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Obesity during pregnancy has been shown to increase the risk of metabolic

diseases in the offspring. However, the factors within the maternal milieu

which affect offspring phenotypes and the underlying mechanisms remain

unknown. The adipocyte hormone leptin plays a key role in regulating

energy homeostasis and is known to participate in sex-specific developmen-

tal programming. To examine the action of leptin on fetal growth, placen-

tal gene expression and postnatal offspring metabolism, we injected C57BL

mice with leptin or saline on gestational day 12 and then measured body

weights (BWs) of offspring fed on a standard or obesogenic diet, as well as

mRNA expression levels of insulin-like growth factors and glucose and

amino acid transporters. Male and female offspring born to leptin-treated

mothers exhibited growth retardation before and a growth surge after

weaning. Mature male offspring, but not female offspring, exhibited

increased BWs on a standard diet. Leptin administration prevented the

development of hyperglycaemia in the obese offspring of both sexes. The

placentas of the male and female foetuses differed in size and gene expres-

sion, and leptin injection decreased the fetal weights of both sexes, the pla-

cental weights of the male foetuses and placental gene expression of the

GLUT1 glucose transporter in female foetuses. The data suggest that mid-

pregnancy is an ontogenetic window for the sex-specific programming

effects of leptin, and these effects may be exerted via fetal sex-specific pla-

cental responses to leptin administration.

According to the ‘Developmental Origins of Health

and Disease’ paradigm, the health of an individual

depends on the intrauterine and early postnatal condi-

tions [1]. Obesity during pregnancy has been shown to

increase the risk of metabolic diseases in the offspring

[2]. However, it remains unknown what factors of the

maternal milieu induce alterations in the offspring

phenotypes and the mechanisms that mediate the long-

term effects of these factors.

The adipocyte hormone leptin plays a key role in

regulating energy homeostasis [3], and the circulating

leptin levels are proportional to the adipose mass of

the body [4]. A considerable number of studies have

demonstrated that leptin participates in developmental
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programming [5–8]. A protective effect against obesity

in offspring was detected when leptin was administered

throughout pregnancy or during the second half of

pregnancy in rats and mice on a standard diet

[5,7,9,10]. However, leptin administration during early

pregnancy and mid-pregnancy in food-restricted mice

was shown to increase the propensity of female off-

spring to develop diet-induced obesity (DIO) [11]. The

programming effects of leptin probably depend on the

timing of its administration, maternal nutrient condi-

tions and the sex of the offspring.

Leptin may affect fetal development via its influence

on placental functions [12]. The placenta supplies foe-

tuses with nutrients and growth factors, thereby deter-

mining the fetal growth rate and the offspring birth

weight [13,14]. In turn, the birth weight predicts the

future health of an individual. In humans, birth

weights that are either too low or too high are associ-

ated with an increased risk of type 2 diabetes and obe-

sity [15,16]. In mice, sexual dimorphism has been

observed for the placental response to obesity during

pregnancy [17,18]. This suggests that some obesity-as-

sociated maternal factors (including elevated leptin)

may differently affect the functions of the placentas of

male and female foetuses. It is not known whether

maternal leptin affects the fetal growth rate and the

expression of nutrient transporters and growth factors

in the placenta in mid-pregnancy and whether the pla-

cental response to leptin action is sex-specific.

The goal of the present study was to investigate the

effects of leptin administration to mice during mid-

pregnancy on the offspring metabolic phenotypes, fetal

weights and expression of genes in the placentas

according to the offspring sex. We found that leptin

administration to pregnant mice differentially affected

some phenotypic traits of the male and female off-

spring, and this effect was associated with a temporary

fetal growth restriction and a sex-specific placental

response to the leptin injections. We propose that the

sex-specific programming effect of leptin administered

in mid-pregnancy may be related to its different

actions on the placentas of male and female foetuses.

