hippocampal cultures were fixed at

DIV 21. D) Treatment of astrocytes to be co-cultured with

neurons: confluent primary astrocytic cell cultures were treated for

48 h with CNF1. At the end of treatment, CNF1-containing

medium was changed with CNF1-free NBM-B27 and primary

hippocampal neurons were seeded on the astrocytic monolayer. In

control cultures, hippocampal neurons were seeded on untreated

astrocytes. Neuronal-astrocytic co-cultures were fixed at DIV 14.

Immunocytochemistry
Cell cultures were fixed in 4% paraformaldehyde in phosphate

buffered saline (PBS), 0.12 M in sucrose, and permeabilized with

Triton X-100 (0.2%, Sigma). For F-actin detection, cells were

stained with FITC (fluoresceine isothyocianate)-phalloidin (Sigma;

working dilution 0.5 mg/ml in PBS) for 30 min at 37uC.
Immunostaining was performed with the following primary

antibodies: anti-microtubule-associated protein MAP2, a marker

of dendrites, anti-synaptophysin, a synaptic vesicle-associated

protein, PSD95, a marker of post-synaptic densities, glial fibrillary

acidic protein (GFAP), specifically identifying astrocytic cytoskel-

eton. All primary antibodies were purchased from Millipore, MA,

USA. After washing, samples were double-labeled with anti-mouse

Alexa Fluor 488 and anti-rabbit 594 (Molecular Probes). In some

experiments, nuclei were counterstained with DAPI or Hoechst

33342. Finally, after extensive washes, samples were mounted and

observed with an Olympus BX51 fluorescence microscope or an

Eclipse 80i Nikon Fluorescence Microscope, equipped with

a VideoConfocal (ViCo) system.

Morphometric analysis. Morphometric analysis was

conducted with the Optilab software (Graftek, Austin, TX) on

images obtained at the Nikon Fluorescence Microscope, equipped

with the ViCo system. In MAP2-immunostained, pure

hippocampal neurons at DIV 14, mean somatodendritic area,

mean dendritic diameter and mean cell body area were measured

in control and CNF1-treated neurons. For somatodendritic area,

total MAP2-positive area was measured and divided by the cell

number in at least five, randomly chosen fields (41.500 mm2) for

each condition in 4 different cultures. Dendrite thickness was

measured before the first dendritic branching. At least 60 dendrites

were randomly chosen from two separate coverslips of the same

culture, measured and averaged, to produce a single mean value

for each condition in 4 different cultures. For neuronal cell body

area, at least 15 MAP2-positive neuronal cell bodies were

measured and averaged for each condition in 4 different

cultures. For synaptic density, synaptophysin-positive puncta

were counted along MAP2-positive dendrites. At least 30 images

of dendrites (20 mm-long), obtained from 3 different cultures, were

analyzed for each condition. In hippocampal neurons co-cultured

with astrocytes, after background subtraction, MAP2-positive area

was measured as percentage of the total field area. In this case,

positive area could not be normalized by cell number, since in

neuronal/astrocytic co-cultures neurons grow in tight clusters and

single cells are difficult to identify. Values obtained for each field

(0.15 mm2) were pooled to obtain a single mean value for each

neuronal culture (n = 5). A different procedure was also used to

measure synaptic density. Again the reason was the peculiar

growth modality of neuronal/astrocytic co-cultures, where

dendrites develop as tightly packed bundles and single dendrites

are difficult to discern. This did not allow counting synapses along

dendrites, as performed in pure neuronal cultures. In addition, in

neuronal/astrocytic co-cultures, synapses are particularly enriched

around neuronal cell bodies, away from dendrites. For these

reasons, synapse density was measured as synaptophysin-positive

area. At least 16 images (41.500 mm2-large fields), obtained from 3

different experiments, conducted in duplicate from 2 different

cultures, were captured and measured for each condition and the

results pooled.
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Statistical analyses were conducted by the nonparametric

Mann-Witney U or Wilcoxon Matched Pairs tests.

Western blot analysis
Cells were lysed in boiled sample buffer 1x (50 mM Tris-HCl,

pH 6.8, 2% SDS, 10% glycerol, and 100 mM dithiothreitol).

Twenty-five micrograms of total protein extracts were resolved by

SDS-polyacrylamide gel electrophoresis (PAGE) and electrically

transferred onto polyvinylidene difluoride membranes (Bio-Rad).

Membranes were blocked with Tris-buffered saline-Tween 20

(TBS-T) (20 mM Tris-HCl, pH 7.4, 150 mM NaCl, and 0.02%

Tween 20) containing 5% skimmed milk (Bio-Rad) for 30 min at

room temperature, and then they were incubated overnight at 4uC
with primary antibodies diluted in TBS-T containing 2% milk.

The following primary antibodies were used: mouse monoclonal

anti-synaptophysin (Chemicon; 1:1000), rabbit polyclonal anti-

spinophilin (Upstate; 1:1000), mouse monoclonal anti-SNAP-23

(Sy-Sy; 1:10000), rabbit polyclonal anti-GFAP (Millipore; 1:5000),

mouse monoclonal anti-alpha-tubulin (Sigma; 1:10000). After

extensive washing, immune complexes were detected with

horseradish peroxidase-conjugated species-specific secondary anti-

bodies (Jackson’s) followed by enhanced chemiluminescence

reaction (Amersham).

Enzyme-linked immunosorbent assay (ELISA)
For detecting IL-1b and TNF-a, ILs ELISA kits were used

following the manifacturer’s instructions (BioVendor-Laboratorni,

a.s.). Briefly, after having washed the microtiterplate with Wash

Buffer, 50 ml of each sample were pipetted in duplicate to the

sample wells. After the Biotin-Conjugate addition to all wells and

a subsequent Streptavidin-HRP incubation, the plate was carefully

washed and the chromogenic substrate solution was added.

Following appropriate incubation, the enzymatic reaction was

stopped and the absorbance was red on a spectro-photometer

(BIORAD) using 450 nm as the primary wave length, with a sub-

wavelength of 650 nm.

Fura-2AM experiments
Experiments were performed on astrocytes treated with CNF1

for 72 h. Optical fluorimetric recordings with Fura-2AM were

used to evaluate the intracellular calcium concentration ([Ca2
+]i).

Fura-2AM stock solutions were obtained by adding 50 mg of Fura-
2AM to 50 ml of 75% DMSO plus 25% pluronic acid. Cells were

bathed for 60 min at room temperature with 5 ml of stock solution
diluted in 1 ml of extracellular solution (in mM: 125 NaCl, 1 KCl,

5 CaCl2, 1 MgCl2, 8 glucose, and 20 HEPES, pH 7.35) for a final

Fura concentration of 5 mM. This solution was then removed and

replaced with extracellular solution, and the dishes were quickly

placed on the microscope stage. To measure fluorescence changes,

a Hamamatsu (Shizouka, Japan) Argus 50 computerized analysis

system was used, recording every 6 s the ratio between the values

of light intensity at 340 and 380 nm stimulation. The basal level of

[Ca2
+]i was estimated as approximately 80 nM using the

calibration standard kit (Molecular Probes), equivalent to a ratio

value of about 0.8.
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