Methods

Ethical approval

All experiments were performed according to Guide for the

Care and Use of Laboratory Animals (1996) and the Rus-

sian national instructions for the care and use of laboratory

animals. The protocols were approved by the Independent

Ethics Committee of the Institute of Cytology and Genetics

(Siberian Division, Russian Academy of Sciences).

Diets

The standard chow diet was supplied in pellet form and

was purchased from Assortiment Agro (Moscow region,

Turacovo, Russia). Obesogenic food included sweet butter

biscuits, lard and sunflower seeds. The animals received

obesogenic food in addition to standard chow. The animals

received excess quantities of each food including the chow,

such that their intake was ad libitum.

Animals

C57BL/6J mice were purchased from the Jackson Labora-

tory (Bar Harbor, ME, USA) and then were bred in the

vivarium of the Institute of Cytology and Genetics. The

mice were housed under a 12:12-h light–dark (7 h 30 min–
19 h 30 min light) regime at an ambient temperature of

22 °C. The mice were provided ad libitum access to com-

mercial mouse chow and water.

The females were mated with the males at 10–14 weeks

of age and were housed individually from the day a copula-

tory plug was detected (gestational day 0, GD0). On

GD12, the females received subcutaneous injections of

recombinant murine leptin (4.0 µg�g�1 BW) dissolved in

saline to a final concentration of 500 µg�mL�1 or were

injected with saline (control) at 9 h 00 min. According to

our previous research, leptin administered at this dose to

mice in late pregnancy did not affect the offspring viability

but this administration influenced the offspring phenotype

[5]. The leptin- and saline-administered mice were divided

into three experimental groups.

In one group, 14 leptin-treated and 17 saline-treated

females were weighed before and 24 h after injection and

were sacrificed by rapid decapitation. Samples of their

trunk blood were collected, and their foetuses and placen-

tas were weighed. The fetal liver samples were collected

and snap-frozen in liquid nitrogen for subsequent sex deter-

mination.

In the second group, nine leptin-treated and nine saline-

treated mice were sacrificed 7 h after leptin injection, and

the samples of every placenta and fetal liver were snap-fro-

zen in liquid nitrogen. When the sexes of the foetuses were

detected, the placentas from six leptin-treated and six sal-

ine-treated dams were selected to examine the placental

gene expression. The selected dams had seven to nine foe-

tuses and two or more foetuses of both sexes. Lightest and

heaviest placentas within a litter were excluded from the

analysis of gene expression as placental size was shown to

influence on expression of genes encoding the transporters

of glucose and amino acids [19].

The third group was used to examine the influence of

leptin administration on the offspring phenotypes. At birth,

the pups born to nine leptin-treated and seven saline-trea-

ted females were weighed, and the litters that contained

more than seven pups were reduced to seven pups. The pup
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body weights (BWs) on postpartum days 1, 7, 14, 21 and

28 were measured. On postpartum day 28, two males and

two females from each litter were separated from their

mothers and housed individually, and their BWs and food

intake (FI) were measured once a week until the age of

16 weeks. During this period, all animals were fed a stan-

dard chow diet ad libitum. From the age of 16 weeks, one

male and one female from each litter continued to receive a

standard diet, and one male and one female began to

receive biscuits, lard and sunflower seeds in addition to the

standard chow. This mixture mimics the cafeteria diet and

potentiates the rapid development of obesity in mice [5].

Mouse BWs were measured once a week over the course of

8 weeks. The consumption of obesogenic food was not

measured. At the end of the experiment, the animals were

sacrificed by decapitation, samples of blood were collected,

and the weights of the abdominal fat pads were measured.

Materials

Murine recombinant leptin was purchased from PeproTech

(Princeton, NJ, USA).

Plasma assays

Concentrations of leptin were measured with commercial

kits (leptin: R&D Systems, Minneapolis, MN, USA, intra-

assay: 3.8–4.3%; interassay: 3.8–5%). Plasma glucose con-

centrations were measured using a commercial kit (Fluitest

GLU; Analyticon Biotechnologies, AG 35104, Lichtenfels,

Germany).

Relative quantitative real-time PCR

Total RNA was isolated from the individual placenta sam-

ples with TRI Reagent (Ambion, Carlsbad, CA, USA)

according to the manufacturer’s instructions. Samples of

placental RNA from every dam were pooled according to

sexes of the foetuses. The pooled RNA (two samples for

every dam extracted from two to three placentas of male

and female foetuses) was used as a template to synthesize

the first-strand cDNA with Moloney murine leukaemia

virus (MMLV) reverse transcriptase (Promega, Madison,

WI, USA) and oligo(dT) as a primer. Applied Biosystems

TaqMan gene expression assays (Igf1, Mm0043956_m1;

Igf2, Mm00439564_m1; Igf2r, Mm00439576_m1; Slc2a1,

Mm00441480_m1; Slc2a3, Mm00441483_m1; Slc38a1,

Mm00506391_m1; Slc38a2, Mm00628416_m1; Slc38a4,

Mm00459056_m1; ObRb-LepR, Mm00440181_m1) with b-
actin as an endogenous control [TaqMan endogenous con-

trols with FAM dye label and MGB mouse b-actin
(ACTB)] (Life Technologies Corporation, Carlsbad, CA,

USA) and TaqMan Gene Expression Master Mix were

used for relative quantitative real-time PCR (Life

Technologies Corporation). Sequence amplification and flu-

orescence detection were performed with the Applied

Biosystems ViiA 7 Real-Time PCR System. All expression

assays were tested for reaction with a negative control

(samples prepared without reverse transcriptase), and no

fluorescence signals were detected during this verification.

Mean CT values for b-actin were equal in all experimental

groups. Reactions were performed in duplicate, and the

results were averaged. Relative quantification was per-

formed by the comparative CT method, where CT is the

threshold cycle.

Determining of fetal sex

The sexes of the foetuses were determined using genomic

DNA PCR with the following primers: SX_F, 50-GAT-

GATTTGAGTGGAAATGTGAGGTA-30; SX_R, 50-CTT
ATGTTTATAGGCATGCACCATGTA-30 [20]. DNA was

extracted from fetal liver with a salt solution according to

Aljanabi and Martinez ([21]) [19]. The sex was determined

in approximately 85% of the foetuses.

Statistical analysis

General linear model nested design ANOVA was used

with the factor ‘mother’ nested in the factor ‘maternal

treatment’ to analyse the influence of maternal treatment

on fetal and placental weights and offspring BWs during

the period of maternal care. Repeated measures ANOVA

was used to compare the BW, FI and FI/BW after

weaning according to the maternal treatment (saline or

leptin) differently in male and female offspring on stan-

dard diet. As two males and two females from each litter

were used for this analysis, means per litter were identi-

fied and then statistical analysis was performed with this

data. To examine the maternal influence on the response

to a diet, BW and BW gain were analysed by repeated

measures ANOVA with the factors ‘maternal treatment’

and ‘diet’ differently in male and female offspring. Two-

way ANOVA was used to analyse fat percentage and

blood glucose concentrations with the factors ‘maternal

treatment’ and ‘diet’ differently in male and female off-

spring or with the factors ‘sex’ and ‘diet’ differently in

offspring of saline- and leptin-treated mothers, and to

analyse the expression of genes with the factors ‘maternal

treatment’ and ‘foetal sex’. In addition, multiple compar-

isons were performed with the post hoc Newman–Keuls

test. The comparisons between single parameters were

performed with a two-tailed Student’s t-test. Significance

was determined as P < 0.05. The STATISTICA 6 software

package (StatSoft, TIBCO Software Inc., Palo Alto, CA,

USA) was used for analysis. The results are presented as

the means � SEM from the indicated number of mice or

mean values.
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Results

Influence of leptin administration to dams on

GD12 on the weights of dams, their foetuses and

their placentas

The effects of leptin on the weight of dams, their foe-

tuses and placentas depended on the time that passed

after the injection. Leptin- and saline-treated dams did

not differ in their BW changes (�1.2 � 0.3%, n = 9;

�1.1 � 0.4%, n = 9; saline and leptin, respectively)

but differed in the weight of their foetuses within 7 h

after the injection. Compared to the results of the sal-

ine administration, the leptin administration resulted

in a proportional reduction in the weights of the male

foetuses (P < 0.001, nested design ANOVA) and their

placentas (P < 0.01, nested design ANOVA); leptin

administration also resulted in a reduction in the

weights of the female foetuses (P < 0.05, nested design

ANOVA) but did not affect the weights of the placentas

of the female foetuses (Fig. 1A,B). As a result, the fetal/

placental weight ratio became lower in the female foe-

tuses of the leptin-treated dams compared to that of the

control dams (P = 0.05, nested design ANOVA,

Fig. 1C). Within 24 h after injection, leptin administra-

tion reduced the dam’s BW gain by 2.35-fold (Table 1),

but the leptin- and saline-treated dams did not differ in

terms of their plasma leptin and glucose levels (Table 1).

Nested design ANOVA did not reveal influence of the

maternal treatments on either the fetal or placental
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Fig. 1. Influence of leptin administration to C57BL/6J mice on GD12 on the weight of foetuses and placentas within 7 h (A–C) and 24 h (D–

F) after leptin injection. Data are presented as the means � SEM from 18 male and 22 female foetuses of saline-treated dams and from 33

male and 21 female foetuses of leptin-treated dams within 7 h after leptin injection; from 55 male and 41 female foetuses of saline-treated

and from 38 male and 36 female foetuses of leptin-treated dams within 24 h after injection. *P ≤ 0.05, maternal treatment, nested design

ANOVA with the factor ‘mother’ nested in the factor ‘maternal treatment’; #P < 0.05, fetal sex in PBS-treated dams, nested design ANOVA

with the factor ‘mother’ nested in the factor ‘foetal sex’.
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weights within 24 h after the leptin or saline administra-

tion both in male and in female foetuses (Fig. 1D–F).

Influence of leptin administration to dams on

GD12 on the offspring metabolic phenotypes

Offspring BW before weaning, and FI and BW after

weaning

The administration of leptin to dams on GD12 did not

affect fetal viability or weight at the end of pregnancy:

the number and weights of newborn pups were equal in

the leptin- and saline-treated dams (Table 1, Fig. 2).

Leptin administration decreased the pup growth rate

from postpartum days 7 to 28 and significantly

decreased the BWs of both the female and male off-

spring before weaning (Figs 2 and 3).

After weaning, the offspring of the leptin-treated

dams demonstrated a growth surge that allowed them

to catch up (Fig. 3). During the first 2 weeks after

weaning, the male offspring, but not the female off-

spring, of the leptin-treated dams had significantly

higher weight gain than those of the control dams

[5.66 � 0.38 g (n = 12) and 7.31 � 0.28 g (n = 17),

P < 0.01, Student’s t-test, for saline and leptin, respec-

tively]. Leptin administration to pregnant dams did

not affect the FI and BWs of the female offspring after

weaning (Fig. 3A,B) but did increase the BWs of the

male offspring after weaning (P < 0.01, repeated mea-

sures ANOVA, Fig. 3C). There were no significant dif-

ferences in the FI (Fig. 3D) and FI:BW ratios for both

the female and male offspring between the leptin-trea-

ted and control mice (data not shown).

Offspring response to obesogenic diet

Obesogenic diet induced the development of obesity in

both males and females (P < 0.001, factor ‘diet’,

repeated measures ANOVA, Fig. 4A,B), and prenatal

exposure to leptin did not significantly affect the BWs

or BW gain of the female and male offspring. This lep-

tin administration also did not affect abdominal fat

accumulation in the male and female offspring regard-

less of diet (Fig. 5A) and abolished the presence of

hyperglycaemia in obese animals. The blood glucose

concentrations were higher in the DIO mice than those

in the standard diet (SD) mice for the offspring of

control mothers and were the same in the DIO and

SD mice born to leptin-treated mothers (two-way

ANOVA with factors ‘diet’ and ‘sex’, Fig. 5B). When

glucose concentrations were analysed separately in

males and females, the interaction effect of factors

‘maternal treatment’ and ‘diet’ was observed in

females, but not in males.

Influence of leptin administration on gene

expression in placentas

The comparison of the gene expression in the placen-

tas of male and female foetuses revealed sex-dependent

differences in the mRNA levels of the amino acid

transporters SNAT2 (P < 0.05, F1.20 = 7.2, ANOVA)

and SNAT4 (P < 0.05, F1.20 = 7.5, ANOVA) as well

as sex- and treatment-dependent differences in the

mRNA levels of the glucose transporter GLUT1

(P < 0.01, F1.19 = 12.6 for sex; P < 0.01, F1.19 = 10.9

Table 1. Characteristics of the dams on GD13 within 24 h after

the leptin or saline injection. The data are presented as the

mean � SEM for the indicated number of mice within the

brackets.

Saline Leptin

P (Student’s

t-test)

Female BW gain

(% of initial)

4.7 � 0.7 (17) 2.0 � 0.08 (14) 0.02

Litter size 6.8 � 0.3 (17) 6.9 � 0.5 (14) NS

Plasma leptin

concentrations

(ng�mL�1)

6.3 � 1.3 (8) 10.1 � 2.2 (7) NS

Plasma glucose

concentrations

(mM)

7.2 � 0.4 (8) 7.5 � 0.4 (7) NS
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Fig. 2. Influence of leptin administration to C57BL mice on GD12

on pup BW at the age of 1–28 days. Data are presented as the

means � SEM from 45 pups born to saline-treated and from 60

pups born to leptin-treated mothers. *P < 0.01, maternal

treatment, nested design ANOVA with factor ‘mother’ nested in

factor ‘maternal treatment’.
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for maternal treatment; P < 0.05, F1.19 = 7.46 for sex

X maternal treatment) (Fig. 6). In the control group,

the relative expression levels of the Slc38a2 (SNAT2)

and Slc2a1 (GLUT1) genes were significantly higher in

the placentas of the female foetuses than the relative

expression levels in the placentas of the male foetuses

(Fig. 6), but these sex differences were not observed

after leptin treatment. Leptin administration signifi-

cantly decreased the placental mRNA levels of the glu-

cose transporter GLUT 1 only in the placentas of the

female foetuses.

Discussion

In this study, we tested the assumption that the

programming effect of leptin administered to mice dur-

ing mid-pregnancy may depend on the sex of the off-

spring. In addition, we suggested that any differences in

the functional responses of the placentas of the male

and female foetuses may underlie the sex-dependent

programming action of leptin. We injected leptin once

on GD12 and evaluated both the acute response of the

placentas and the foetuses to this injection and the

long-lasting effects of this administration on the meta-

bolic phenotype of male and female offspring. Although

a single injection of leptin does not imitate the leptin

levels that are characteristic of obesity, this model

allows us to assess whether the foetuses on day 12 of

development are sensitive to the action of maternal lep-

tin and to reveal an acute response from the foetuses

and placentas. We found that a transient increase in the

leptin levels in the blood of female mice at GD12

affects the offspring phenotype, and the effect on some

phenotypic traits depended on the sex of the offspring.

We found that prenatal exposure to leptin during

mid-pregnancy did not prevent DIO development,
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but it did abolish hyperglycaemia in obese animals of

both sexes. A previous study showed that hyperlepti-

naemia during pregnancy improved the glucose meta-

bolisms of the offspring of DB/+ female mice [8].

Our results are consistent with this finding and

suggest that the specific period between gestational

days 12 and 13 is critical for the development of glu-

cose homeostasis systems in the mouse offspring. In

mice, the peak of the proliferation of progenitors of

hypothalamic leptin-activated neurons that regulate

energy balance and glucose homeostasis occurs on

day 12 [22,23]. Leptin has been shown to promote

the migration and differentiation of hypothalamic

neural progenitor cells [24]. The leptin receptor Ob-

Rb was found in mouse fetal brain from postcoital

day 10.5 [25]. These data suggest that increased lep-

tin levels at the time of hypothalamic neuron birth

may directly influence the formation of neuronal

systems regulating energy balance and glucose home-

ostasis.
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According to our previous results [5], the male

offspring exhibited a higher sensitivity to prenatal

leptin exposure than the sensitivity of the female

offspring: the males born to leptin-treated mothers

became heavier than the control males at the age of

6 weeks due to an accelerated growth rate after wean-

ing. However, leptin administration to female mice at

the end of pregnancy had the opposite effect: it

decreased both the food intake and BWs of the male

offspring [5]. Hyperleptinaemia throughout pregnancy

also decreased the BWs of mouse offspring [5,7]. These

findings suggest that the leptin programming action

strongly depends on the stage of embryo development.

Although the programming effects of maternal lep-

tin on the offspring postnatal phenotype has been well

documented [5–8], the effect of leptin on fetal growth

and placental function was not studied well enough,

and the role of leptin in the regulation of fetal growth

remains unclear. The data obtained in humans and

rodents indicate that leptin stimulates fetal growth:

decreased leptin levels in food-restricted pregnant rats

are associated with fetal intrauterine growth restriction

[26,27], whereas elevated leptin levels in obese mice are

associated with fetal overgrowth [28,29], and in vitro

leptin stimulates amino acid transport in human pla-

centas at the end of pregnancy [30,31]. However,

in vivo experiments on leptin-treated pregnant mice

and rats have shown that maternal leptin inhibits fetal

growth [10,32]. Previously, we found that the weights

of foetuses in mice with the Ay mutation (this

mutation increases the blood leptin levels during

pregnancy [33]) were lower than those in the control

mice on GD13 [34]. Our results are consistent with this

previous finding and clearly demonstrate that maternal

leptin inhibits fetal growth in mid-pregnancy. We did

not measure dam food intake in this study, but it seems

unlikely that fetal growth inhibition resulted from leptin

action on the food intake of pregnant dams. There was

no association between changes in the weight of the

foetuses and that of the pregnant dams in response to

leptin administration; up until 7 h after the injection,

the leptin- and saline-treated dams did not differ in BW

changes but differed in the weights of their foetuses,

and through 24 h, the leptin-treated dams gained less

weight than saline-treated dams did, but their foetuses

did have a growth increase and caught up to the

weights of the foetuses of control dams.

The effect of leptin administration on the growth of

the foetuses is probably mediated via its influence on

placental functions. Earlier in the genetic model, we

found that an increased level of leptin in Ay mice was

accompanied by a decrease in the weights of both the

foetuses and the placentas [34].

In this study, we found that the placentas of male

and female foetuses differed in size, gene expression

and reaction to leptin administration. In control dams,

the placental weight was significantly higher in the

male foetuses than it was in the female foetuses. The
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Fig. 6. Influence of leptin administration to

C57BL mice on GD12 on the relative gene

expression levels in the placentas of male

and female foetuses. Relative gene

expression was estimated using reverse

transcription and real-time PCR analysis by

the comparative CT method. Data are

presented as the means � SEM from six

samples in every group. Data were

analysed by two-way ANOVA with the

factors ‘maternal treatment’ (saline or

leptin) and ‘foetal sex’, and the influence

of fetal sex was detected for Slc38a2,

Slc38a4 and Slc2a1 genes with P < 0.05.

The influence of maternal treatment and

the interaction between fetal sex and

maternal treatment were detected for

Slc2a1 genes with P < 0.05. *P < 0.05,

females, leptin vs. saline, #P < 0.05,

saline, females vs. males, post hoc

Newman–Keuls test.
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same sex-specific differences in placental weight were

observed in mice on GD13 [34] and GD18 [35,36],

both in other species [37] and in humans [38]. At the

same time, the placental expression levels of genes

encoding the glucose transporter Slc2a1 (GLUT 1)

and the amino acid transporters Slc38a2 (SNAT2) and

Slc38a4 (SNAT4) were higher in the female foetuses

than the expression levels in the male foetuses. These

data coincide with the results of other authors who

found an increased expression of the genes encoding

GLUT1 and SNAT2 in small placentas compared with

the expression in large placentas in mice during normal

pregnancy [19]. A decrease in the placental size in

undernourished mice was associated with the increased

placental expression of these genes [13]. Our results

suggest that the placentas of male and female foetuses

that are different in size possibly adopt different strate-

gies to support growth. According to this assumption,

growth inhibition in male and female foetuses was

associated with different placental responses to leptin

administration as follows: the lowering of placenta

weight in male foetuses and the inhibition of Slc2a1

gene expression in placentas of female foetuses.

Interestingly, in Ay mice, elevated leptin levels were

also associated with a decreased expression of Slc2a1

in the placentas of only female foetuses [34]. Taken

together, our results indicate that the elevation of

blood leptin levels in mice in mid-pregnancy sex-specif-

ically inhibits the expression of gene encoding GLUT1

in placentas. GLUT1 is the most common glucose

transporter in the placenta, and it regulates both the

placental glucose uptake and the transplacental glucose

transfer to the foetus [39]. The influence of the leptin-

induced inhibition of Slc2a1 expression on placental

metabolism and transplacental glucose transfer may be

the reason for growth retardation in female foetuses.

Although leptin plays an important role in placental

physiology [40], until now, there is no evidence that

leptin influences the expression of the Slc2a1 gene in

the placenta. Leptin influence on the expression of the

Slc2a1 gene in placentas is possibly mediated by some

metabolic signals that are generated by dams in

response to leptin administration.

Leptin administration inhibited fetal growth without

affecting the placental gene expression of Igf1 and Igf2,

which are known to affect fetal growth and placental

morphogenesis, substrate transport and hormone secre-

tion [41]. The proportional decrease in the weight of both

male foetuses and their placentas after leptin administra-

tion suggests that the reduction in physical size of the pla-

centas can be a major cause of leptin-induced growth

retardation in male foetuses. The different effects of

exogenous leptin on the weight of mouse placentas were

shown depending on the stage of gestation and maternal

diet: leptin decreased fetal and placental weight in mice

on standard diet in late pregnancy [32] and increased pla-

cental weight in food-restricted mice in early pregnancy

[42]. Our results agree with the observation of Yamashita

et al., although the mechanisms underlying the influence

of the short-term leptin increase in maternal blood on the

placental weight are unclear.

In summary, leptin administration on GD12 has a

long-term effect on the metabolic phenotype of the off-

spring. Regardless of sex, this administration does not

predispose the offspring to developing DIO, but it

does prevent the adverse effects of obesity on blood

glucose levels. These data confirm the role of leptin as

a factor involved in developmental programming and

demonstrate that the period between days 12 and 13

of embryonic development is critical for the formation

of glucose homeostasis systems in mice. Male offspring

exhibited a higher sensitivity to prenatal leptin expo-

sure compared to the sensitivity of female offspring.

The sex differences in the programming effect of leptin

on offspring metabolic phenotypes may be related to

the different responses of the placentas of male and

female foetuses to leptin administration. Leptin admin-

istration transiently inhibited the growth rate in the

foetuses of both sexes, and this effect was associated

with a decreased placental weight in male foetuses and

a decreased placental expression of the gene encoding

the glucose transporter GLUT1 in female foetuses.

This sex-specific placental response to leptin adminis-

tration may provide different developmental trajecto-

ries in male and female foetuses. Further investigation

of the molecular pathways that link leptin-induced

changes in placenta with offspring development is nec-

essary to understand the mechanisms underlying the

sex-specific programming effect of maternal leptin.
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